
Jim Tcl
A Small Footprint Tcl Implementation

Steve Bennett,
WorkWare Systems

http://www.workware.net.au/
steveb@workware.net.au

July 2011

Abstract

Jim Tcl is a modern implementation of Tcl, designed to be small, modular, easy to
build and easy to embed. Along with a high degree of compatibility with Tcl 8.5,

Jim Tcl includes a number of innovative features such as lambdas, garbage
collection, object-oriented I/O and signal handling. This paper presents a detailed

look at some of the most interesting aspects of Jim Tcl.

The Jim Tcl [1] project was begun in 2005 by
Salvatore Sanfilippo, largely as a testbed for new
features such as functional programming support
which were difficult to retrofit to Tcl1 and required
some practical experimentation. Since then, Jim Tcl
has acquired many new features, both standard Tcl
features and features unique to Jim Tcl and has
improved in stability and speed.

1. THE STATE OF JIM TCL
Jim Tcl v0.71, which was released in June 2011;

• Runs on at least: Mac OS X, Linux (many
architectures), FreeBSD, QNX, eCos, Solaris,
cygwin, msys/mingw and Haiku.

• Includes many C and Tcl optional components,
including: glob, tclcompat, tree, rlprompt, oo, binary,
load, package, readdir, array, clock, exec, file, posix,
regexp, signal, aio, eventloop, pack, syslog, nvp,
readline, sqlite, sqlite3, win32

• Passes over 3700 unit tests

• Is between 100KB and 220KB in size depending on
selected components, platform and build options

• Has 127 built-in commands

A Short History of Jim Tcl
The Jim Tcl project has been active for over six years.

Date Who Description
Feb 2005 antirez Initial public version

Sep 2005 antirez Enter low activity maintenance period

Jun 2008 oharboe Take over as maintainer

Jul 2008 oharboe Change to FreeBSD license

Nov 2008 steveb Begin port of missing Tcl functionality

Oct 2009 oharboe Move to git

Jul 2010 oharboe Release 0.51

Oct 2010 steveb Release 0.63 - Merge workware port

Jan 2011 steveb Release 0.70 - Including utf-8 support

Jun 2011 steveb Release 0.71

The very first publicly released version of Jim Tcl
included support for references and garbage collection
as well as a handful of core commands.
Subsequent releases have added many new core
commands, optional extensions and significant Tcl
compatibility.
The following graph shows the evolution of Jim Tcl in
both size (features) and speed. A standard set of
performance benchmarks is run for every, single
commit to the public repository in order to monitor the
size, speed and correctness over time.

1 In this paper, the term Tcl will be used to refer to the original, official Tcl implementation — http://tcl.sourceforge.net/ while Jim Tcl will be
used to refer to the Jim Tcl implementation — http://jim.berlios.de/

Permission to make digital or hard copies of this work is granted
without fee provided that copies are reproduced in full and bear
this notice. To copy otherwise requires prior specific permission.

http://www.workware.net.au
http://www.workware.net.au
mailto:steveb@workware.net.au
mailto:steveb@workware.net.au
http://jim.berlios.de/
http://jim.berlios.de/
http://tcl.sourceforge.net
http://tcl.sourceforge.net
http://jim.berlios.de
http://jim.berlios.de

Jim Tcl on Linux, 266MHz ARM, gcc 4.2.4 -Os 2

The Philosophy of Jim Tcl
When reimplementing an existing system, it can be
difficult to balance competing goals of compatibility
and whatever is driving the need for a new
implementation. Jim Tcl strives to be a small footprint
implementation, in both code size and memory usage,
however this goal often competes with the goal of Tcl
compatibility.
The philosophy of how Jim Tcl balances it’s goals can
be summarised as:

Jim Tcl attempts to avoid gratuitous
incompatibilities with Tcl, while being open to
the addition of new features which improve the
usability and usefulness of Jim Tcl. Any large
feature, including Tcl-compatible features, must
be optional at compile time.

The expression of this philosophy can be seen, for
example, in the implementation of regular expressions
(regexp, regsub) in Jim Tcl. To minimise the footprint,
there are three options available (at compile time):

1. Disable regular expression support
2. Use the system-provided POSIX regex support to

provide ERE3 regular expression support. (This is
the default)

3. Use the built-in regex support to provide (a
significant subset of) ARE4 regular expression
support, including UTF-8.

Note that this approach necessarily leads to some
differences between Jim Tcl and Tcl, and even
between different configurations of Jim Tcl, but the
size difference is significant.

