
An efficient text mining application for log file
analysis in an emulation environment using Tcl/Tk

with C
Mishra, Shyam

Mentor Emulation Division,
Mentor Graphics Corp.

Abstract

Text mining refers to the process of deriving high
quality information from text files. Hardware
emulation is the preferred way for verification of
multi-million gates SOC designs. Text mining can
be applied for log file analysis of huge log files that
get generated in an emulation based design
verification flow. Typically an emulation based
verification flow consists of two discrete steps,
namely compile and runtime. During the compile
stage, a HDL design is prepared for emulation. The
compile tools generate log files and other reports.
The emulation based verification flow is used
typically for largest of design databases, and the
mapping to hardware involves multiple complex
compilation steps. This makes it imperative to have
intelligent debug systems with advanced data
mining capabilities. Text mining is applied to
extract useful information from these log files and
reports in order to help the user detect errors and
warnings in compile that might affect the
emulation. Logs and reports generated during
emulation runtime are also similarly analyzed.

Using Tcl/Tk , a GUI is developed to use text
mining methods on very large emulation databases
for log file analysis. Main considerations for
design for such text mining application has been
that interactive user response remains fast, the
parent Emulation control and Debug GUI is able to
interact and work with the text mining widget with
fast response time, in unblocking manner, and with
minimal overhead to the parent Emulation control
and Debug GUI. Besides design ensures search
operations are fast, the application memory image
is low, and the application provides host of ease of
debug utilities like GUI based linkages to user RTL
source, informative help from the messages in log
files. To achieve this intelligent partitioning of

functionalities between C and TCL code is done.
The application makes use of a C/C++ based
shared object for efficient retrieval of information
from the huge log files generated by the emulation
tools. The application GUI makes use of the latest
Tcl/Tk features to provide an easy to use interface
to give the users a rich debugging experience.

1. INTRODUCTION

Hardware emulation is the preferred way for
verification of the next generation multi-million
gates SOC designs. In a typical emulation flow, the
user design is compiled and prepared for
configuration on the emulator hardware.
In the process, the user code which consists of RTL
and transactor level models is compiled by a set of
compilers to generate the model which can be
configured on the emulator.
The compile flow is quite complex .The error,
warning and other messages generated by the
compilers provide important information to the
user, which can help understand the changes or
modifications required in the user code in order to
perform the emulation. During design emulation at
runtime also advanced debug and log file analysis
capabilities are required to understand any
functional mismatches. Often the clues to a bad
design behavior at runtime or a compile failure are
hidden in the log files and the reports generated by
the tools.
The user can manually check the log files and the
reports to locate the cause of such failures.
However, manually browsing through a huge
database, locating all the log files generated by the
different compile and runtime tools and checking
the information present therein can be time
consuming. Besides, the user might be unable to

locate the relevant information.
Therefore text mining methods are applied to allow
the user access the relevant information from the
log files and the reports without losing precious
time.

Text mining refers to the process of deriving high
quality information from text. Text mining usually
involves the process of structuring the input text
(usually parsing, along with the addition of some
derived linguistic features and the removal of
others, and subsequent insertion into a database),
deriving patterns within the structured data, and
finally evaluation and interpretation of the output.
'High quality' in text mining usually refers to some
combination of relevance, novelty, and
interestingness. Typical text mining tasks
include text categorization, text clustering, concept/
entity extraction, production of granular
taxonomies, sentiment analysis, document
summarization, and entity relation modeling (i.e.,
learning relations between named entities).
(Reference :
http://en.wikipedia.org/wiki/Concept_mining)

In the following sections we will discuss how an
efficient text mining tool was developed using Tcl/
Tk 8.5 with C.
The text mining tasks which are computationally
intensive are implemented in C. The Tcl/Tk makes
calls to the C functions as and when required.
Display is managed entirely by Tcl/Tk side.

2. C based library for text mining

A C based database manager is developed to store
the information related to the tools and the
corresponding log file paths.
 C functions are implemented to access interesting
information from the log files.
Those functions efficiently extract the requested
information from the log files and provide it to the
caller code.
The C functions are embedded inside a shared
library which registers Tcl commands on a Tcl
interpreter. The Tcl commands can be called from
any Tcl/Tk based GUI that loads this shared library.
Internally, those Tcl commands are mapped to the
C functions.
Searching through the large database of log files
can be time consuming, so C is preferred over Tcl.
Besides, C can be used to implement an efficient

parser that parses the log files on demand to retrieve
the requested information for the user.

The command interface between the Tcl/Tk GUI
and the C shared library is designed to be backward
compatible. Thus, the GUI can be modified without
requiring a recompile of the shared library and
conversely, the shared library can change the
implementation of its parser and search functions
without necessary build of the GUI, as long as the
interface is maintained intact.
Assuming that the C library is named
“libloganalyze.so”, the Tk gui makes the following
call:

load <path to libloganalyze.so>
The load call passes the Tcl interpreter handle to the
C library. Commands are created on this interpreter
for use by the subsequent GUI queries.

