

Abstract—The National Superconducting Cyclotron
Laboratory (NSCL) is an NSF funded laboratory that performs
basic nuclear physics research on nucleus-nucleus collisions
innvolving systems that are far from stability. The operation
of the NSCL has been funded by the National Science
Foundation since 1980.

The NSCL has developed and used several Tcl based
applications and tool. These tools are used by a broad
community of researchers and accelerator technologiest This
retrospective will examine the impact of presenting the NSCL
staff with Tcl based tools and toolkits. A speculative look
forward at the role of Tcl within the NSCL as it constructs the
DOE funded Facility for Rare Isotope Research (FRIB)

I. INTRODUCTION
The National Superconducting Cyclotron Laboratory (NSCL)
is an National Science Foundation (NSF) funded laboratory
that conducts basic research in Nuclear Physics. Software
based on and using Tcl have been used at the NSCL for a
number of years. The purpose of this paper is to describe the
ways in which Tcl has been and is now used at the NSCL. Tcl
application case studies will also be provided where
appropriate.

 In December 2008, the Department of Energy (DOE) selected
Michigan State University and the NSCL as the location of a
new laboratory; the Facility for Rare Isotope Research (FRIB).
FRIB is scheduled to begin operation around 2018. The
potential application areas and barriers to the use of Tcl will
be discussed as well.

The remainder of the paper will be organized as follows:
• The NSCL will be described with a layman’s introduction

to the motivation behind the research this done here.
• A brief overview of the FRIB project, its purpose,

schedule and remaining administrative hurdles will be
given.

• A historical perspective of the introduction of Tcl to the
NSCL will then be described. Some speculative work in
progress will be described.

• Taxonomy of the use of Tcl at the NSCL will be
presented along with case studies illustrating each of the
elements in this taxonomy.

• Conclusions about the use of Tcl in the past will be
presented along with a bit of crystal ball gazing regarding
the role of Tcl in the future of the NSCL/FRIB.

II. THE NSCL AND OUR RESEARCH
What is now the NSCL first started producing accelerated
nuclei 1961 when it commissioned the K-50 cyclotron. In
1982 the NSF funded the construction of a K500 (500MeV/A)
cyclotron, and later (1989) a K800 cyclotron which
outperformed its design specifications and was therefore
renamed the K1200. An n NSF grant in 2000 supported
running a coupling line between the K500 and K1200 to
improve primary beam intensity and to build a fragment
separator which started the NSCL on its career as a radioactive
beam facility.

Figure 1 Schematic of the accelerator and separator

Figure 1 above shows a schematic of the beam production
facility. An ECR ion source (not shown in the schematic)
injects partially stripped ions into the K500 at the top center of
the picture (a small grey human figure is provided for scale).
Beam extracted from the K500 is transported along a coupling
line to the K1200 where it is run through a foil that increases
the ionic charge. The more fully stripped ions are injected
into the K1200 (lower left). The K1200 beam is then
extracted and is transported to a target at the entry of the
A1900 fragment separator (running lower left to upper right).
The fragment separator selects the desired secondary beam
which is then transported to the experimental target.

Figure 2 shows a floor plan of the experimental part of the
facility. Each experimental area (to the right of the A1900

Tcl at the NSCL: a 30 (15?) year retrospective
Ron Fox and the Staff and Students of the National Superconducting Cyclotron Lab

Michigan State University

fragment separator in the floor plan) has an experimental
target as well as detector and electronics packages that are
specialized for specific types of experiments and the apparatus
in that area.

Figure 2 NSCL experimental area floor plan

A. Why do radioactive beam experiments.
In this section we present a brief motivation for the research
done at the NSCL.

Figure 3 chart of the nuclei

Figure 3 above shows a chart of the nuclei. Each isotope
consists of a fixed number of protons (Z) (which identify the
element) and neutrons. The sum of the neutron and proton
count is referred to as A which is roughly the nuclear mass.
In figure 3 above, stable nuclei are in black. Those which are
lighter or darker shades of grey are unstable.