Configuration Size (bytes)

Jim Tcl, system regex 3500

Jim Tcl, built-in regex 9878

Jim Tcl, built-in regex + utf-8 9929

Tcl 8.5.8 54892

2 Note that executable size represents the default configuration, which includes additional components over time.
3 ERE — POSIX Enhanced Regular Expressions (see also BRE — Basic Regular Expressions)
4 ARE — Advanced Regular Expressions

Jim Tcl does not attempt to present a stable C API. The
ability to change the API from release to release
allows new features to be added to Jim Tcl far more
rapidly than would otherwise be the case. With the
primary target for Jim Tcl being embedded scenarios,
recompiling applications when upgrading to a later
release is an acceptable tradeoff.

Similarities with Tcl

Today, Jim Tcl passes several thousand test cases,
most of which are fully compatible with Tcl. Jim Tcl
includes support for almost all of the core Tcl
commands, including: append, array, switch, catch,
break, continue, string, list, llength, lindex, lsort,
lsearch, regexp, regsub, upvar, uplevel, foreach, dict,
lassign, lset, exec, format, scan, binary and many
more. In addition Jim Tcl supports {*}, loadable
modules, modifying the environment to exec via the
$env array, binary strings, UTF-8 strings, dictionaries
and tailcall.
Many Tcl scripts will work unchanged, especially
those which avoid the use of namespaces, safe
interpreters, threading, traces and, of course, Tk. Jim
Tcl implements the Dodekalogue [2].
Developers familiar with Tcl have been able to almost
seamlessly make the transition to Jim Tcl.

Missing features and capabilities

Jim Tcl omits support for a number of Tcl features,
usually due to one of the following reasons.
1. The functionality has little relevance, or at least is

not critical, for an embedded system or embedded
application (namespaces, safe interpreters)

2. The functionality is too large and/or complex to
consider adding (dynamic encodings, byte code
compiler)

3. There has been no interest in the feature by
someone willing to work on it (coroutines, Tk)

The following is an abbreviated list of features
missing from Jim Tcl compared with Tcl 8.5:

• Namespaces

• Traces (variable traces and execution traces)

• Byte code compilation

• Safe interpreters

• Threads

• Dynamic encodings (fconfigure -translation, etc.)

• Tk
In addition, a number of commands omit certain
options and/or subcommands, such as lsort -dictionary
-stride -unique, clock add, string wordend, wordstart.

Jim Tcl-specific features and capabilities

The Jim Tcl project started as a platform to experiment
with new features, especially those related to
functional programming such as closures, references,
garbage collection, lambdas and tail calls. The
ongoing development of Jim Tcl maintains the
philosophy of pushing the boundaries when
implementing new features, while still carefully
considering the pros and cons with maintaining Tcl
compatibility.
The following are some of the unique features of Jim
Tcl, the first three of which will be explored in greater
depth in the remainder of this paper.

• Functional programming support, including
references, closures, lambdas and garbage collection

• Accurate tracking of source locations and source
accurate error messages

• Fast, simplified packaging system

• Built-in line editing

• Procs allow default args anywhere (TIP #288)

• Procs support automatic upvar syntax: &ref

• Expression shorthand syntax: $(...)

• Procs can be stacked and invoked with upcall

• Signal handling

• Integers are 64-bit on supported platforms

• Supports ‘jimsh -e’ for immediate evaluation

• Object Oriented I/O

• Built-in support for syslog, IPv6, UDP, UNIX
domain sockets and pipes on supported platforms

• Automatic conversion between list, dict and array

• Very modular with many features such as clock,
regexp, binary, exec, glob, package and even I/O
being optional

• Very easy to cross compile

• Single source file bootstrap jimsh can be built with
just a C compiler.

Jim Tcl is not simply a cut-down version of Tcl. Many
of these features are designed to simplify code,
simplify deployment and provide a very capable
dynamic language, especially for embedded systems.
For example, built-in support for signal handling,
UDP, UNIX domain sockets and syslog make it
possible to build small, but highly capable scripts and
daemons with no additional libraries or components
required.

http://wiki.tcl.tk/10259
http://wiki.tcl.tk/10259

2. SOURCE ACCURATE ERROR
MESSAGES

One of the downsides of a language as dynamic as Tcl
is that it can be difficult to provide accurate source
information in error messages since any string can
potentially be evaluated as a script and that string
could have been created in arbitrarily many ways.
This issue was significant in our product, µWeb [3]
which formerly used TinyTcl [4] (based on Tcl 6.7) as
the scripting engine. While TinyTcl provides a small
footprint scripting language and allowed for rapid
development, it also deferred some errors until
runtime. The following was the typical result of a
runtime error:

µWeb with TinyTcl — runtime error message

In µWeb, Tcl scripts are defined in “page description
files” from which they are parsed and embedded in C
code. The stack trace as shown above describes the
error, but it can be difficult to match up with the
original source.
One of the most compelling reasons to move from
TinyTcl to Jim Tcl was the better error reporting.
Compare the same error when using Jim Tcl as the
scripting engine.