3. GUI display of tools and log files: text
categorization

The GUI is designed to have a tree view for the
tools and log files hierarchy.
For example, a hierarchy looks like this : tool 
log files  messages. Under a tool such as “HDL
compiler” , there could be logs such as
“hdl_compile.log”, “hdl_compile.report”. Further,
the hdl_compile.log node can be expanded to
display the “Errors”, “Warnings”, “Note”, “Status”
and other categories of messages.
The ttk treeview widget is used for this purpose. It
provides the user a convenient way to view the
various messages occurring for the different tools in
a single window.
Whenever the user expands a node of the tree, a
query is generated for the C shared library. The
query is executed in C code and the relevant
information is fetched by the GUI.
GUI side : Treeview->Expand (node)
Calls C function : loganalyze -get_child_nodes –
queryString <queryString>
GUI gets the results of the C call and changes tree
display / log file view as applicable.

For example, if the user expands a tool node, then
the result of the C function call will return the log
file names associated with the tool.
Similarly, for an individual log file node, the C
function will return the message types as the child
nodes and also the text to display as the contents of

http://en.wikipedia.org/wiki/Concept_mining

the given log file in the text view widget.
The text mining operation is carried out in the C
function and the results are displayed in the Tcl/Tk
GUI.
4. Search results display using text clustering

The text display clusters messages of a particular
type based upon the type. For example, the
warnings are displayed clustered together, as are the
other message types.
If the search is based upon some pattern, the pattern
is highlighted in the search results.
For example, if the user searches for “simulation
mismatch”, the clause “simulation mismatch” will
be highlighted in the search results displayed in the
text view.
For example :
Warning [100] : Net top.a has been removed from
the design.
Warning [100] : Net top.b has been removed from
the design.
…………………………………………………………
SimWarning [200] : Net top.c has multiple
drivers, this may cause a simulation mismatch.
SimWarning [200] : Net top.inst.q has multiple
drivers, this may cause a simulation mismatch.
………………………………………………………….

5. Concept / entity extraction

To display file names, line numbers and net names
in the text view, the file names are extracted and
displayed with hyperlink tags. The hyperlink is
programmed to open the corresponding file and line
number in an editor such as vi or emacs, as
specified by the user , upon right mouse button
click.
For example a message could look like this :
Warning [101] : File design.v, line 11, syntax error
near “=”.
In the above message, the file path “design.v” will
be hyperlinked.

Code snippet :
set textWidget $mainWidget.logFileDisplay
 $textWidget tag configure hyperlink -foreground
royalblue -underline true
 $textWidget tag bind hyperlink <Double-Button-
1> { clickALink %x %y %W}
 $textWidget tag bind hyperlink <Return>
{clickALink %x %y %W}

Search for all the file names and tag those as
hyperlink.

proc clickALink {x y w} {
set i [$w index @$x,$y]
 set range [$w tag prevrange hyperlink $i]
 set url [eval $w get $range]
sourceViewFile $url
}

The procedure sourceViewFile opens the specified
url in the editor selected from the user environment.

A separate display canvas is provided for the
design statistics , such as the design size, compile
status of the tools and various performance /
capacity related metrics.
This information is obtained via a call to the C
library at start up.
GUI call : loganalyze –get_design_stats
C function : loganalyzer->GetDesignStats().
Returns the design stats after mining the log and
reports database.
During startup, a list of predefined phrases is also
searched in the database and those are displayed in
a different view as the “Analysis Report”.
The analysis report allows the user to browse to the
relevant phrase in the log files spread across the
emulation database using hyperlinks.

GUI side : loganalyze –queryString <get statistics
for important messages>
C side : loganalyzer->GenerateReport()
Returns the statistics for the important messages in
all the log files and reports.
This call returns the statistics of all the important
messages in which the user might be interested,
right at the start up.

6. GUI architecture for multiple views
The three log file related views : namely the text
view, the design statistics canvas and the analysis
report view are implemented as tabs in a ttk
notebook widget.
The text display changes for each and every text
file, so the text view tab has sub-tabs for each and
every log file that is opened for search.

Using some customization using ttk::style, the sub
tabs are provided with a X icon at the right top
corner to allow the user to close the view for a

particular log file.

Code snippet :[Ref : wiki.tcl.tk]
image create photo closeImage -file $::closex.gif
ttk::style element create ButtonNotebook.close
image closeImage
ttk::style layout ButtonNotebook {
 ButtonNotebook.client -sticky nswe
}
 ttk::style layout ButtonNotebook.Tab {
 ButtonNotebook.tab -sticky nswe -children {
 ButtonNotebook.padding -side top -sticky
nswe -children {
 ButtonNotebook.focus -side top -sticky nswe
-children {
 ButtonNotebook.close -side right -sticky n
 ButtonNotebook.label -side left -sticky {}
 }
 }
 }
 }
It can be reopened later on if required, using the
appropriate node in the tree view.

