

A State-Driven, Service-
Oriented Dynamic Web

Development Framework

Steve Huntley
stephen.huntley@alum.mit.edu

The Rails Apocalypse:

Motivation:

● 2013 has been an “Apocalyptic” year for object-
oriented web frameworks

● Not just new exploits, but new classes of exploits
● Expected to take years to flush out and fix, if ever
● Total server pwnage is the new normal
● Bonus: object-relational mapping is a disaster for

performance and scalability

Motivation:

● It's 2013 and creating small/medium size
dynamic web sites is still TOO HARD

● Identity and policy-based access control
techniques have hardly changed

● Easy to slip up and give away the farm
● “Best practice” advice for OO frameworks is

often to steer away from the most powerful
available options

Inspiration:
Service-oriented programming:
● “software modules are strictly encapsulated

through well-defined service interfaces”
● “a service can be composed of other nested

services in a hierarchical manner”
● Generalization of the “Unix way”
● No attempt here to adhere to any strict definition

or protocol

Implementation:

● Little web framework in Tcl built on wibble
● Leverages unique Tcl features: hierarchical

namespaces, call frame introspection,
package modules

● Features delivered as set of packages

Overview:
State

Wrapper
Wibble
Server

Zone
Handlers Dispatcher Namespace

Hierarchy
Services

Package: pkgTree
● A URI is a hierarchically-structured service request
● Tcl namespaces are a hierarchically-structured tool for

organizing code
● Tcl package modules are a hierarchically-structured tool

for locating and loading procedure libraries
● A filesystem is a hierarchically-structured medium for

storing files

 Let's make them work together

pkgTree dispatcher

● Maps a URI path to a namespace ensemble
● Handles combination of REST-type arguments and

query strings
● If suitable ensemble doesn't exist, looks in package

module file space, loads candidate
● Access to arbitrary code prevented by requirement

that candidate is an ensemble within defined
namespace path

http://example.tk/document/statistics/wordcount/tutorial.txt

Or

http://example.tk/document/statistics/wordcount?doc=tutorial.txt

Maps to:

::API::document::statistics::wordcount $doc

Read from:

$lib/tm/API/document/statistics-0.1.tm

pkgTree Helper procs
● pkgTree::provide loads package in module file, is self-

aware of filesystem location and creates corresponding
namespace automatically

● pkgTree::public creates namespace ensemble and
exports enumerated procs

● pkgTree::resource maps request maps requests for
template files, images etc. to filesystem; is self-aware
about namespace position, so only filename needed

Design follows theory of parallel service interfaces, with
URI as index

$lib/tm/API/document/statistics-0.1.tm:

pkgTree::provide
pkgTree::public wordcount
pkgTree::add_service ::internal_service

proc wordcount {doc} {
 setState contenttype [mimestring [file extension $doc]]
 exec wc -w << [resource /$doc]
}

Enabling Workflow:
● Visibility of code to the dispatcher is controlled by function of

[namespace path] and [namespace which] commands
● Visibility can be set dynamically on a per-connection basis
● Visitors can be required to qualify for access to code/resources
● Allowed namespace path can be part of persistent session state

credentials, can be edited per visit
● Visitors can thus be moved through a state tree in successive

transactions
● A table of namespace relations and transition conditions can function as

an access policy, and turn the web site into a state machine

But how do you manage per-connection visitor state?

Wibble Router Table

● Wibble uses a table of “zone handlers” to match URI
prefixes to code that will fulfill queries

● Key-value pairs of prefixes and procedure calls
● pkgTree dispatcher is called by a zone handler
● Matching handler doesn't have to return a result; has

access to interrupts that allow passthrough to next
handler

● Can configure “state” handlers that only set and read
session credentials

● Can run multiple state handlers and dispatchers in
succession

Access Control and Policy
● [info frame] is used to identify connection

from anywhere in call frame
● Default connection state is read from server

state
● Zone handlers manipulate connection state
● State determines visibility of services
● Service code has no knowledge of policy, if

resource is not authorized it's simply
invisible

Goals:
● Easy and quick to create dynamic web APIs

(just drop in a package module)
● Easy to add internal complementary services

(database, form validation)
● High confidence that resource leakage won't

occur
● Easy to audit code for policy compliance via

well-segregated discrete validation steps

Applications:
● User accounts
● Roles
● More fine-grained collaboration tools
● Workflow
● Virtual servers
● Abstract and adapt to policy-driven

applications outside web context

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	page0
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