µWeb with Jim Tcl — runtime error message

Notice that the exact line number is identified for each
level of the stack trace, even though the original
source has been parsed and embedded in C code.

buttons.page

Identification of the exact location of the error makes
it significantly easier for our customers, especially
those new to the platform or Tcl to find and fix errors.
Below we discuss how Jim Tcl implements source
tracking in such a way that it is both accurate in a
highly dynamic language, and economical in resource
usage.

Accurate Source Tracking — How it Works

In Tcl versions up to approximately 8.3, Tcl_Eval(),
the heart of the Tcl interpreter parsed and evaluated
scripts for every command. A while loop with 1000
iterations re-parsed the commands in the body of the
loop 1000 times. While this made the interpreter
simpler and consumed less memory, it had poor
performance with some scripts. Starting with Tcl 8.4
and the introduction of the byte code compiler, parsing
and execution were separated, resulting in a dramatic
increase in performance. While Jim Tcl eschews the
complexity and size of a byte code compiler and
evaluation engine, it similarly separates parsing and
evaluation for a significant performance boost.
The approach to parsing scripts into an internal
representation is at the heart of how Jim Tcl manages
source location information, and the core structure
used is the Jim “Object”, or Jim_Obj.

 1: title "Test: Buttons"
 2: label "Buttons"
 3:
 4: storage none
 5:
 6: summary {Test submit buttons}
 7:
 8: init -tcl {
 9: proc check_button {name} {
10: set y [string match abc* $NAME]
11: }
12: }
...omitted...
59: button other {
60: label Other
61: editmode none
62: submit -tcl {
63: set x [check_button $field]
64: cgi success "Got [cgi get text]"
65: }
66: }

http://livepage.apple.com/
http://livepage.apple.com/
http://tinytcl.sourceforge.net/
http://tinytcl.sourceforge.net/

Jim Objects
Similarly to the Tcl_Obj structure in Tcl, Jim uses a
reference counted Jim_Obj structure to cache an
appropriate internal representation for “objects” in
order to improve performance. Simple internal
representations are used for (64 bit) integers, floating
point values and strings, while more complex internal
representations are used for more complex objects
such as scripts, expressions, variables and commands.
Consider the following script:

After parsing and evaluating, these three “words”
become the following three Jim_Obj structures:

string incr

type command
int-rep pointer to struct Jim_Cmd
string x

type variable
int-rep pointer to variable value plus scope info
string 3

type int
int-rep Integer 3 as a 64 bit value

While the string value is available whenever required,
the internal representation acts as a cache for the most
recent use of the value. For example if this command
is executed in a loop, the command, variable and
integer are immediately accessible without parsing or
conversion.
Although this approach uses more memory than the
simpler re-parsing approach, the additional memory
required is modest while the performance gains are
significant. It also makes it possible to associate
additional information with each “word” or “token”.
The following explains how these specialised internal
representations are used to carefully track source
locations through the interpreter.
Script Parsing
Consider the following simple script.

test.tcl

incr x 3

 1: set x abc
 2: if {[string match -x* $x]} {
 3: puts "$x matches"
 4: } else {
 5: puts "$x does not match"
 6: }

When this script is evaluated via the source command
(and thus Jim_EvalFile()), or via Jim_EvalSource()
the original source filename and line number are
known. A Jim_Obj structure is created for the script
with a type of “source” and the filename and line
number of the first line of the script are recorded.

string set x abc\nif {[string match -x*...

type source
int-rep test.tcl:1

Initial Jim_Obj representation of the script

When this script is evaluated (which will be
immediately in this case), the script is parsed and
converted to a “script” object with an internal
representation as follows:

string set x abc\nif {[string match -x* $x]}...
type script
int-rep test.tcl:1 plus script token list

Jim_Obj representation after conversion to script

Where the token list associated with the script is:

Token
Type

string type, int-rep

LIN scriptline line=1

ESC set source (test.tcl:1)
ESC x source (test.tcl:1)
ESC abc source (test.tcl:1)

LIN scriptline line=2
ESC if source (test.tcl:2)
STR [string match -x* $x] source (test.tcl:2)
STR \nputs "$x matches"\n source (test.tcl:2)
ESC else source (test.tcl:4)
STR \nputs "$x does not

match"\n
source (test.tcl:4)

Token list after conversion to script

Every token in the script becomes a Jim_Obj, initially
of type “source” which records the original source
location of that token.
When the script is evaluated, the internal
representation of each Jim_Obj in the token list is
converted as required from the “source” object.