There is a strong belief amongst astrophysicists that most of
the heavy elements in the universe have been, and still are
being created in nuclear reactions in stars, and that those
processes involve decay chains with nuclei far from stability.
The nuclei involved in the production of stable heavy elements
are shown in Figure3 in the bands labeled rp-process and r-
process as well as a band, not labeled that participate in the p-
process. An understanding of the rates of these decays and,
where several decays are possible, the branching-ratios
between these decays is critical to an understanding of how

the elements we now see were created and what their actual
abundances are.

Collisions of heavy ions and unstable neutron rich nuclei
create momentary nucleon densities that approach the
densities and compositions of supernovae and even neutron
stars. The number of nucleons present is already sufficient to
help reach an understanding of the liquid-gas phase transition
in nuclear matter as it occurs under these stressed conditions.

In short we can imagine the work done at the NSCL as
bringing the heavens to earth, allowing us to study what
happens in the interiors of stars that are, for now, only
observable at a distance.

B. Stopped and Reaccelerated Beams

The technique used at the NSCL to create radioactive isotope
beams is called projectile fragmentation. This is because we
select from the remains of the projectile after it has interacted
with the A1900 production target. This has the advantage that
the secondary beam will have energies that are essentially
those of the primary beam. The secondary beam can therefore
be easily transported from the separator exit to the
experimental target.

Projectile fragmentation requires beams of sufficient
minimum energy. This minimum required energy arises,
among other things, from the fact that in order to get two
positively charged nuclei to interact, we must jam them close
enough together that they overcome the electric repulsive
force between them and come within the much shorter range
of the nuclear strong force. For example with a primary beam
of 16O on a production target of 5Be, a very light projectile on
a typical production target, this coulomb barrier is already
20MeV. In practice we use much heavier projectiles and
consequently we need higher energies to provide sufficient
incident energy to create the desired isotopes. This is because
the coulomb barrier goes up like the product of the number of
protons in the two nuclei.

While the resulting energetic secondary beams are useful for a
broad variety of experiments, there are still a large set of
interesting experiments for which we would like to have lower
secondary beam energies. The NSCL has developed several
methods to stop these high energy beams (the most energetic
are moving at about ½ the speed of light)! We have just
finished commissioning a reaccelerating LINAC which will
allow us to study radioactive isotopes at energies from a few
hundreds of KeV to 5MeV.

Figure 4 Producing low energy radioactive beams.

The reacceleration line is shown schematically in Figure 4. As
most of the stopping techniques allow the ions to recombine
with electrons the EBIT charge breeder shown in Figure 4 is
required to restore a high charge state to the ions so that the
LINAC can efficiently accelerate the resulting stopped beam.
Reaccelerated beam experiments are scheduled to start in
2012.

III. FACILITY FOR RARE ISOTOPE BEAMS
Many of the interesting isotopes shown in figure 3 are labeled
as “Terra Incognita”. This is because they have not been
generated at sufficient intensities to allow experiments with
them to be performed. This is unfortunate as the r-process is
believed to take place in this neutron rich realm. The r-
process is believed to have produced many of the heavy
elements in the collapsing cores of supernovae. In the r-
process, as the nuclear matter are compressed, the inner core
becomes neutron rich and the nuclei in the less dense outer
core can rapidly capture neutrons (r-process is an abbreviation
of rapid neutron capture) resulting in very neutron rich, and
short lived nuclei. These nuclei decay by sequential β- decay
which converts neutrons to protons, increasing the atomic
number (Z) and moving these unstable nuclei step by step
closer to the line of stability.

Once more the rates of these reactions, the half lives of these
nuclei are important to an understanding of how stars work
and how we wound up with the distribution of elements we
have today.

