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Abstract
TyCL (Typed Command Language) is an implementation of the Tcl language written in TyCL 
itself. The language follows Tcl's syntax, but given that TyCL is meant to be a full compiler that 
generates machine code, a new set of features, expansions and cuts had to be applied to the Tcl's 
syntax that TyCL understand in order to help the compiler to produce better results.  Included in 
those  modifications  are  the  concept  of  types  (hence  the  name  of  the  compiler),  which  are 
optional but when used makes TyCL  behave more as an static language than a dynamic one.

Introduction
Even though the performance of Tcl's virtual machine has been improved since its conception 
(including the Non-Recursive-Engine[1]) it  still  runs at few orders of magnitude slower than 
many other languages at this time. After looking at its source code (written in C) one has to 
wonder how hard would be to try something in such performance endeavors.  There is another 
path that can be taken (may be a lot more painful and time consuming but... hopefully... more 
gratifying) which is to develop a new implementation of Tcl's features and syntax using another 
approach, and may be, a different coding-language (other than C), and in the process of doing it  
(now that one is willing to take the pain) why not try to include some other nice and interesting 
features?  Here is where TyCL come in to the picture.

The  main  goals  of  the  TyCL compiler/interpreter  is  to  try  to  improve  Tcl's  performance, 
minimize  its  memory  footprint  and  provide  simple  mechanisms  to  interact  with  other 
components within a system by creating a whole new implementation of it from scratch.  It could 
be written in C or C++ or even Objective-C (following the people's frenzy for Apple's products at 
these days) but it might be thought (as Alan Kay did with Smalltalk [2]) that the best language to 
code this new implementation would be TyCL itself, so we have to deal with one syntax and one 
set of idiosyncrasies instead of two, besides that any improvements in the language is directly 
applied to the compiler.  In order to do this one must have the first usable implementation of the 
language  already  running  (chicken  &  egg  problem)  to  compile  itself,  in  this  case,  at  the 
beginning,  TyCL's implementation is coded in plain Tcl8.5 in order to obtain the first iteration of 
the needed bootstrapping[3] process and have TyCL compiled by itself.

As a Tcl compiler, TyCL should produce better results as programs/scripts include more detailed 
information about the data it has to process (information that is not there right know, given the 
strong dynamic nature of Tcl), which means: is less-difficult to generate efficient machine-code 
when the compiler knows exactly what data is manipulating... or in other words: TyCL has to 
include the concept of inline/static data types in its syntax in order to provide this information. 
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TyCL's architecture
Like any other  compiler[4],  TyCL has  an architecture composed by stages,  from the  lexical 
parser to a machine-code generator (see figure 1), the only possible difference is that one of its 
intermediate-representations could be interpreted by TyCL's Virtual Machine (VM).

Figure 1. TyCL's block diagram

The program's source code begins its transformation at the lexical parser, which converts the 
whole text in a kind of  Abstract-Syntax-Tree[5] called TIR (TyCL-Intermediate-Representation), 
by later be synthesized in a WordCode format (WC)1 by the WC-Generator.  At this point, the 
partial result is composed by a binary block of Word-Codes and a set of data tables (a sort of  
literals, symbols and references tables) that either could be passed to the TyCL's VM or injected 
into the machine-code-generator to be transformed in an executable or a system-binary-object 
(NativeCode).

At the moment, TyCL doesn't implement any form of code optimizations, it runs as a very naive 
compiler, but they could be integrated into the processing-chain at the TIR, WC and NativeCode 
sub-products stages as a series sub-processes.

1 The 'WordCode' name was preferred over 'ByteCode' because the granularity of the format is 4-bytes. 
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The Lexical Parser
As described before, this process converts the source-code from the text representation to a TIR 
representation using the modified/expanded Tcl's syntax understood by TyCL.  Such syntax is 
very close to Tcl's, except for:

• The type system
The parser tries to imply every value's type by analyzing its value/structure, for example: 
the text  23.65 is identified as a real number and then its type is  float, but if the same 
number is written as: ”23.65” its type is taken as string (which means plain text) because 
of being quoted.  The basic available types are: 

◦ integer: 
any text composed only by digits from 0 to 9. 
any text in hexadecimal notation (0x##)

◦ boolean: 
any of: t|T|true, f|F|false.

◦ float: 
any number that includes a single decimal separator.

◦ char: 
any single character surrounded by quotes or braces.