7. Query generation interface

The log file analyzer GUI provides a versatile query
editor. The user can select the type(s) of message(s)
to display and can specify the scope of the search
in terms of the tools or the log files.
The user is also allowed to input text patterns for
search including regular expressions. Search is
possible with and without case sensitivity. The
query editor is implemented using check buttons
and text entry fields.

Code snippet (query creation)
proc CreateQueryString {} {
 Get all check button status
 Get search entry
 Get regular expression or not
 Get case sensitive or not
 Create a query string for loganalyze command
call.
}
The user can also use the tree widget to specify the
scope of the search.

GUI side : loganalyze –queryString
<queryString>
C function : loganalyzer->Search(queryString)
Returns the search results for the specific query.

The search results are displayed in a categorized
form in the log file text view tab which is
embedded in the ttk notebook widget.

8. Sentiment analysis : comparative analysis of
log files

Often the user likes to compare the number of
warnings generated in the current compile with the
numbers generated in a prior compile of the same
design.
For this purpose, the tool allows the user to save a
given set of log files in a compact form. After re-
compiling the design, the user can load the older
set of log files and do a comparative analysis based
upon the types and contents of the messages
generated in both the older and the newer compile
sessions.
This allows the user to check whether the number
of warnings has increased or reduced, whether the
area requirements have changed and whether or not
a better performance can be expected from the new
compile. It also allows the user to know if new
bugs have crept into the design in compile flow,
possibly leading to erroneous behavior later, during
emulation run.
GUI side : loganalyze –compare <project 1>
<project 2> -queryString <query string>
Returns the results for the comparison to GUI.
Display categorization is managed by the GUI.

9. Online help system

For the log file analyzer to be useful, it must not
only display the relevant messages or search
results , but should also provide some tips to the
user for the various errors or warning messages.
The log file analyzer extracts the message
mnemonic or id and searches the available
documents and web resources for relevant help. The
user can make use of this online help functionality
to understand the cause of an error or a warning or
just the significance of a status message.
GUI side : loganalyze –help <search phrase>
C function: loganalyzer-
>HelpDatabaseQuery(searchPhrase)
Returns the help string for display in the GUI.

10. Design debug using the parent emulation
debug gui

The log file analyzer GUI maintains a socket based
connection with the parent emulation debug GUI.
Through this connection, the extracted name of a
signal or a module can be passed to the GUI, where
it can be browsed in the design path viewer.
Thus the user can understand the reason for a
typical warning message such as “Net is dead
logic” or “Net has multiple drivers” by browsing
the design in the emulation debug gui.
The sequence of actions done by the user would
look like this :

a) Search for “multiple drivers” in compiler
logs.

b) Results are displayed categorized in the text
view.

c) Visit any particular interesting message and
click on the hyperlink for the net name.

d) The net name is displayed in the emulation
gui path viewer.

Similarly, the log file analyzer allows the user to
view the waveforms for an interesting net where
those are available with the emulation debug gui.
GUI side : “Send Parent GUI command : Add net
to path viewer”.
Parent GUI : Receives and parses the command
and calls appropriate command : “add pathviewer
<net name>”.

11. Summarization of area and performance
reports

Area reports are generated at compile time.
Performance reports are generated at runtime.
The log file analyzer can display the modules that
consume the most of the design area. The user can
focus on the relevant modules and remodel the
HDL code to optimize the area requirements.
The number of simulation cycles consumed , the
design frequency, the number of transaction calls
made and the time taken are available in
performance reports.
A summarized display of those allows the user to
optimize the test bench and the design quickly
without having to browse through the reports
manually and undertaking the effort to interpret
them.

12. Cost , limitations and future work

The text mining techniques applied here make use
of the standard messaging format used by the

emulation tools.
In case there are third party tools which generate
huge log files in an unknown format, the log file
analyzer is not able to apply text mining techniques
for those.
The current implementation can be made more
intelligent to accept a user defined messaging
format to analyze any log file database generated by
any product.
If the log files are very large in number, the volume
of information extracted can be quite huge. In such
cases, the user has to do selective searches and not
go for generic pattern searches which could
become time consuming.

13. Conclusion

A text mining tool using Tcl/Tk and C for
emulation databases has been described here.
It makes use of text mining techniques such as text
categorization, entity/concept extraction, text
clustering, document summarization and sentiment
analysis for analysis of log files and reports.
It makes use of the efficiency of C to quickly
analyze and retrieve useful information from the
emulation database. A Tcl/TK 8.5 based GUI
interfaces with the C shared library to provide a rich
and interesting debugging experience to the
emulation users.
The concept can be extended in the future to any
system where the log files are generated in a
predefined messaging format and the debug
functionality can be made configurable for the
relevant system.

REFERENCES:

[1] http://en.wikipedia.org/wiki/Text_mining
[2] wiki.tcl.tk

http://en.wikipedia.org/wiki/Text_mining