To create these neutron rich elements close to the neutron
drip-line requires higher intensity and higher energies than can
be produced by the accelerator systems at the NSCL. To meet
that research need, the Nuclear Science Advisory Council
(NSAC), in a report presented to the DOE in August 2007,
recommended that “DOE and NSF proceed with solicitation of
proposals for a FRIB based on the 200MeV, 400kW
superconducting heavy-ion driver linac at the earliest
opportunity.”[1]. In this passage FRIB is an acronym for a
“Facility for Rare Isotope Beams” and is pronounced eff-rib.

As a result of a competitive proposal process, the DOE
selected Michigan State University and the NSCL to construct
this facility in 2008. “The Facility for Rare Isotope Beams
(FRIB) will be a new national user facility for nuclear science,
funded by the Department of Energy Office of Science (DOE-
SC) Office of Nuclear Physics and operated by Michigan State
University (MSU). FRIB will cost approximately $600 million
to establish and take about a decade for MSU to design and
build.” [2]

Figure 5 shows the schedule for the construction of this
facility. The milestones labeled CD-n are critical decision
reviews. These are making or break reviews of the project
progress. The NSCL has successfully passed the CD-1 review
and is actively preparing for CD-2 at the time this paper has
been written. CD-3 approves the start of the construction and
CD-4 is a pre-startup approval.

Michigan State University as further committed funds to
support an early start of conventional construction in 2012
approximately one year ahead of schedule.

Figure 5 FRIB timeline.

Figure 6 FRIB as planned.

Figure 6 shows the current plan for FRIB. The plan allows for
a re-use of the experimental areas and much of the fragment
separator, by placing a stacked multistage LINAC driver in a
tunnel to the south of the current building. The plan also
provides for a later upgrade to the LINAC energiesw by
adding space for extensions to two of the planned LINAC
segments.

The future looks bright for making the early completion date
of late 2017 paving the way for physics runs to start in 2018.

IV. TCL AT THE NSCL

A. History of the First Adoption
The first use of Tcl/Tk at the NSCL traces back to the
commissioning of the S800 spectrograph. The S800 is used
by over 50% of the experiments at the NSCL. The
spectrograph is shown in figure 7 below:

Figure 7 S800 Spectrograph

For scale, note the three experimenters at the base of the
spectrograph.

The S800 is usually run with two detector packages. The white
box at the top of the S800 is the focal plane of the
spectrograph and contains 2-d position sensitive detectors as
well as particle Id detectors, and instrumentation to provide
time of flight information through the spectrograph. The
experiment target is located at the base of the spectrograph
and is often surrounded by an experiment specific detector
package.

In 1996 when the S800 was commissioned, the readout
systems associated with the detector packages were not
powerful enough to handle both packages while maintaining a
reasonable dead time. Therefore it was decided to use a
readout system for each of the detector packages and to do
event building via a reflective memory system that connected
the readout nodes.

The readout computers at that time were controlled by RS-232
ports that were connected to terminal servers. We needed a
simple method to provide a control interface to users while
sending duplicate commands to both systems.

In the previous year, the NSCL had hosted the IEEE 9’Th
Biennial conference on Real-time Computer Applications in
Nuclear, Particle and Plasma Physics (RT-95). At that
conference, Gene Oleynik et al. presented a paper describing
the run control system of the FNAL DART data acquisition
system, a far more distributed system than required by NSCL
experiments.

The DART team chose Tcl as the basis of an implementation
of a group communication protocol inspired by the ISIS
Distributed Toolkit [3]. They also chose to build user
interfaces from Tk. From Oleynik’s paper: “We chose TCL
because of its extensible interpretive procedures. For
graphics, we chose TK…our experience has been that
interfaces can be built more quickly with TK than from X…or
Motif…The ocp GUI…took on the order of ½-1 hour...We
feel this is a big success of the TCL/TK approach.”[4]
(Capitalization of Tcl and Tk from that paper).

