

TyCL

An interpreter/compiler of a typed language
implementation of Tcl/Tk

Andres Buss

Otlet Technologies

Overview
TyCL short description

The architecture

The type system

The parser and TyCL's syntax

The WordCode Generator (very briefly)

The MachineCode Geneator (very briefly)

Status and conclusions

What is TyCL

Why TyCL?

Main goals

Description

Architecture

TyCL
Source
code

Application

Lexical
Parser

TIR
Binary

Tree+Tables

WordCode
Generator

WordCode
Binary MachineCode

Generator

Virtual
Machine

Machine
Binary
code

Code+Tables

Architecture

TyCL
Source
code

Application

Lexical
Parser

TIR
Binary

Tree+Tables

WordCode
Generator

WordCode
Binary MachineCode

Generator

Virtual
Machine

Machine
Binary
code

Code+Tables

TIR
Optimizations

Lexical
Parser

WordCode
Optimizations

MachineCode
Optimizations

Needed for better description of data to the
compiler

Optional

Should bring better results in performance and
memory usage

The Type system

Reads the source code and:

● Detects syntax errors (by file, line and pos.)
● Generates the TIR

TIR = TyCL-Intermediate-Representation

Can process “mostly” all Tcl's syntax

The lexical-parser

What TyCL understand that Tcl don't

The type system

Every value has a type (nothing new here)

Basic data-types:
Integer, float, boolean, char, string

reference

Types can be explicitly declared by casting
values

TyCL's Syntax

TYPE:VALUE

set a 7 ;# auto-detected integer = 7
set b integer:”456” ;# integer = 456
set c true ;# auto-detected boolean = true
set d ”false” ;# auto-detected string = 'false'
set e boolean:”false” ;# boolean = false
set f boolean:45 ;# boolean = true
set g 3.1415 ;# auto-detected float = 3.1415
set h float:3.4 ;# float = 3.4
set i float:{56.8576} ;# float = 56.8576
set j char:w ;# char = 'w'
set k char:67 ;# char = 'C'
set l hello ;# default-detected string = 'hello'
set m “hello world” ;# auto-detected string = 'hello world'
set n string:6.28 ;# string = '6.28'

TyCL's Syntax - Casting

Regular variables:

set VARIABLE_NAME VALUE
set VARIABLE_NAME TYPE:VALUE

Typed variables:

define VARIABLE_NAME VALUE
define VARIABLE_NAME TYPE:VALUE

TyCL's Syntax – Typed Variables

allows a variable to reference another one in a
transparent way

let VARIABLE_NAME
let VARIABLE_NAME VARIABLE_NAME

set a 4 ;# variable a = 4
let b a ;# variable b refers to a
let c b ;# variable c refers to b
set c 9 ;# setting c = 9 actually sets:

 # a = 9 because:c → b → a

TyCL's References

For collections of values

Values of different type

Values of the same type

Collections with static size

Collections with fixed size

Collections with variable/dynamic size

TyCL's Structural types

Implemented as an ordered collection of values with
a fixed quantity of items

set a array:4 ;# array definition of length = 4
 # composed by values of any type

set b array:{3 integer} ;# typed-array
 # definition of length = 3
 # composed by integer
 # values

set c a:{44 “hello” 0 5.8} ;# array of length = 4

set d b:{1 2 3} ;# typed-array of integers of
 # length = 3
 # with values = {1 2 3}

TyCL's Arrays

As Tcl's lists. The only difference is that the parser
doesn't imply/convert lists automatically, they have to

be explicitly declared

set w list:{a b c {1 2 3} d e} ;# without the
 # explicit cast
 # to a list, 'w' would have
 # been handled as string

TyCL's Lists

are really typed-valued-lists, they can increase or
decrease their size dynamically but only can hold

values of the same declared type

set a group:float ;# group definition composed
 # by values of type: float

set b a:{2.1 0 5.4} ;# a group of floats

TyCL's Groups

a collection of values with fixed types and order,
and that uses an specific amount of memory (just

as the C-language define them)

TYPE:ITEM_NAME

set rectangle struct:{
float:h ;# height component, type = float
float:w ;# width component, type = float
integer:color ;# color, defined as an integer

}

set r1 rectangle:{12.3 9.65 255} ;# r1 = rectangle
 #struct

TyCL's Structs

are basically structs whose values share the same
physical space, thus having a footprint defined by

the value whose type uses the most amount of
memory

set data union:{
integer:i
float:f
boolean:b

}

The variable: data can hold values of type integer, float or
boolean when its items: i, f and b are accessed

TyCL's Unions

Are like Tcl normal functions/procedures

proc add {a b} {
return [expr $a + $b]

}

But, there could be anonymous functions also:

set add [proc {a b} {
return [expr $a + $b]

}]

TyCL's Functions

 proc add {integer:* integer:a integer:b} {
return [expr $a + $b]

}

The special parameter '*' actually refers to the
return type of the function. If by any chance a
return call tries to pass a value with a different
expected type, an exception should be thrown.

TyCL's Functions with typed
parameters

proc add {integer:* {integer:a 0} {integer:b 0}} {
return [expr $a + $b]

}

in order to allow principally anonymous functions to
call themselves (recursion), the special function
name: 'self' was added to the syntax, which refers to
the function being executed (named or anonymous).

TyCL's Functions with typed
parameters and default values

only the basic types: integer, float, boolean, char
and reference are passed as values, all the rest of
types are passed by reference

The copy command:

set a list: {1 2 list:{x y z} 3}

set b [copy $a] ;# b = {1 2 {x y z } 3}
 # {x y z} refers to the same list for a

and b

TyCL's Functions arguments

only the basic types: integer, float, boolean, char
and reference are passed as values, all the rest of
types are passed by reference

The clone command:

set a list: {1 2 list:{x y z} 3}

set b [clone $a] ;# b = {1 2 {x y z} 3}
 # {x y z} is a different list from a's

TyCL's Functions arguments (cont.)