◦ string: 
any text surrounded by quotes or braces. This is the chosen default type if no other 
could be detected.

Besides the automatic detection of data types, the program can inform the parser that a 
certain value should be understood in a particular way by directly declaring its type, a 
process commonly known as casting,  in  this  particular  case:  casting from text  to the 
desired type. The way of declaring a casting is:

TYPE:VALUE

as an example, the following fragment shows how the types are detected/declared:

set a 7 ;# auto-detected integer = 7
set b integer:”456” ;# integer = 456
set c true ;# auto-detected boolean = true
set d ”false” ;# auto-detected string = 'false'
set e boolean:45 ;# boolean = true
set f 3.1415 ;# auto-detected float = 3.1415
set g float:3.4 ;# float = 3.4
set h float:{56.8576} ;# float = 56.8576
set i char:w ;# char = 'w'
set j char:67 ;# char = 'C'
set k hello ;# default-detected string = 'hello'
set l “hello world” ;# auto-detected string = 'hello world'
set m string:6.28 ;# string = '6.28'



Each of the created variables in the previous example has then a value with a particular 
type, but also each one of them can have any other typed-value later on.  In order to force 
a variable to always have values of an specified type, the new command: “define” was 
added to the syntax to complement the traditional assignment command: “set”, that does 
exactly the same assignment but also bounds a type with the variable being assigned.  So 
instead of writing:

set a float:5.6

one would write:

define b float:5.6

the difference between a and b is that b can only hold values of type float and its type can 
not be changed until it is destroyed and created again.

• References

Additionally to these basic types, there is on more basic but almost hidden type of value 
called: “reference” that, as its name suggests, allows a variable to reference another one 
in a transparent way.  It is thought to be almost hidden because values of this type are not 
directly  manipulated  as  the  other  basic  types  (like  integers  or  floats,  which  can  be 
changed in expressions), instead, they are operated through another new command called: 
“let” , whose only function is to assign and acquire references to and from variables.  Its 
syntax is:

let VAR ;# returns a reference to the variable: VAR
let VAR_1 VAR_2 ;# sets VAR_1 as a reference to VAR_2

Only the command “let” is allowed to set, get and change reference-values, this means 
that  for  the  rest  of  the  program,  when  such  a  variable  is  operated,  what  is  actually 
manipulated is the value of the final variable referenced by the original one, for example:

set a 4 ;# variable a = 4
let b a ;# variable b refers to a
let c b ;# variable c refers to b
set c 9 ;# setting c = 9 actually sets: a = 9 because:

 # c → b → a

As this example shows, references are transparently followed internally. From a strictly 
Tcl's point of view they don't exist.



• Structural data types
 

Just as having basic data types to identify values more precisely can help the compiler in 
its  job,  structural  data  types  could  make its  life  better  yet,  allowing the  compiler  to 
generate more compact and hopefully efficient  code by knowing how the data/values 
should be organized in memory.

There are many ways of organizing data but the most generic ones could be:

Name Length Internal types Description

arrays fixed multi-typed A group with a fixed number of values

typed arrays fixed single-typed An array of values of the same type

lists variable multi-typed A group of values that can be expanded/shrunken

typed lists variable single-typed A list of values of the same type

structs static static-typed A group of explicit and ordered set of typed-values

unions static mixed-typed A group of values that shares the same memory space

Table 1. Generic structural data types

Currently, Tcl only implements the  array (as a hash table) and list data types in a very 
general way, the problem with this implementation is that it isn't very compiler-friendly in 
the sense that it is very difficult to infer the real structure of the data being put together. 
For this reason TyCL includes types to strictly declare the structural organization of data, 
trying not to loose Tcl's general forms also.  Included so far are:

◦ Arrays
Implemented as an ordered collection of values with a fixed quantity of items 
(completely opposed to Tcl's arrays, which are variable in length and internally 
unordered)

In order to use arrays, a definition of its characteristics (length and value’s type) 
must exist before it can be manipulated, for example:

set a array:4 ;# array definition of length = 4
 # composed by values of any type

set b array:{3 integer} ;# typed-array definition of length = 3
 # composed by integer values

set c a:{44 “hello” 0 5.8} ;# array of length = 4

set d b:{1 2 3} ;# typed-array of integers of length = 3
 # with values = {1 2 3}



◦ Lists
In this case, TyCL tries to follow Tcl's way of handling lists of values, the only 
difference is that the parser doesn't imply/convert lists automatically, they have to 
be explicitly declared as such, like:

set w list:{a b c {1 2 3} d e} ;# without the explicit cast
 # to a list, 'w' would have
 # been handled as string

◦ Groups
Groups  are  really  typed-valued-lists,  they  can  increase  or  decrease  their  size 
dynamically but only can hold values of the same declared type. As typed-arrays, 
a definition of a group must exist before its values can be accessed of modified.