Token
Type

string type, int-rep

LIN scriptline line=1

ESC set command

ESC x variable

ESC abc source (test.tcl:1)

LIN scriptline line=2

ESC if command

STR [string match -x* $x] expression
STR puts "$x matches" source (test.tcl:2)

ESC else compared-string

STR puts "$x does not
match"

script (test.tcl:4 plus
token list)

Token list after evaluating script

Notice how the object associated with each word of
evaluated script has changed internal representation
based on how it is used. Most objects have lost the
original source location (each object can have only
one internal representation). However any “script”
objects (such as the “else” arm) retain the source
location. Also the “scriptline” object for each
command in the script retains the source location.
This continues for each script which is executed,
where the source location in the original “source”
object is propagated into the token list of the script.

When source tracking is not possible

Now it is possible to create situations where the source
information is totally lost, or was never available. For
example:

• A script which was entered via a UI element such as
a GUI widget or web form (probably a bad idea!)

• A script which was read from a file without the use
of ‘source’ or ‘package require’

• A script which was “composed” from strings which
have no source information.

All of these scenarios are likely to be less common in
practice than scripts which are executed or derived
from source files. In some of these situations there is
essentially nothing that can be done, however it would
be possible to provide a Tcl command to set source
information. Consider the following possible approach
to adding source information to a string where
‘makesource’ returns a new string with the given
source information added.

set f [open script.tcl]
set buf [$f read]
eval [makesource $buf script.tcl 1]

Tcl access to source information

In addition to providing for more informative error
messages, Jim Tcl makes source information available
directly to Tcl scripts through the ‘info source’
command and through the stack introspection
command ‘info frame’. Consider the script:

The ‘info source’ command examines the given string
(object) and returns any source information associated
with that string. The above script produces:

Whenever a command is evaluated, the current source
information is propagated. During proc invocation,
this information is stored in the stack frame and is
available via the ‘info frame’ command. The higher
level commands ‘stacktrace’ and ‘stackdump’ provide
access to this “live stack trace” information. The same
information is used when an error occurs and the stack
is unwound. When an error is caught with ‘catch’, this
stack trace is available via the ‘info stacktrace’
command as well as via the ‘-errorinfo’ key in the
options dictionary.

Case Study — µWeb

The µWeb Embedded Web Framework makes use of
Jim Tcl’s ability to preserve and access source
information both during parsing and at runtime as
explained in the following diagram.
Source location is tracked from the original page
definition files with Jim Tcl as a Domain Specific
Language (DSL) parser, through the generated code
where this information is used by the runtime Jim Tcl
interpreter to produce accurate error messages which
relate back to the original page definition files.

 1: # test3.tcl
 2: puts [info source {}]
 3:
 4: proc a {} {
 5: }
 6:
 7: puts [info source [info body a]]
 8:
 9: set b {
10: one
11: two
12: three
13: }
14: puts [info source [lindex $b 1]]

$ jimsh test3.tcl
test3.tcl 2
test3.tcl 4
test3.tcl 11

generated C
code

C compiler,
Linker

Web
Application

page files
page files

page files
page files

µWeb Source Location

Preservation with Jim Tcl

Page files are Tcl scripts parsed
as a DSL. They include
“scriptlets” which are executed at
runtime

37: button clear {
38: label "Clear Log"
39: help "Clear the log display"
40: editmode newline
41: submit -tcl {
42: cgi success "Message log cleared"
43: file delete /var/log/messages
44: }
45: }

The µWeb compiler is a Jim Tcl
script. It uses the live stack trace
information to provide source-
accurate error messages and also
‘info source’ to record the original
source location of “scriptlets”.

static const struct elem_button_t elem15[] = {
 {
 ...
 .submit_script.script = "\n"
"cgi success \"Message log cleared\"\n"
"file delete /var/log/messages\n"
"\n",
 .submit_script.filename = “syslog.page”,
 .submit_script.line = 41,
 }
};

libjim

“scriptlets” are executed at
runtime by the Jim Tcl interpreter
via Jim_Eval_Named(). Runtime
errors can therefore provide
accurate source information.

