Us ARMY
@ B DEG @ U.S. Army Research, Development and Engineering Command
)

WARFIGHTER FOCUSED.

A CMake-Based Cross Platform Build System for Tcl/Tk

October 27, 2011

Clifford Yapp
1 Approved for public release; distribution is unlimited. Quantum Research International Inc.

N "DEG@ Background

* BRL-CAD - powerful open source solid modeling system developed originally by
the Ballistic Research Laboratory (now the U.S. Army Research Laboratory)

— More than 25 years of development, with ancestor codes dating to the early
1970s.

— “the world's oldest source code repository” - August 2007, Robin Luckey,
Ohloh Inc.

* Since the early days of its development, BRL-CAD has made use of Tcl/Tk
— Graphical Editing Environments
— Scripting
— Interactive command prompt

e Current efforts to upgrade our GUI
— Ttk widgets
— HTML-based help system
— Tktable-based editing tables
— eftc.

Mike Muuss working in the early 80's with BRL-CAD on a
PDP-11/70 while Earl Weaver inspects a design printout

2 WARFIGHTER FOCUSED.

Us ARMmyY

¥ RDECOM Background - Latest BRL-CAD GUI

Archer

File Display Modes Raytrace Utilities Help ‘

]

+
-
+

+ 4.

B

B[—2= LN
Show List

B
ul
b u @ ctOgps-a-mpm1
b u (@ Icm-28-slim-toppoly
I u @@ rtc-mi414r-f9a
1> u @@ shielding-rf
1> u @ battery-1200mah-welldone
[>u ﬁ gps-antenna-ciro-15x15.c
ul
I u @ id-gtc-front-pre
- u (@ id-gtc-rear-pre
u‘ s.id-gtc-rear-pre
b u @ id-gtc-middle-pre
b u @@ id-gtc-lens-pre

L Oe® " |

;Z%‘%f%[i[x[[@

Z2OE

Comp Pick Modes
Tree Select
Get Object Name
* Erase Object
Bot Split
Bot Sync
Bot Flip

Bot Tools
Split All Bots
Sync All Bots

Flip Check all Bots

Fix All Bots

u‘s d-gtc-sd-cov

> u @@ id-gtc-usb-cov
I u @ black
-gtc-front-ring
d-gtc-rear-ring
I u @@ mic-d4-smd-aac
I u i fpc-39p-hrs_o1
I u @ receiver-8x2-philips
I u @ sw-tact_01

u B sim-microsd-acon.c
b u @ vibrator_2113top0
b u (@ batt-conn-octek-03jax
b u @ plug-mini-ush
[u ' gps-ant-ext-mmcx-plug
I u @@ gps-ant-ext-plug-s
I u @ gps-ant-ext-25109
> u @ gsm-ant-bottom
I u §§ phonejack-tg 286d

T T T Y NP NP R S

4 »

Command | History

T LGUZ NS UL/ LAUE SR, Lf 3L L1 LA GL Ul USLEUT LRAAAY_ G5 d 1L/ USLEU T ITAAALA G 1U_ B3 L L/ LoUSLEUS LUUAULTL_G1U_ G531 Lo/ LoUSLEUT LUUAUY_ 1 Utr 3. L USLZU" SUDAUY LU =
/gtaf2-mme@l.c/gtad2-mskl.c/sim-tflash-acon.c/dsc20-14xxx00_asm 3.c/dsc20-14xxx1x_afo asm 1.c/t-dsc20-100x08-c_af@ asm 1.c/t-dsc20-160x00_1 05
/gtab2-mme@l.c/gta0d2-mskl.c/sim-tflash-acon.c/dsc20-14xxx00_asm 3.c/dsc20-14xxx1x_afd asm 1.c/t-dsc20-100x08-c_af@ asm 1.c/t-dsc20-100x80 1 85/s.t-dsc20-100x00 1 05
/gtad2-mmedl.c/gtad2-mskl.c/sim-tflash-acon.c/dsc20- 14xxx00_asm_3.c/dsc20-14xxx1x_afd asm_1.c/t-dsc20-100x00-c_afe_asm 1.c/t-dsc20-100x00 1 06
/gtad2-mmedl.c/gtad2-mskl.c/sim-tflash-acon.c/dsc20-14xxx00_asm_3.c/dsc20-14xxx1x_afd asm_1.c/t-dsc20-100x00-c_afe_asm 1.c/t-dsc20-100x00 1 06/s.t-dsc20-100x00_1_06
/gtad2-mmedl.c/gtad2-mskl.c/sim-tflash-acon.c/dsc28- 14xxx00_asm_3.c/dsc20-14xxx1x_afd asm_1.c/t-dsc20-100x008-c_afe _asm 1.c/t-dsc20-100x60 1 07
/qtab2-mme@l.c/gta0d2-mskl.c/sim-tflash-acon.c/dsc20-14xxx00_asm 3.c/dsc28-14xxx1x_afd asm 1.c/t-dsc20-100xB08-c_afe asm 1.c/t-dsc20-160x80 1 87/s.t-dsc20-180x00 1 07
/gtad2-mmedl1.c/gtad2-mskl.c/sim-tflash-acon.c/dsc20-14xxx00_asm 3.c/dsc20-14xxx1x_afd _asm 1.c/t-dsc20-108x08-c_af@ asm 1.c/t-dsc20-1686x00 1
/9tad2-mmedl.c/qta0d2-mskl.c/sim-tflash-acon.c/dsc20-14xxx00_asm_3.c/dsc20-14xxx1x_afo_asm_1.c/t-dsc20-100x00-c_af@_asm_1.c/t-dsc20-100x00_1/s.t-dsc20-100x00_1
/gtad2-mmedl.c/gtad2-mskl.c/sim-tflash-acon.c/dsc20-14xxx00_asm 3.c/dsc20-14xxx1x_afo_asm_1.c/t-dsc20-200x00-c_afe_asm_l.c

