
U.S. Army Research, Development and Engineering Command

A CMake-Based Cross Platform Build System for Tcl/Tk
October 27, 2011

Clifford Yapp
Quantum Research International Inc.1 Approved for public release; distribution is unlimited.

Background

• BRL-CAD - powerful open source solid modeling system developed originally by
the Ballistic Research Laboratory (now the U.S. Army Research Laboratory)
– More than 25 years of development, with ancestor codes dating to the early

1970s.
– “the world's oldest source code repository” - August 2007, Robin Luckey,

Ohloh Inc.
• Since the early days of its development, BRL-CAD has made use of Tcl/Tk

– Graphical Editing Environments
– Scripting
– Interactive command prompt

• Current efforts to upgrade our GUI

– Ttk widgets
– HTML-based help system
– Tktable-based editing tables
– etc.

Mike Muuss working in the early 80's with BRL-CAD on a
PDP-11/70 while Earl Weaver inspects a design printout

2

Background – Latest BRL-CAD GUI

3

Building Tcl/Tk - Why?

• Portability
– Current “primary” platforms are Linux, Mac OS X, Windows, and FreeBSD
– Historically, BRL-CAD has run on a vast number of operating systems and

architectures – portability is key to code longevity
– BRL-CAD is only as portable as Tcl/Tk

• Required Libraries
– In order to isolate bugs, it is sometimes necessary to compile against known

“good” versions of libraries.
– Deployment of BRL-CAD often cannot wait on fixes to system libraries.
– Deploying a version of a system library new enough to support BRL-CAD

may break other applications.
– BRL-CAD has occasionally needed to make changes and fixes to Tcl/Tk

• Bundling
– To ensure a viable Tcl/Tk is available at all times on all target platforms, a

version known to work is bundled with BRL-CAD's own sources.
– Building the bundled Tcl/Tk requires integration of Tcl/Tk's build system with

BRL-CAD's own build logic.
4

Existing Tcl/Tk Build Systems

• Tcl Extension Architecture (TEA)
– Autoconf/M4 based
– Two versions: SC_* for Tcl/Tk and TEA_* for extensions

– Functionality tests and Tcl/Tk system configuration detection
– Covers a very wide range of operating systems – some old enough that

support for them is no longer needed by BRL-CAD.
• Windows

– Visual Studio project files – listed version supported is Visual C++ 6.0
– NMake build files.

– MinGW/MSYS build files.
– Cygwin is specifically listed as not supported.

• BRL-CAD Sub-builds
– MSVC – Custom Visual Studio project files.
– Autotools – Wrappers for Tcl/Tk's autoconf/SC_* logic.

– Workable, but sometimes fragile – required tweaking each Tcl/Tk upgrade.

5

Tcl/Tk as a CMake Sub-build

• Summer 2010 - decision made to unify BRL-CAD's build logic into a single
CMake build system
– Primary goal - simplify building Windows releases.
– Most BRL-CAD developers work on non-Windows platforms – Windows build

files tended to be out of date

– Windows is a popular deployment platform for BRL-CAD – important to
improve the release building process.

• Building Tcl/Tk from CMake
– 1st attempt - use Tcl/Tk's existing build files and ExternalProject_Add
– Worked reasonably well on Linux (except for requiring the installation target

be built before building the remainder of BRL-CAD.)
– Visual Studio integration more difficult – initial efforts unsuccessful.

• Building Tcl/Tk with CMake
– Implement enough of Tcl/Tk's build logic in CMake to support BRL-CAD's

target platforms.
– Avoids complexity of OS-dependent external build system triggers, integrates

well with BRL-CAD.
6

Requirements

• To support BRL-CAD's requirements, a CMake build would need to:
– Build successfully on target platforms:

• Windows

• Linux
• FreeBSD
• Mac OS X
• Solaris

– Ideally avoid significant alterations to the Tcl/Tk source code

– Run tclsh and wish from the build directory without requiring installation –
needed for BRL-CAD's compilation process

– Support compilation of Tcl/Tk extensions
• Support using either a system Tcl/Tk or BRL-CAD's local copy – both

scenarios plausible.

7

Invoking CMake

• CMake vs. Autotools
– Out of source directory builds highly recommended.
– Slightly different invocation syntax (see paper for details):

• ../tcl/unix/configure
• cmake ../tcl

– All operating systems use the same toplevel CmakeLists.txt
• CMake vs MSVC/nmake

– Run CMake to generate a Visual Studio project

– Launch Visual Studio to complete the build.

Demonstration...

8

“Internal” Headers

• Tcl and Tk are nominally separate projects, with distinct build systems
• Despite this separation, Tk requires internal Tcl headers when building

– Tk requires the location of a Tcl source repository, as these headers are not
guaranteed to be installed

– Tk cannot be compiled against a system Tcl with any guarantee that the
internal headers used match those used to build the system Tcl/Tk. Version
numbers may match, but that does not preclude local modifications being
present in the system Tcl.