µWeb
“compiler”

The Jim Tcl interpreter for the
target platform is linked into the
application.

Domain Specific Language (DSL) Parser
Early versions of µWeb used Tcl as the DSL parser.
However changing to use Jim Tcl as the DSL parser
had a number of benefits.
1. Supports identical Tcl-based DSL syntax
2. Error messages from the parser are more

informative
3. Source location information is available for passing

to the runtime interpreter
4. It is easy to ship the DSL parser as a single

executable with Jim Tcl embedded.

Source Location in the Tcl Test Framework

Jim Tcl includes a pure-Tcl implementation of tcltest
to run the unit test suite. This implementation takes
advantage of the source location information to
provide the exact location of unit test failures.

The Jim Tcl version of tcltest provides error locations

If a test fails because of a mismatch between the result
and the expected result, the location of the test body is
given with ‘info source’.
If a test fails because it returns an unexpected error,
the location of the error is given with ‘info stacktrace’.

Experimental code coverage tool

The dynamic nature of Tcl, especially the inability to
distinguish code from data can make code coverage
analysis difficult. Nonetheless, a simple 50-line Jim
Tcl script is able to provide useful code coverage
information by simply recording the source location of
every command executed.5

Code coverage output shows which arm was not taken

$./jimsh tests/list.test
list-1.13 ERR basic tests
At : tests/list.test:32
Expected: 'xa {{}} b'
Got : 'a {{}} b'
--
FAILED: 1
! tests/list.test:32!list-1.13
--

$./jcov test.tcl
 1: set x abc
 2: if {[string match -x* $x]} {
####: puts "$x matches"
 -: } else {
 3: puts "$x does not match"
 -: }

Experimental Jim Tcl Debugger.

Although not yet available in the official Jim Tcl
distribution, a pure-Tcl implementation of an
interactive debugger has been developed which uses
the source location information to display the source
code associated with the currently executing code as
well as listing source for any procedure and managing
breakpoints by source location.

Experimental Interactive Debugger

$./jimdb test.tcl
Jim Tcl debugger v1.0 - Use ? for help

@ test.tcl:1 set x abc
> 1 set x abc
 2 if {[string match -x* $x]} {
dbg> n
=> abc
@ test.tcl:2 if {[string match -x* $x]} ...
 1 set x abc
> 2 if {[string match -x* $x]} {
 3 puts "$x matches"
dbg> p $x
abc
dbg> ?
 s step into w where
 n step over l [loc] list source
 r step out v local vars
 c continue u up frame
 p [exp] print d down frame
 b [loc] breakpoints t [n] trace
 ? [cmd] help q quit
dbg> l alias
@ stdlib.tcl
 1 # Create a single word alias (proc)
 2 # e.g. alias x info exists
 3 # if {[x var]} ...
* 4 proc alias {name args} {
 5 set prefix $args
 6 proc $name args prefix {
 7 tailcall {*}$prefix {*}$args
 8 }
 9 }
 10
 11 # Creates an anonymous procedure
 12 proc lambda {arglist args} {
dbg> b puts
Breakpoint at puts (tclcompat.tcl:21)
dbg>

5 Both the code coverage tool and the debugger rely on an experimental command trace feature

3. THE JIM TCL PACKAGE SYSTEM

Tcl has a sophisticated package system for loading Tcl
source and binary modules as packages. This system is
also complex and potentially slow as pkgIndex.tcl files
are searched and parsed.
Consider the following simple invocation.

A total of 115 files are opened and read

The need to create and deploy pkgIndex.tcl files can
also be awkward.6

Simple Package System

With the focus of Jim Tcl on embedded environments,
it is appropriate to take a much simpler approach to
packaging7. The Jim Tcl packaging system:

• Has no version support. Versions are managed
through filenames

• Has no index files and no autoload support

• Is fast

• Is easy to understand

• Is easy to deploy
The Jim Tcl packaging system works as follows:
1. The package subsystem maintains a list of loaded

packages.
2. The command ‘package require foo’ searches each

directory in $::auto_path for either foo.so or foo.tcl.
If either file is found, the package is deemed to be
located (even if loading the package fails).