Based on this endorsement of Tcl/Tk and a similarity between
the applications (the Readout systems could be thought of as a
group containing two members and communication with them
implemented as a group communication problem), the S800
run control software was implemented completely in Tcl/Tk.
A low level group communication mechanism was built on top
of the [socket] command, it was possible to specify an
arbitrary number of target system for the group (S800 focal
plane only experiments could then use the same software). A
simple state machine was built to manage the system state
diagram. On top of all of this Tk was used to build a GUI
with which the experimenters interacted.

Our experience with using Tcl/Tk for this project was similar
to that of the Fermilab group. The entire system came
together in a matter of a day or so, including the time required
to learn the few bits of the Tcl/Tk language needed to
implement the software.

B. Coupled Cyclotron Facility and adoption of Tcl/Tk.
Wide-spread use of Tcl/Tk at the NSCL did not occur until the
software development group was tasked with creating a new
data acquisition and data analysis tools for the coupled
cyclotron facility (proposed in 1994 funded in 1996 and
commissioned in 2001).

The functional goals of this development project included:

• Breaking the NSCL’s dependency on proprietary
software (specifically VMS and Tru64).

• Providing better accessibility to the software in the
readout computers (which up until now had been
embedded computing systems with a very minimal
operating system).

• Providing near turnkey online analysis solutions with
a high degree of flexibility with a low accessibility
threshold to researchers that were not trained
computer professionals.

• Provide a high degree of extensibility and
customizability for all these systems.

We had as an additional goal to introduce the researchers at
the NSCL to modern (at the time) programming techniques.

The data Acquisition system was largely implemented in C++,
introducing object oriented techniques to the researchers
which, at the time, were largely a FORTRAN speaking
community. Each piece of software that required user
interaction embedded a Tcl interpreter with an extended set of
commands to control the functions of that program. This
philosophy is in keeping with Ousterhout’s original motivation
for developing Tcl as described in the Preface to [5].

A block diagram of the data acquisition system as it is
typically used is shown below in figure 8. Components that
embed a Tcl interpreter or that are entirely written in Tcl are
indicated.

Figure 8 Structure of NSCLDAQ.

The solid arrows represent the flow of event data while the
dotted lines represent control flow. Tcl is involved in all but
two of the nine boxes in figure 8, and in the case of the boxes
to the right of the figure, each box may represent more than
one program used by the experiment.

The system was ready for use two years ahead of schedule, in
1999 as evidenced by a description of the data acquisition
system and the analysis program SpecTcl in two NSCL 1999
Annual report articles. The gain from using Tcl is best
described by a quote from one of those articles:
“Components we provide are often used in ways we did not
anticipate. This is a good thing. We intend to use the Tcl/Tk

scripting language as a base command language for all
components of the system. This allows us to support run-time
extensions of the functionality of the software and its user
interface via Tcl/Tk scripting. It also allows support for
compile time extensions of the command set via C++ wrapper
classes around the Tcl command registration procedures.
Tcl/Tk scripting provides a common basis for automating
tasks within the data acquisition system. The Tk component
provides powerful GUI creation and modification tools
available to all interactive components” [6].

V. HOW TCL AND TK ARE USED AT THE NSCL.
Tcl and Tk are used in the following ways at the NSCL:
• An embedded command language for applications.
• To provide application specific languages and

configuration languages.
• To provide enabling components on which pure Tcl/Tk

scripts can be built.
• As a scripting language for applications.

The remainder of this section will provide case studies and
references to the uses of Tcl/Tk described above.

A. Tcl/Tk as an embedded command language.
Embedding Tcl/Tk and application specific extensions as the
command language for an application was the original intent
of Tcl. Using Tcl in this way provides several free benefits:
• Common flavor of command language across all

applications.
• Ability of application users to automate commonly

performed operations as Tcl scripts and [proc]s.
• Ability, via the Tk package facility to provide a GUI

front end to the application and for the users of the
application to either extend or replace this GUI with one
more suited to their use of the application.