Following  is an example of a group called: 'a', defined by items of type float and 
another group defined by the group 'a' composed by the values: 2.1 , 0 , 5.4 

set a group:float ;# group definition composed by
 # values of type: float

set b a:{2.1 0 5.4} ;# a group of floats

◦ Structs
Corresponds to a collection of values with fixed types and order, and that uses an 
specific amount of memory (just as the C-language define them).  Again, an struct 
definition must be present before it can be accessed later on. 

An  struct definition  is  composed  by  a  list  of  item declarations  of  the  form: 
TYPE:ITEM_NAME , where to each item is given a type. So, in order to create an 
struct definition for, say a rectangle, one could write something like:

set rectangle struct:{
float:h ;# height component, type = float
float:w ;# width component, type = float
integer:color ;# color, defined as an integer

}

set r1 rectangle:{12.3 9.65 255} ;# r1 = rectangle struct

◦ Unions
Unions, also present in the C-language, are basically structs whose values share 
the same physical space, thus having a footprint defined by the value whose type 



uses the most amount of memory.

Their syntax is exactly as struct, for example:

set data union:{
integer:i
float:f
boolean:b

}

The variable:  data can hold values  of  type  integer,  float or  boolean when its 
items: i, f and b are accessed.

• Functions/Procedures

Besides the previous data and structural types, functions have their own type also and are 
treated like any other  typed-value referenced directly by a name within a variable  or 
indirectly when they are created right on the spot where they are needed (anonymous 
functions).  Regular functions (named functions) are created/declared as in Tcl using the 
command: proc like:

proc add {a b} {
return [expr $a + $b]

}

and anonymous functions are created by the same command but without the name, for 
example:

set add [proc {a b} {
return [expr $a + $b]

}]

both declarations actually do the same thing except that for the second one, the variable 
'add' could be changed later in the program while the first one not, the variable is bound 
to that function and only its body can change.

The  function's  parameters  (including  its  return  value)  could be  value-typed  also  by 
following the same syntax that structs and unions have for their members, mixed with the 
current Tcl's way of declaring parameters. Using the previous function  add, one could 
write a complete typed function as:

proc add {integer:* integer:a integer:b} {
return [expr $a + $b]

}



The special  parameter '*'  actually refers to  the return type of the function.  If  by any 
chance a  return call tries to pass a value with a different expected type, an exception 
should be thrown. For parameters that have a default value, Tcl's syntax is used, in this 
case, for our add function, the complete example would be like:

proc add {integer:* {integer:a 0} {integer:b 0}} {
return [expr $a + $b]

}

where the value '0' is the default value for parameters a and b.

Finally, in order to allow principally anonymous functions to call themselves (recursion) 
the special function name: 'self'  was added to the syntax, which refers to the function 
being executed (named or anonymous).

• Function arguments

Normally, Tcl passes arguments as values (as opposed to by reference) into functions. 
TyCL continues with this practice but only for the basic types: integer, float,  boolean, 
char  and reference,  all the rest of types are passed by reference, which means that they 
can be modified by the function's body when it is executed.  The only way to avoid this 
behavior is to create a copy of the data that is going to be passed by using one of the  
following commands:

◦ copy: creates a new value by copying the first layer of data from the source. 
As an example:

set a list: {1 2 list:{x y z} 3}
set b [copy $a] ;# b = {1 2 {x y z} 3} 

 # {x y z} refers to the same list for a and b

◦ clone: creates a new value by copying all data from the source.  Again, as an 
example:

set a list: {1 2 list:{x y z} 3}
set b [clone $a] ;# b = {1 2 {x y z} 3} 

 # {x y z} is a different list from a's 

• The object-oriented system

TyCL includes a native object-oriented system based on prototypes rather than classes. 
The base type for this  kind of data is  the type:  object,  which builds the  objects as a 
collection of named-variables implemented as hash-maps within a hash-table.  When a 



member is needed, first is searched inside the object's hash-table, if the member is not 
found then is searched inside its prototype (if the object has a prototype) and so long until 
there is no prototype to follow.   When a new member is added, such member is inserted 
into the object's hash-table without following its prototype.  
Objects are composed by members of  two kinds: variables and methods. Variables are 
declared as:

VARIABLE_NAME VALUE ;# for regular variables
TYPE:VARIABLE_NAME VALUE ;# for typed-variables

and methods are declared as:

~METHOD_NAME PARAMETERS BODY

the character: '~' at the beginning of the method's name indicates that the member is going 
to  be a method instead of a variable, also sets the member as function-typed, which 
means  that  only  its  body  can  be  changed  later  on  but  not  its  general  description 
(parameters  and  return  type).  There  is  another  way  of  declaring  methods  with  the 
difference  that  methods  described  in  this  way can  be  changed  for  anything  after  its 
declaration, they even can become variables, such syntax is:

METHOD_NAME [proc PARAMETERS BODY] ;# by using an anonymous function 

The  syntax  for  creating/declaring  an  object  is  like  the  following  example,  where  an 
object: square is created with 4 members (3 variables and 1 method/function):

set square object:{
color “red” ;# a regular variable
float:width 12 ;# this is a typed-variable
float:height 9 ;# another typed-variable
~area {} { ;# this is a method

return [expr $my.width * $my.height]
}

}

After  the object  is  created,  new members can be added into the object,  variables  are 
added  by  using  the  commands:  set or  define, and  methods  are  created  using  the 
command: proc, for example:

set square.outline false ;# a new variable: outline was added

proc square.maxside {} { ;# new method: maxside
if {$my.width > $my.height} {

return $my.width
}
return $my.height

}



In  case  that  the  program would  like  to  modify the  square  object,  it  could  do  so  by 
applying the modifications directly into the square object or by creating  a new one and 
having square be its prototype, in this last case, the code could be like:

set mysquare object:{
prototype $square

~area {{magnification 1.0}} {
set a [next]
return [expr $a * $magnification]

}
}

Now we have a new object:  mysquare whose prototype is the previous:  square and its 
method: area has been extended to handle a magnification value to be multiplied to the 
calculated  total  area,  which  is  actually  computed  by the  area method  owned  by the 
square object (called by using the command: next)

• Scope and accessing variables, fields, function and methods

Currently, Tcl has few variable's scopes, there is global (variables defined at the root level 
in  the  stack  and accessed  via  the  global command  inside  functions),  local  (accessed 
directly inside functions and namespaces) and namespace's scopes (accessed directly or 
by providing its namespace path).  TyCL supports the global and local scopes but not 
namespaces yet, however the syntax to reference such variables is a bit different.

◦ Local variables
In this case TyCL follows exactly what Tcl does, it supports local variables inside 
any  functional  block  (functions  and  methods)  and  they  are  accessed  by  the 
variable's names like Tcl does.

◦ Global variables
These variables, as previously mentioned, are variables created at the root of the 
calling stack, TyCL has its own way to reference this variables from any part of 
the program without  using the command:  global (as  Tcl does)  but  by using a 
different way to write their names at the moment where their data is needed, more 
exactly: by prefixing the name with a dot (.), thus, any access to a variable that 
starts with a dot means that TyCL has to search for that particular variable in the 
global scope, for example:

set a 4 ;# global variable

proc foo {x} {
set .a $x ;# the global 'a' is accessed

}



foo 99 ;# actually: 'a' is set to the value: 99

◦ Object's members
As objects have their own set of members (variables and methods), they can be 
accessed by joining the object's name and the variable's name with a dot (.) and by 
following the previous rules if the object is a global object or a local one.  If the 
access to a member is present inside one of its own methods, a new prefix: 'my' 
must be used to indicate that such member is present inside itself.