$ cat pkgtest.tcl
package require blah
$ strace -e strace=open tclsh8.5 t.tcl
open("/usr/share/tcltk/tcl8.5/init.tcl",...
open("t.tcl", ...
open("/usr/share/tcltk/tclIndex", ...
open("/usr/lib/tcltk/tclIndex", ...
open("/usr/local/share/tcltk/tclIndex", ...
open("/usr/local/lib/tcltk/tclIndex", ...
open("/usr/lib/tclIndex", ...
open("/usr/share/tcltk/tcl8.5/tclIndex",...
open("/usr/share/tcltk/tcl8.5/tm.tcl", ...
open("/usr/share/tcltk/tcllib1.12/interp/
pkgIndex.tcl", ...
open("/usr/share/tcltk/tcllib1.12/png/
pkgIndex.tcl", ...
...etc..

3. Once the file is found, it is loaded either as a binary
module or as a Tcl script.

Some notes:
1. Package names must be lower case — foo not Foo.
2. Binary loadable modules are named foo.so on all

platforms.
3. The entry point for the module foo.so is Jim_fooInit
4. Versions are expected to be handled by including

the version in the name. For example ‘package
require foo2’.

5. The $:auto_path list is initialised based on the
install prefix (<prefix>/lib/jim) plus the
environment variable $JIMLIB, although
applications which embed the Jim Tcl interpreter
can add additional directories as appropriate.

Static vs dynamic packages

Jim is designed to be modular. This means both being
able to omit features not required, but also making it
easy to incorporate features. One example is static Tcl
extensions. Pure-Tcl extensions such as glob, stdlib,
tclcompat and binary can easily be built as static
extensions in libjim and jimsh by simply selecting
them with ./configure.

Similarly, C-based extensions can be built either as
static extensions or loadable modules.

External loadable extensions

Building loadable modules can be difficult on different
platforms. Jim Tcl provides a helper script to make
building C-based extensions as loadable modules easy
on any supported platform.

Building a loadable module is easy

The build-jim-ext script uses the configuration-time
settings to invoke the compiler and linker as
appropriate, including for cross compilation.
This is a “mini-TEA” [5] for Jim Tcl.

$./configure --with-ext=”binary glob”

$ build-jim-ext hello.c extra.c
Building hello.so from hello.c extra.c
Compile: hello.o
Compile: extra.o
Link: hello.so
Test: load hello.so
Success!

6 This is not intended as a criticism of the Tcl package system, which is very powerful. Rather it explains why Jim Tcl uses a much simplified
approach.
7 The Jim Tcl packaging system is similar to the Tcl Module support introduced in Tcl 8.5 (http://wiki.tcl.tk/12999)

http://wiki.tcl.tk/327
http://wiki.tcl.tk/327
http://wiki.tcl.tk/12999
http://wiki.tcl.tk/12999

4. REFERENCES, GARBAGE
COLLECTION, CLOSURES AND
LAMBDAS

Jim Tcl provides two features which are combined to
provide garbage collected lambdas and closures. These
are static variables and garbage collected references.

Static Variables and Closures

As an extension to Tcl, Jim Tcl allows procedures to
define static variables. This is a lifetime and scoping
mechanism which is similar to namespace variables in
Tcl, but associated with a procedure rather than a
namespace.
Static variables come into existence when a procedure
is created and live until the procedure is deleted. These
static variables are accessible (scoped) only to the
procedure. Consider the following example.

An extra parameter is specified in the procedure
definition 8 which declares and initialises a static
variable, adder.
Since the scope of the static variable is limited to the
proc, it is convenient to use this mechanism to avoid
name clashes instead of global variables.
Now consider a slight change to the procedure
definition which does not initialise the static variable.

In this case, the static variable is not initialised
directly, but is implicitly initialised from a variable
with the same name in the surrounding scope.
Static variables can be used to implement closures,
where a procedure captures a variable from the
enclosing scope. Note that the variable captures the
value rather than a reference to the variable from the
enclosing scope due to Tcl’s value semantics (although
see the section on references below). Closures are
particularly useful when used with lambdas.

. proc a {x} {{adder 5}} {
 return [incr x $adder]
 }
. a 3
8

. set adder 10

. proc a {x} {adder} {
 return [incr x $adder]
 }
. a 3
13

References

Tcl is a language with value semantics and thus there
is no notion of an explicit reference type9. This
simplifies the language in many ways, but it makes
certain problems more difficult. Jim Tcl adds support
for references primarily as a means to implement
garbage collection.
A reference can be thought of as a value which
contains (or refers to) another value, thus providing a
level of indirection. As we will see, this level of
indirection allows the contained values to be garbage
collected.
References provide three important features:
1. The ability to store (and retrieve) a value
2. A managed namespace providing a unique name

every time a reference is created
3. An associated finalizer to invoke when a reference

is no longer accessible (garbage collection)
Consider the following example:

The command 'ref' creates a references to the value
specified by the first argument. (The second argument
is a "type" used for documentation purposes). The
returned value is a unique reference with a special
string format which allows the contained value to be
retrieved, and also allows references to be easily
identified.
The command 'getref' is the dereferencing operation
which retrieves the value stored in the reference. The
companion command ‘setref’ allows the value stored
in the reference to be replaced.
Note that a reference is simply a string, so a copy of
the reference ($r2) refers to the same contained value.
In this example, no finalizer is specified. Finalizers
provide the mechanism for garbage collection as
discussed below.