-

[BAL-CAD)

3 WARFIGHTER FOCUSED.

Y ﬁ‘ﬁbc@ Building Tcl/Tk - Why? _‘

* Portability

— Current “primary” platforms are Linux, Mac OS X, Windows, and FreeBSD

— Historically, BRL-CAD has run on a vast number of operating systems and
architectures — portability is key to code longevity

— BRL-CAD is only as portable as Tcl/Tk
* Required Libraries

— In order to isolate bugs, it is sometimes necessary to compile against known
“good” versions of libraries.

— Deployment of BRL-CAD often cannot wait on fixes to system libraries.

— Deploying a version of a system library new enough to support BRL-CAD
may break other applications.

— BRL-CAD has occasionally needed to make changes and fixes to Tcl/Tk
* Bundling

— To ensure a viable Tcl/Tk is available at all times on all target platforms, a
version known to work is bundled with BRL-CAD's own sources.

— Building the bundled Tcl/Tk requires integration of Tcl/Tk's build system with
BRL-CAD's own build logic.

WARFIGHTER FOCUSED.

\/ BDMEGD Existing Tcl/Tk Build Systems 4

Tcl Extension Architecture (TEA)
— Autoconf/M4 based
— Two versions: SC_* for Tcl/Tk and TEA * for extensions
— Functionality tests and Tcl/Tk system configuration detection

— Covers a very wide range of operating systems — some old enough that
support for them is no longer needed by BRL-CAD.

* Windows
— Visual Studio project files — listed version supported is Visual C++ 6.0
— NMake build files.
— MInGW/MSYS build files.
— Cygwin is specifically listed as not supported.
BRL-CAD Sub-builds
— MSVC - Custom Visual Studio project files.
— Autotools — Wrappers for Tcl/Tk's autoconf/SC_* logic.
— Workable, but sometimes fragile — required tweaking each Tcl/Tk upgrade.

5 WARFIGHTER FOCUSED.

\/ ﬁﬁbc@ Tcl/Tk as a CMake Sub-build 4

 Summer 2010 - decision made to unify BRL-CAD's build logic into a single
CMake build system
— Primary goal - simplify building Windows releases.
— Most BRL-CAD developers work on non-Windows platforms — Windows build
files tended to be out of date
— Windows is a popular deployment platform for BRL-CAD — important to
improve the release building process.

* Building Tcl/Tk from CMake
— 1% attempt - use Tcl/Tk's existing build files and ExternalProject_Add

— Worked reasonably well on Linux (except for requiring the installation target
be built before building the remainder of BRL-CAD.)

— Visual Studio integration more difficult — initial efforts unsuccessful.

* Building Tcl/Tk with CMake
— Implement enough of Tcl/Tk's build logic in CMake to support BRL-CAD's

target platforms.
— Avoids complexity of OS-dependent external build system triggers, integrates

well with BRL-CAD.
WARFIGHTER FOCUSED.