So, as an example, the following code creates an object 'a' with a method count 
that shows how many times this method have been called:

set a object:{
x 0
~count {} {

incr my.x 1 ;# access to a.x
puts “call number: $my.x” ;# access to a.x

}
}

a.count ;# It should print: 'call number: 1'
a.count ;# It should print: 'call number: 2'

◦ Struct's and union's fields
Just like objects, the fields of any struct or union are referenced by following the 
same previous rules, thus for an struct, a short example could be like:

set point struct:{
float:x
float:y

}

set point.x 88 ;# access to point's field: x
set point.y 314 ;# access to point's field: w

• Indexes and Ranges

A new syntax was created to handle indexes an ranges for data-types that support them, 
which account for all except objects and structs. Their syntax is:

VARIABLE_NAME(INDEX) ;# for indexes
VARIABLE_NAME(INITIAL_INDEX .. FINAL_INDEX) ;# for ranges



their functionality is conditioned by the data-type of the operated variable as:

◦ Integers: gets or sets particular bits.
◦ Floats: gets or sets particular bits.
◦ Boolean: gets or sets bits, but the complete values is stored always as  0 or 1.
◦ Chars: gets or sets particular bits.
◦ Strings: gets or sets particular characters.
◦ Arrays: gets or sets particular values.
◦ Lists: gets or sets particular values.
◦ Groups: gets or sets particular values.

Additionally to its general use, indexes can also be used to insert, append or remove items 
within a variable's content (although not all data-types support this behavior) by using the 
following syntax:

set VARIABLE_NAME(*INDEX) VALUE ;# inserts the value before index
set VARIABLE_NAME(INDEX*) VALUE ;# inserts the value after the index

if the index is -1, it references the las item in the content, thus an append would be written 
as:

set VARIABLE_NAME(-1*) VALUE ;# this is an append

if the value is the null value, the operation is actually a remove operation.

The WordCode-Generator

As previously mentioned, the WC-Generator (WCG) takes the created TIR tree by the lexical-
parser and converts it in a series of binary codes composed by chunks 32-bits wide each which 
contains TyCL's virtual machine opcodes, indexes to the literals table and inline values to name a 
few.  The WordCodes are able to handle 0, 1 or 2 8-16-32-64-bit operands depending on the 
opcode's needs, thus the minimum size of a WordCode is 4-bytes (0,1 or 2 8-bit operands) and its 
maximum size is 20-bytes (2 64-bit operands).  The format for each WordCode varies between 
opcodes but a generalization can be made as follows:

FULL OPCODE
(32-bit)

OPERAND
(32-bit)

OPERAND
(32-bit)

OPERAND
(32-bit)

OPERAND
(32-bit)

OPCODE
(12-bit)

OSIZE
(4-bit)

L-OP
(8-bit)

R-OP
(8-bit)

optional optional optional optional

Table 2. General description of a WordCode



Basically, a WordCode (WC) is composed of a full-opcode followed by 0, 1, 2, 3 or 4  32-bit 
operand values, depending on the actual opcode located at the highest 12-bits of the full-opcode 
and its 4-bit  OSIZE field,  which is composed by two 2-bit values that indicates each operand's 
current size like this:

L-OSIZE or R-OSIZE
(2-bit)

 Operand's size (L-OSIZE referes to the left operand and R-OSIZE to 
the right operand)

0 0 8-bits

0 1 16-bits

1 0 32-bits

1 1 64-bits

Table 3. Operand's size descriptor values

As it would be expected, there are some special WCs  intended for jumps (including conditional 
jumps) that may use the OSIZE in conjunction with L-OP and R-OP to create a single 20-bit 
value. 

The Virtual Machine (VM)

Like  any  other  virtual  machine,  it  walks  through  the  WCs,  decoding  and  executing each 
instruction and manipulating the variables and values, which at the moment are kept in memory 
with  memory manager  and a garbage-collector based on reference-counting[6],  using  the data 
structures described  in figure 2.

  
Figure 2. General diagram of the data structures for variables and values.
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The Machine-Code-Generator

This stage, at the moment, just translates the WordCodes into machine-codes using a series of 
previously defined tables, almost like writing in native-code what the VM needs to do in order to 
process a particular WC.  This solution is only temporal and was developed in this way in order 
to minimize the developing time of the initial iterations of the compiler.

Conclusion

Even though, writing a compiler for a very dynamic language like Tcl is a very difficult and time 
consuming task, its benefits surely pay for all the pain that one have to suffer in the process.  The 
inclusion of types as first class-citizens into the syntax and the language in general, at the end, 
not  only  should help  the  compiler  produce  better  results  but  helps the  programmer  also  by 
providing a way to reduce bugs due to data-type collisions or invalid-values.  

By having TyCL written  in  itself,  it  minimizes  the  dependencies  on other  components  (like 
external compilers or linkers), avoids the need to handle two different languages (one for the 
coding of the compiler itself and the language that the compiler process) and allows to reuse any 
improvement made in the compiler on itself and on the applications it builds.
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