• Ability via a well defined internal API and the [package
require] command to provide a plug-in architecture that
provides for extensions to the application base
functionality, and the ability to selectively add these plug-
ins at run-time.

The flagship Tcl/Tk application at the NSCL is nsclSpecTcl
[8] the online/offline event analysis/histogramming
application. Users have extended it in many ways that were
not originally foreseen in the design including the replacement
of its visualization package with a Tcl/Tk client called SpecTk
[9]. Both SpecTcl and SpecTk were described in earlier Tcl
conferences.

B. Application specific languages and configuration

Applications that operate in this way use Tcl and extensions to
steer the way they operate. The normal pattern of usage is that
sometime during the execution of a program, a Tcl interpreter

is created and possibly extended. A script is sourced into the
interpreter and used to build data structures that define how
the program will operate.

The readout software for the focal plane of the A1900
fragment separator uses this technique in its simplest form. A
configuration file that consist of a bunch of Tcl [set]
commands provide values to Tcl variables that are examined
by the C++ level software and used to instantiate readout
objects for the various detector packages that can live in the
A1900 focal plane.

Taking this to its logical extension, [10] describes using Tcl as
a basis for a domain specific language that describes and
configures the digitizer devices used in a nuclear physics
experiment. The Readout software uses scripts in this
language to initialize and configure the described modules and
to construct the operations required to read out those modules
in response to an event trigger.

The experiment configuration script is also processed
NSCLSpecTcl selecting the set of event processors required to
process raw events into parameters, and to turn those
parameters into an initial set of raw spectra. This technique
brings Tcl’s high level of abstraction into the domain of
defining an experiment leading to what the experimenter
believes to be ‘programming free’ experimental setups.

Figure 9 shows an actual segment of a configuration script
used to describe the readout of the Particles And Non-
Destructive Analysis (PANDA) detection system used by the
Finish nuclear safety organization (STUK)[20]:

C. Enabling components and their applications

An enabling component usually takes the form of a Tcl
loadable package. The package is normally written by the
software development group and provides access to some
facility that is not easily accessed by Tcl itself. Researchers
use these packages to write pure Tcl scripts to perform
operations that they would otherwise find difficult.

While several packages have been written that could be
classified as enabling components (including plug-in for
nsclSpecTcl), this section will focus on the capabilities and
application of two of them, Vme and epics.

1) Vme package
Many hardware components in experiments run at the NSCL
are VME cards. VME bus started out as a multi-master
computer bus and is now an ANSI/IEEE standard
(ANSI/IEEE 1014-1987). As used at the NSCL, however, this
bus is largely an instrumentation bus, providing power and
data transfer to a host system for experimental electronics.

The Vme package provides access to this backplane from Tcl
scripts. The package itself was described in [11]. It provides
a mechanism for declaring interest in address windows within
the VME and performing simple pokes and peek operations
within those windows.

Researchers typically use this package to build graphical user
interfaces to control devices that are not in the primary event
data flow. Figure 10 below is a screen shot from one of these
applications, the discriminator control program for the
CAEsium iodide Detector Array (CAESAR) [12]:

Figure 10 CAESAR discriminator control panel.

This application was written by Andrew Ratkiewicz and
NSCL nuclear physics graduate student.

2) Epics Tcl package

The Experimental Physics and Industrial Control System [13]
(EPICS) is a control system in common use at accelerator labs.
EPICS is used to control accelerators and also to provide
control over some experimental devices. For example, the
S800 magnets are all controlled via EPICS.

madc create dsssd1.x -base 0x40000000 -id 4 -ipl 0
madc config dsssd1.x -gatemode common -gategenerator
disabled
madc config dsssd1.x -inputrange 8v
madc config dsssd1.x -timestamp on -timingsource vme \
 –timingdivisor $madcTimeDivisor
madc config dsssd1.x -thresholds $thresholds(dsssd1.x)
stack create event
stack config event -trigger nim1
stack config event -modules [list fadc
stack config event -delay 40
set adcChannels(dsssd1.x) $xstrips
lappend adcChannels(dsssd1.x) timestamp