\/ ﬁ’ﬁkn@ Requirements

* To support BRL-CAD's requirements, a CMake build would need to:
— Build successfully on target platforms:
* Windows
* Linux
* FreeBSD
* Mac OS X
* Solaris
— Ideally avoid significant alterations to the Tcl/Tk source code

— Run tclsh and wish from the build directory without requiring installation —
needed for BRL-CAD's compilation process

— Support compilation of Tcl/Tk extensions

* Support using either a system Tcl/Tk or BRL-CAD's local copy — both
scenarios plausible.

WARFIGHTER FOCUSED.

Y RBECOM)) invoking CMake

* CMake vs. Autotools
— Out of source directory builds highly recommended.
— Slightly different invocation syntax (see paper for details):
 _./tcl/unix/configure
* cmake ../tcl
— All operating systems use the same toplevel CmakeLists.txt
* CMake vs MSVC/nmake
— Run CMake to generate a Visual Studio project
— Launch Visual Studio to complete the build.

Demonstration...

8 WARFIGHTER FOCUSED.

\/ BDEGD “Internal” Headers

* Tcland Tk are nominally separate projects, with distinct build systems
* Despite this separation, Tk requires internal Tcl headers when building

— Tk requires the location of a Tcl source repository, as these headers are not
guaranteed to be installed

— Tk cannot be compiled against a system Tcl with any guarantee that the
internal headers used match those used to build the system Tcl/Tk. Version
numbers may match, but that does not preclude local modifications being
present in the system Tcl.

* Several external Tcl/Tk packages also require the presence of the Tcl/Tk source
code.

* To support existing code, CMake build logic also must support this source
directory inclusion.

* Longer term, can internal header use be eliminated?

9 WARFIGHTER FOCUSED.

Y ROECOM) Index files

10

(TK_LIBLOCATION tk LOCATION_S${CMAKE_BUILD_TYPE})
(TK_LIBNAME S${TK_LIBLOCATION} NAME)
(WRITE ${CMAKE_CURRENT_BINARY_DIR}/pkgIndex.tcl
${TK_PATCH_LEVEL} ${LIB_DIR}
$ {TK_LIBNAME})
(FILES ${CMAKE_CURRENT_BINARY_DIR}/pkgIndex.tcl DESTINATION
lib/tk${TK_PATCH_LEVEL})

(WRITE ${CMAKE_LIBRARY_OUTPUT_DIRECTORY}/tk${TK_PATCH_LEVEL}/pkgIndex.tcl
${TK_PATCH_LEVEL}
$ {CMAKE_LIBRARY_OUTPUT_DIRECTORY} ${TK_LIBNAME})

To support both build directory and install directory pkgindex.tcl files, CMake
creates two and places them appropriately

The “final” version intended for install is written to the current binary directory.

The “in-build-directory version” is written to the appropriate location in CMake's
library output directory.

Tclsh and Wish binaries running from the binary output directory will find the
pkglindex.tcl file in the library output directory.

WARFIGHTER FOCUSED.

\/ RDEG@ File Introspection

(${line} MATCHES S{ROOT_NAME} ")
(REGEX REPLACE ITEM_SUBDIR ${line})
(REGEX REPLACE ${ROOT_NAME}
ITEM_VERSION ${line})
()
(${line} MATCHES S{ROOT_NAME} ")
REGEX REPLACE $ {ROOT_NAME}
ITEM_VERSION ${line})
()

* CMake provides both the ability to read file contents into variables and apply
regular expressions to strings.

* One or both of these abilities support a number of key features:
— Intelligent placement of library files (code above is a subset of that macro)
— Parsing tclConfig.sh and tkConfig.sh files (FindTCL.cmake)
— Extracting root names from file names
— Breaking up version numbers (major/minor/patch)

11 WARFIGHTER FOCUSED.

\/ ﬁﬁi—'ﬂ@ Dependent Options

(CMakeDependentOption)

CMAKE_DEPENDENT_OPTION(TK_ENABLE_XFT ON
STREQUAL S{X11_Xft_FOUND} OFF)

* Occasionally, options that are appropriate to show to the user rely on some
particular system library (e.g. X11)

* Rather than show an option when the core system feature is not present, CMake
provides a Dependent Option macro to conditionally provide options based on
other search results.

* This feature is probably useful in more situations — only used right now for a
couple of X11 related cases.