• Several external Tcl/Tk packages also require the presence of the Tcl/Tk source
code.

• To support existing code, CMake build logic also must support this source
directory inclusion.

• Longer term, can internal header use be eliminated?

9

Index files

• To support both build directory and install directory pkgIndex.tcl files, CMake
creates two and places them appropriately

• The “final” version intended for install is written to the current binary directory.

• The “in-build-directory version” is written to the appropriate location in CMake's
library output directory.

• Tclsh and Wish binaries running from the binary output directory will find the
pkgIndex.tcl file in the library output directory.

get_target_property(TK_LIBLOCATION tk LOCATION_${CMAKE_BUILD_TYPE})
get_filename_component(TK_LIBNAME ${TK_LIBLOCATION} NAME)
file(WRITE ${CMAKE_CURRENT_BINARY_DIR}/pkgIndex.tcl "package ifneeded Tk
 ${TK_PATCH_LEVEL} [list load [file join $dir ${LIB_DIR}
 ${TK_LIBNAME}] Tk]")
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/pkgIndex.tcl DESTINATION
 lib/tk${TK_PATCH_LEVEL})

file(WRITE ${CMAKE_LIBRARY_OUTPUT_DIRECTORY}/tk${TK_PATCH_LEVEL}/pkgIndex.tcl
 "package ifneeded Tk ${TK_PATCH_LEVEL} [list load [file join $dir
 ${CMAKE_LIBRARY_OUTPUT_DIRECTORY} ${TK_LIBNAME}] Tk]")

10

File Introspection

• CMake provides both the ability to read file contents into variables and apply
regular expressions to strings.

• One or both of these abilities support a number of key features:
– Intelligent placement of library files (code above is a subset of that macro)
– Parsing tclConfig.sh and tkConfig.sh files (FindTCL.cmake)

– Extracting root names from file names
– Breaking up version numbers (major/minor/patch)

if(${line} MATCHES "package provide [^:]*::${ROOT_NAME}")
 STRING(REGEX REPLACE ".*package provide ([^:]*)::.*" "\\1" ITEM_SUBDIR ${line})
 STRING(REGEX REPLACE ".*package provide [^:]*::${ROOT_NAME} ([0­9\\.]*).*"
 "\\1" ITEM_VERSION ${line})
endif()
if(${line} MATCHES "package provide ${ROOT_NAME}")
 STRING(REGEX REPLACE ".*package provide ${ROOT_NAME} ([0­9\\.]*).*" "\\1"
ITEM_VERSION ${line})
endif()

11

Dependent Options

• Occasionally, options that are appropriate to show to the user rely on some
particular system library (e.g. X11)

• Rather than show an option when the core system feature is not present, CMake
provides a Dependent Option macro to conditionally provide options based on
other search results.

• This feature is probably useful in more situations – only used right now for a
couple of X11 related cases.

include(CMakeDependentOption)

CMAKE_DEPENDENT_OPTION(TK_ENABLE_XFT "Use freetype/fontconfig/xft" ON
 "TK_SYSTEM_GRAPHICS STREQUAL x11;FREETYPE_FOUND;${X11_Xft_FOUND}" OFF)

12

Extensions

• Can be built “stand-alone” but have the same constraints as TEA builds – need
Tcl/Tk sources

• Extensions:
– Tkhtml3

– Tktable
– Itcl
– Itk
– Togl

13

Results and Complexity

• Build times are comparable to Autoconf/SC builds on Linux.
– Benchmark used a single processor build on a Gentoo Linux AMD Athlon II

X2 245 CPU.
– Observed build times within 10% of standard Tcl/Tk build, given the same

compiler options.

• Build system complexity is comparable, given implemented logic
– Hard to objectively measure “complexity” - Lines of Code are in the same

ballpark (5-7k) but CMake does not implement all of Tcl/Tk's SC logic.
• As a sub-build within BRL-CAD Tcl/Tk CMake has been consistent and well

behaved
– Builds on all platforms currently supported by BRL-CAD
– Runs successfully from within the build directory

– Works with existing Tcl/Tk code – no significant source code modifications

14

Conclusions and Future Work

• CMake is an effective tool for providing Tcl/Tk with integrated cross-platform
build system support.

• BRL-CAD will be maintaining and enhancing this method of Tcl/Tk compilation
as part of ongoing development.

• Remaining items to address:

– Ensure all necessary functionality tests have been ported
– Implement CPack logic for tarball and binary generation.
– Address “multi-config” development environments like Xcode

• Current macros assume a single build directory target for libraries and
executables

• May need to support Debug/Release/etc. configs for proper Xcode
integration.

15

Questions?

Thank you!

16