Figure 9 Sample Experiment configuration

For some experiments it is critical to be able to know the state
of the beam line leading up to the experiment or the state of
the experimental devices themselves. Furthermore,
accelerators tend to be one-of-a-kind devices and when
commissioning them it is not always clear what human
operator interface is actually required. The Epics Tcl package
was built to address these needs. It enables physicists
accelerator physicists and operators to rapidly build monitor
and control interfaces via Tcl/Tk as well as via snit epics
specialized mega widgets that are provided with the package.

The package itself was presented at Tcl 2007[14]. It provides
mechanisms to access EPICS channels (called Process
Variables in EPICS nomenclature), to bind them to variables
and to bind traces to them. A feature of the EPICS package
that supports programming in the large is the ability for a one-
to-many binding of process variable to Tcl variables, along
with application wide process variable coalescence. This
allows the programmer to specify an Epics channel, and link
variables to it without being concerned about whether the
execution trace of the program has already linked to the same
process variable elsewhere. Changes in the underlying
process variable update all linked variables. Changes in any
one linked variable set the corresponding Epics process
variable eventually triggering and update of all process
variables.

The Epics package played a key role in the debugging and
commissioning of the ReA3 re-accelerator. Two accelerator
operators build the entire control and monitoring console for
ReA3 as a set of Tk applications build on the Epics package.

Figure 11 below shows a screen shot the ReA3 beam line
monitor application.

Figure 11 The ReA3 ROCS beam line monitor application.

3) SpecTcl
SpecTcl itself can be thought of as both an enabling
technology and an application. Daniel Bazin has implemented

a commonly used graphical user interface front end on top of
SpecTcl. This front end is shown below in Figure 12:

Figure 12 SpecTcl GUI front end

Many other experimental groups have leveraged SpecTcl, and
Tk to produce control panels of their own that select data
sources or steer the analysis performed by their experiment
dependent code.

D. Pure Tcl uses

Tcl and especially Tk are also used as a language to write
complete applications. One very successful application is an
access controlled ‘TclServer’. This is simply a Tcl script that
accepts connections from a well defined set of client and
accepts Tcl commands over a socket from them. The server is
often used in conjunction with a Tcl script that manages a pool
of server ports and serves as a directory for those ports
enabling clients to discover the ports on which various
applications are listening for connections.

VI. CONCLUSIONS AND A LOOK FORWARD

To date, it is safe to say that Tcl/Tk have removed a great deal
of the programming load from the software development
group at the NSCL. That load has been transferred to end user
community by a mixture of tool and application building. An
educational program to teach the basics of Tcl to the first
generation of graduate students was also useful as knowledge
tends to be passed down from one generation of graduate
students to the next.

The transfer of programming load from a software
development group to the user community is only possible in a
community that has a relatively high technical level. The
NSCL research staff fit that profile. In our community the end
users were actually grateful for the empowerment that Tcl/Tk
and the tools we wrote provided. It allowed them to quickly
iterate between versions of user interfaces to see what worked
best for their application needs. If we had been involved in
each iteration of every application, I can only imagine the
frustration that would set in. In the end it is likely that model f

development would have led to a willingness to settle for sub-
optimal solutions.

This empowerment has some cost as well:
• Bad code can be written in any language and physicists

are renowned for their ability to demonstrate this fact.
This has led to a number of Tcl applications that are
essentially un-maintainable even by the group that wrote
it. This also results from the rapid cycling of generations
of graduate students who are often tasked to develop
support code for research groups.

• In addition to knowledge being passed from graduate
student to graduate student, folklore is passed as well.
This folklore is usually based on a poorly understood
solution to a problem that was not well understood in the
first place. It can take a great deal of effort to dispel the
folklore and associated rituals that spring up around it.