12 WARFIGHTER FOCUSED.

Us ARMmyY

® RDECOM Extensions

e Can be built “stand-alone” but have the same constraints as TEA builds — need
Tcl/Tk sources)
] xterm E]@E]

L4 : [94%] Building C chject incrTclfitcl/CHakeFiles/itcl,dirfgeneric/itclTel IntStubsFen,c,o
EXtenSIOnS [94%] Buildirng C chject incrTclfitcl/CMakeFilesditcl,dirdgeneric/itclltil c,o

[95%] Building C cbject incrTclfitcl/CHakeFiles/itcl,dirdgeneric/itclMigrate®TclCore,c,o
—_ Tkhtm|3 [95%] Building C object inerTeclfitel/CHakeFiles/itcl,dir/genericsitclNeededFromTel0l,c 0
[95%] Buildirng C cbject tkhtml/CHakeFiles/Tkhtml,dirs/src/htnlparse,coo

[9521 [96%] Building C object tkhtml/CHakeFiles Tkhtml,dirdsrc/htmlstyle,c,o

— Tktable R T T e T e e e gt

[96%] Building C object tkhtml/CHakeFiles/Tkhtml.dirdzsrcdhtmltable,c.n

[96%] [97%] Building C object tkhtml/CHakeFilesd™ N
— ltcl FL i T bt thhin L/ Haer e Thhin] i |) Rotating Gear Widget Test || 0)(x]
[97%] Building C object tkhtml/CHakeFiles/Tkhtml)))
[97%] Building C ohject tkhtml/CHakeFiles/Tkhtml] Click and drag to rotate image
- Itl([97%] Building C object tkhtml/CHMakeFiles/Tkhtml

[98%] Building C cbject tkhtml/CHakeFiles/Tkhtml |

[982] Building C object tkhtmlsCMakeFiles Tkitml)

—_ T0g| Linking C shared library ../lib/1ibTkhinl, =0
Lirking C shared library ../, ./lib/libtogl, so

[98%] Built target Tkhtml

[98%] Built target togl

[98%] Buildirng C chject togl/demo/CHakeFiles gear

Linking C shared library sears.so

Linking C shared libwary ../, ./lib/libitcl,. =0

[98%] Built target gears

[98%] Built target itcl

[9321 [9921 [9921 [9921 [99#1 [100E] [100%]

Building C object incrTclditk /CHakeFiles itk,dir/d

Add 100 Remove Quit

Building C object incrTcl/itks/CHakeFilesfithk,dir/d
Building C object incrTcl/itke/CHakeFilesditk,dirsd
Building C object incrTcl/itks/CHakeFilesfithk,dir/d
Building C object incrTcl/itke/CHakeFilesditk,dirsd
Building C object incrTcl/itksCHakeFilesfitk,dir/d
Building C object incrTclditksCHakeFiles<itk,dirdgeneric/itkStublnit.c.o

Linking C shared library .7 . lib/libitk, 50
[100%] Built target itk

bash-3,2% cd togl/demos

Eash—3,2$ cof sfhindwizh gears,tel

13 WARFIGHTER FOCUSED.

\/ ﬁﬁfl{@ Results and Complexity 4

* Build times are comparable to Autoconf/SC builds on Linux.

— Benchmark used a single processor build on a Gentoo Linux AMD Athlon Il
X2 245 CPU.

— Observed build times within 10% of standard Tcl/Tk build, given the same
compiler options.

e Build system complexity is comparable, given implemented logic

— Hard to objectively measure “complexity” - Lines of Code are in the same
ballpark (5-7k) but CMake does not implement all of Tcl/Tk's SC logic.

e As a sub-build within BRL-CAD Tcl/Tk CMake has been consistent and well
behaved

— Builds on all platforms currently supported by BRL-CAD
— Runs successfully from within the build directory
— Works with existing Tcl/Tk code — no significant source code modifications

14 WARFIGHTER FOCUSED.

¥ RDECOM Conclusions and Future Work 4

* CMake is an effective tool for providing Tcl/Tk with integrated cross-platform
build system support.

* BRL-CAD will be maintaining and enhancing this method of Tcl/Tk compilation
as part of ongoing development.

* Remaining items to address:
— Ensure all necessary functionality tests have been ported
— Implement CPack logic for tarball and binary generation.
— Address “multi-config” development environments like Xcode

* Current macros assume a single build directory target for libraries and
executables

* May need to support Debug/Release/etc. configs for proper Xcode
integration.

15 WARFIGHTER FOCUSED.

Thank you!

16 WARFIGHTER FOCUSED.