. set r [ref "One String" test]
<reference.<test___>.00000000000000000000>
. getref $r
One String
. set r2 $r
<reference.<test___>.00000000000000000000>
. setref $r "New String"
New String
. getref $r2
New String

8 By adding an extra argument to proc, the syntax is backward compatible with Tcl
9 Of course Tcl is a very flexible language. References can be emulated through the use of global (or namespace) variables, where the name
of the variable is the reference. This approach, however, doesn’t allow for garbage collection which is the primary purpose for references in
Jim Tcl.

Garbage Collection

Normally, all values in Tcl are passed by value. As
such values are copied and released automatically as
necessary. With the introduction of references, it is
possible to create values whose lifetime transcend
their scope.
Consider the following example where a reference is
created with a finalizer.

The finalizer command ‘f’ is associated with the
reference when it is created. (The ‘collect’ command is
available to manually run the garbage collector, and
returns the number of objects discarded. Normally the
garbage collector runs automatically10.)
The first time that ‘collect’ is invoked, a variable ‘r’
exists which contains the reference. Because the
reference is accessible the garbage collector has
nothing to do. However the second time ‘collect’ is
invoked, ‘r’ no longer contains the reference.
Therefore, when the garbage collector runs it finds this
dangling reference and discards it, first invoking the
associated finalizer.
The finalizer is passed two arguments, the reference
and the contained value, which it may use to perform
any necessary cleanup.
The finalizer for a reference may be examined or
changed with the 'finalize' command.

The garbage collector works similar to the Boehm GC
algorithm for C/C++ [6]. Here, the special string
format makes it easy to identify strings which may be
valid references. During garbage collection, the string
representations of all objects are scanned for strings
which could be valid references. If a given reference
no longer exists in any string, the contained object is
unreachable and can be collected.

. proc f {ref value} {puts "F $ref $value"}

. set r [ref 123 test f]
<reference.<test___>.00000000000
. collect
0
. set r ""
. collect
F <reference.<test___>.00000000000 123
1

. finalize $r
f
. finalize $r newf
newf

Lambda

Jim Tcl provides a lambda command which provides
suppor t for garbage col lec ted anonymous
‘functions’ (Tcl procedures)11 and closures.
Consider the following example.

An anonymous procedure is created and stored in the
variable ‘adder’. The procedure takes one argument
which it adds to the static variable ‘x’ and returns the
result. The procedure name ‘$adder’ may be used
anywhere a command name is required.
The anonymous procedure is garbage collected. Once
it is no longer accessible (perhaps when the procedure
which defined it ends), the garbage collector is free to
delete the procedure.
The implementation of the lambda command is
remarkably simple.

The lambda command takes the same arguments as
‘proc’ except the name of the procedure is omitted. A
reference is created as a unique, anonymous name for
the new command. In this case the ability for the
reference to contain a value is not used. The reference
finalizer simply deletes the procedure. ‘tailcall’ is used
here simply as an efficiency mechanism to avoid the
creation of an additional call frame.
Lambdas can be convenient as sorting functions.

. set adder [lambda a {{x 0}} {incr x $a}]

. $adder 1
1
. $adder 2
3
. set adder ""

Creates an anonymous procedure
proc lambda {arglist args} {
 set name [ref {} func lambda.finalizer]
 tailcall proc $name $arglist {*}$args
}

proc lambda.finalizer {name val} {
 rename $name {}
}

. set list {1 50 20 -4 2}
1 50 20 -4 2
. lsort -command [lambda {a b} {expr {$a -
$b}}] $list
-4 1 2 20 50