• While the users generally develop user interfaces that
meet their needs, they do so by learning the minimum
needed to do this. This means that:

o Interfaces might benefit from the use of widgets
the users are not familiar with.

o There are no user interface standards between or
even within groups. That results in having to
learn each application from scratch rather than
being able to start with knowledge gained from
the use of other applications.

The use of Tcl in the nuclear physics community has been
largely driven by the widespread adoption of NSCLSpecTcl
by the NSCL user community. As such it is appropriate to
look in to the future to try to understand what the data
acquisition and analysis environment might be at FRIB.

As users have become more comfortable with object oriented
techniques, they have also adopted object oriented tools.
• Root[15], developed by R. Brun at al. at CERN for LHC

experiments is gaining increasing popularity for late stage
data analysis amongst all users in the nuclear physics
community.

• Python [16] is also gaining in importance as a scripting
language in the community.

• Finally with the advent of good Java implementations of
the Abstract Interfaces for Data Analysis (AIDA) [17],
physicists are also increasingly turning to Java and its
large (though sometimes cumbersome) set of libraries.

If Tcl/Tk is to compete it must meet several challenges:
• One or more OO toolkits must be sold effectively to break

the impression that Tcl is only an imperative language.
• Software groups that support nuclear physicists must be

encouraged to forge interfaces between Tcl and existing
software such as Root and AIDA based applications such
as the Java Analysis Studio (JAS) [18], or the Python
based Hippo Draw [19]. Jacl and Swank may be of some
use in the AIDA front and a set of effective Tcl bindings
to Root would help there.

• The benefits of the simplicity of the Tcl language and the
speed with which that simplicity enables development
must be actively sold.

• The fact that Tcl is an ‘old’ language needs to be placed
in context. C is still a highly used language, however it
dates from 1969-1973 while Tcl originally emerged in
1988.

In conclusion, I believe that Tcl has provided a great deal of
benefit to the nuclear physics community. If, however it is to
continue to be of use to that community there are several
significant challenges and hurdles that must be overcome.

VII. REFERENCES
[1] Report to the NSAC of the Rare-Isotope Beam Task
Force August 20, 2007 available online at
http://science.energy.gov/~/media/np/nsac/pdf/docs/nsacrib_fi
nalreport082007_dj.pdf
[2] http://frib.msu.edu
[3] Reliable Distributed Computing with the ISIS Toolkit

[4] Fermilab DART Run Control G. Oleynik et al. IEEE Trans
Nucl. Sci NS43 No. 1 February 1996 pp 20-24.

Birman, VanRenesse Wiley 1994 ISBN: 978-0-8186-5342-1

[5] Tcl and the Tk Toolkit

[6] Development status and deployment of the next generation
NSCL Data Acquisition System R. Fox, E. Kasten NSCL 1999
Annual report available online at

 J. Ousterhout Addison-Wesley 1994
ISBN 0-201-63337-X pg xvii

http://groups.nscl.msu.edu/nscl_library/pub/annual_reports/199
9/fox_deployment.pdf
[7] Status of the SpecTcl Data Analysis Package R. Fox, C.
Bolen, J. Rickard NSCL 1999 Annual report available online at
http://groups.nscl.msu.edu/nscl_library/pub/annual_reports/199
9/fox_spectcl.pdf
[8] NSCLSpecTcl Meeting the Needs of Preliminary Nuclear
Physics Data Analysis R. Fox, C. Bolen, K. Orji, J. Venema
Presented at Tcl 2004 available online at :
http://www.tcl.tk/community/tcl2004/Papers/RonFox/fox.pdf
[9] SpecTk: a displayer for SpecTcl – or how even a physicist
can build a high level application with Tcl/Tk D. Bazin
Presented at Tcl 2005 available online at:
http://www.tcl.tk/community/tcl2005/abstracts/scienceandTech/
SpecTk.pdf
[10] A Domain Specific Language for defining Nuclear
Physics Experiments Ron Fox 15’Th Annual Tcl Association
Conference Proceedings October 2008 pp105-111
[11] The Vme Package at the NSCL; Large leverage from a
Small Extension R. Fox presented at Tcl 2007 and available
online at
http://www.tcl.tk/community/tcl2007/papers/Ron_Fox/vmepack
age.pdf
[12] CAESAR – A high-efficiency CsI(Na) scintillator array for
in-beam γ-ray spectroscopy with fast rare-isotope beams D
Weisshaar, A Gade, T Glasmacher, G F Grinyer, D Bazin, P
Adrich, T Baugher, J M Cook, C A Diget, S McDaniel, A
Ratkiewicz, K P Siwek, K A Walsh Nuclear Instruments and
Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated
Equipment (2010) Volume: 624, Issue: 3, Pages: 615-623
[13]Experimental Physics and Industrial Control System ANL
introduction at http://www.aps.anl.gov/epics/about.php

http://science.energy.gov/~/media/np/nsac/pdf/docs/nsacrib_finalreport082007_dj.pdf�
http://science.energy.gov/~/media/np/nsac/pdf/docs/nsacrib_finalreport082007_dj.pdf�
http://frib.msu.edu/�
http://groups.nscl.msu.edu/nscl_library/pub/annual_reports/1999/fox_deployment.pdf�
http://groups.nscl.msu.edu/nscl_library/pub/annual_reports/1999/fox_deployment.pdf�
http://groups.nscl.msu.edu/nscl_library/pub/annual_reports/1999/fox_spectcl.pdf�
http://groups.nscl.msu.edu/nscl_library/pub/annual_reports/1999/fox_spectcl.pdf�
http://www.tcl.tk/community/tcl2004/Papers/RonFox/fox.pdf�
http://www.tcl.tk/community/tcl2005/abstracts/scienceandTech/SpecTk.pdf�
http://www.tcl.tk/community/tcl2005/abstracts/scienceandTech/SpecTk.pdf�
http://www.tcl.tk/community/tcl2007/papers/Ron_Fox/vmepackage.pdf�
http://www.tcl.tk/community/tcl2007/papers/Ron_Fox/vmepackage.pdf�
http://www.aps.anl.gov/epics/about.php�

[14] Tcl/Tk Tools for EPICS Control Systems R. Fox presented
at Tcl 2007 available on line at:
http://www.tcl.tk/community/tcl2007/proceedings/Gui/epics.p
df
[15] http://root.cern.ch
[16] http://www.python.org
[17] http://aida.freehep.org
[18] http://jas.freehep.org/jas3
[19] http://www.slac.stanford.edu/grp/ek/hippodraw/index.html
[20]PANDA – A novel instrument for non-destructive sample
analysis

 J. Turunen, K. Parajarvi, R. Pollanen, H. Toivonen
Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment
V 613, No. 1, 21 January 2010, Pages 177-183

http://www.tcl.tk/community/tcl2007/proceedings/Gui/epics.pdf�
http://www.tcl.tk/community/tcl2007/proceedings/Gui/epics.pdf�
http://root.cern.ch/�
http://www.python.org/�
http://aida.freehep.org/�
http://jas.freehep.org/jas3�
http://www.slac.stanford.edu/grp/ek/hippodraw/index.html�

	I. INTRODUCTION
	II. The NSCL and our research
	A. Why do radioactive beam experiments.
	B. Stopped and Reaccelerated Beams

	III. Facility for Rare Isotope Beams
	IV. Tcl at the NSCL
	A. History of the First Adoption
	B. Coupled Cyclotron Facility and adoption of Tcl/Tk.

	V. How Tcl and Tk are used at the NSCL.
	A. Tcl/Tk as an embedded command language.
	B. Application specific languages and configuration
	C. Enabling components and their applications
	1) Vme package
	2) Epics Tcl package
	3) SpecTcl

	D. Pure Tcl uses

	VI. Conclusions and a look forward
	VII. References