10 The garbage collector runs synchronously. Whenever a new reference is created, the garbage collector will run if a certain number of
references have been created or a certain period of time has passed. This means that if references are not used, garbage collection has no
impact on performance.
11 See http://en.wikipedia.org/wiki/Anonymous_function

http://en.wikipedia.org/wiki/Boehm_garbage_collector
http://en.wikipedia.org/wiki/Boehm_garbage_collector
http://en.wikipedia.org/wiki/Boehm_garbage_collector
http://en.wikipedia.org/wiki/Boehm_garbage_collector
http://en.wikipedia.org/wiki/Anonymous_function
http://en.wikipedia.org/wiki/Anonymous_function

Lambda Example

The following example shows how lambdas can be
useful. First note that Jim Tcl supports object-oriented
I/O commands. That is, in addition to the Tcl-
compatible:

Jim Tcl supports:

This has the advantage that it is easy to “wrap” a file
handle with a procedure.
The “open |...” syntax in Jim Tcl is implemented in
pure-Tcl by wrapping a file handle with a lambda.

set f [open temp.txt]
set data [read $f]
set pos [tell $f]
close $f

set f [open temp.txt]
set data [$f read]
set pos [$f tell]
$f close

 1: # 'open "|..." ?mode?" will invoke
 2: # this wrapper around exec/pipe
 3: # Note that we return a lambda
 4: # which also provides the 'pid' command
 5: proc popen {cmd {mode r}} {
 6: lassign [socket pipe] r w
 7: try {
 8: if {[string match "w*" $mode]} {
 9: lappend cmd <@$r &
10: set pids [exec {*}$cmd]
11: $r close
12: set f $w
13: } else {
14: lappend cmd >@$w &
15: set pids [exec {*}$cmd]
16: $w close
17: set f $r
18: }
19: lambda {cmd args} {f pids} {
20: if {$cmd eq "pid"} {
21: return $pids
22: }
23: if {$cmd eq "close"} {
24: $f close
25: # And wait for the child
26: # processes to complete
27: foreach p $pids {os.wait $p}
28: return
29: }
30: tailcall $f $cmd {*}$args
31: }
32: } on error {error opts} {
33: $r close
34: $w close
35: error $error
36: }
37: }

At line 19, a lambda is created which wraps the file
handle ‘$f’. Most subcommands are simply passed
through to ‘$f’ via the tailcall at line 30, however the
new subcommand ‘pid’ is implemented at line 20 and
the subcommand ‘close’ is extended at line 23.

Jim Tcl OO

The Jim Tcl OO system uses static variables and
references to implement a pure-Tcl OO system [7]
with multiple inheritance in 58 lines of code.

Using the OO package

The ‘tree’ package included with Jim Tcl is largely
compatible with struct::tree from tcllib and is
implemented as an OO class.

5. CONCLUSION

Jim Tcl contains many more unique features than
presented here, while remaining faithful to the
Dodekalogue. Tcl has seen a number of small
additions over time such as {*} list expansion, lassign,
and exec redirection improvements which have made a
huge difference to usability and usefulness of Tcl.
Similarly, the unique features of Jim Tcl enhance its
usability and facility while remaining small, fast and
modular.
Not only has Jim Tcl provided a modern Tcl
implementation for embedded systems, it has proven
an effective platform for testing improvements to the
Tcl language itself.
It is my hope that future releases of Tcl can benefit
from the experience gained from implementing these
improvements.

6. REFERENCES
[1] http://jim.berlios.de/
[2] http://wiki.tcl.tk/10259
[3] http://uweb.workware.net.au/
[4] http://tinytcl.sourceforge.net/
[5] http://wiki.tcl.tk/327
[6] http://en.wikipedia.org/wiki/Boehm_garbage_collector
[7] http://jim.berlios.de/documentation/oo/

$ jimsh
. package require oo
. class Account {bal 0}
. Account method deposit {x} {incr bal $x}
. Account method see {} {return $bal}
. set a [Account new {bal 100}]
<reference.<Account>.00000000000000000000>
. $a deposit 50
150
. $a deposit 25
175
. $a see
175

http://jim.berlios.de/documentation/oo/
http://jim.berlios.de/documentation/oo/
http://wiki.tcl.tk/10259
http://wiki.tcl.tk/10259
http://jim.berlios.de/
http://jim.berlios.de/
http://wiki.tcl.tk/10259
http://wiki.tcl.tk/10259
http://uweb.workware.net.au
http://uweb.workware.net.au
http://tinytcl.sourceforge.net
http://tinytcl.sourceforge.net
http://en.wikipedia.org/wiki/Boehm_garbage_collector
http://en.wikipedia.org/wiki/Boehm_garbage_collector
http://jim.berlios.de/documentation/oo/
http://jim.berlios.de/documentation/oo/