TyCL includes a native object-oriented system
based on prototypes rather than classes.

The base type for this kind of data is the type:
object.

objects are a collection of named-variables
implemented as hash-maps within a hash-table.

TyCL's Object-Oriented System

When a member is needed, first is searched
inside the object's hash-table, if the member is not
found then is searched inside its prototype (if the
object has a prototype) and so long until there is
no prototype to follow.

When a new member is added/modified, such
member is inserted into the object's hash-table
without following its prototype

TyCL's Object-Oriented System (cont)

 Objects are composed by members of two kinds:
variables and methods

Variables are declared as:

VARIABLE_NAME VALUE ;# for regular variables
TYPE:VARIABLE_NAME VALUE ;# for typed-variables

and methods are declared as:

~METHOD_NAME PARAMETERS BODY

TyCL's Object-Oriented System (cont)

 There is another way of declaring methods with
the difference that methods described in this way
can be changed for anything after its declaration,

they even can become variables

METHOD_NAME [proc PARAMETERS BODY]
by using an anonymous function

TyCL's Object-Oriented System (cont)

An example:

set square object:{
color “red” ;# a regular variable
float:width 12 ;# this is a typed-variable
float:height 9 ;# another typed-variable
~area {} { ;# this is a method

return [expr $my.width * $my.height]
}

}

TyCL's Object-Oriented System (cont)

Another way to populate objects:

set square.outline false
a new variable: 'outline' was added

proc square.maxside {} {
new method: maxside
if {$my.width > $my.height} {

return $my.width
}
return $my.height

}

TyCL's Object-Oriented System (cont)

Creating a new object from another:

set mysquare object:{
prototype $square
~area {{magnification 1.0}} {

set a [next]
return [expr $a * $magnification]

}
}

TyCL's Object-Oriented System (cont)

TyCL supports the global and local scopes but not
namespaces yet, however the syntax to reference

such variables is a bit different

Local variables:

They are just as Tcl's ones

Accessed inside execution blocks only

TyCL's Scopes & data access

Global variables:

variables created at the root of the calling stack

TyCL has its own way to reference this variables
from any part of the program without using the
command: global (as Tcl does)

by prefixing the name with a dot (.)

TyCL's Scopes data & access (cont)

Global variables (example):

set a 4 ; # global variable

proc foo {x} {
 set .a $x ; # the global 'a' is accessed
}

foo 99 ;# actually: 'a' is set to the value: 99

TyCL's Scopes & data access (cont)

Object's members:

As objects have their own set of members
(variables and methods), they can be accessed by
joining the object's name and the variable's name
with a dot (.) and by following the previous rules if
the object is a global object or a local one.

If the access to a member is present inside one of
its own methods, a new prefix: 'my' must be used
to indicate that such member is present inside
itself

TyCL's Scopes & data access (cont)

Object's members (example):

set a object:{
x 0
~count {} {

incr my.x 1 ;# access to a.x
puts “call number: $my.x” ;# access to a.x

}
}

a.count ;# It should print: 'call number: 1'
a.count ;# It should print: 'call number: 2'

TyCL's Scopes & data access (cont)

Struct's and Union's fields:

 Just like objects, the fields of any struct or union
are referenced by following the same previous

rules

set point struct:{
 float:x
 float:y
}

set point.x 88 ;# access to point's field: x
set point.y 314 ;# access to point's field: w

TyCL's Scopes & data access (cont)

 A new syntax was created to handle indexes an
ranges for data-types that support them, which

account for all except objects and structs

for indexes
VARIABLE_NAME(INDEX)

for ranges
VARIABLE_NAME(INITIAL_INDEX .. FINAL_INDEX)

TyCL's Indexes and Ranges

Integers: gets or sets particular bits.
Floats: gets or sets particular bits.
Boolean: gets or sets bits, but the complete

 values is stored always as 0 or 1.
Chars: gets or sets particular bits.

Strings: gets or sets particular characters.
Arrays: gets or sets particular values.
Lists: gets or sets particular values.
Groups: gets or sets particular values.

TyCL's Indexes and Ranges (cont.)

Using indexes to insert, append replace data

inserts the value before index
set VARIABLE_NAME(*INDEX) VALUE

inserts the value after the index
set VARIABLE_NAME(INDEX*) VALUE

if the index is -1, it references the last item in the content,
thus an append would be written as:

set VARIABLE_NAME(-1*) VALUE ;# this is an append

if the value is the null value, the operation is actually a
remove operation.

TyCL's Indexes and Ranges (cont.)

The WordCode Generator

TyCL
Source
code

Application

Lexical
Parser

TIR
Binary

Tree+Tables

WordCode
Generator

WordCode
Binary MachineCode

Generator

Virtual
Machine

Machine
Binary
code

Code+Tables

The WordCode Generator

WordCode format:

32-bit binary chunks

OPCODE
(32-bit)

OPERAND
(32-bit)

OPERAND
 (32-bit)

OPERAND
 (32-bit)

OPERAND
 (32-bit)

Opcode
12-bit

Osize
4-bit

L-Op
8-bit

R-Op
8-bit

The MachineCode Generator

TyCL
Source
code

Application

Lexical
Parser

TIR
Binary

Tree+Tables

WordCode
Generator

WordCode
Binary MachineCode

Generator

Virtual
Machine

Machine
Binary
code

Code+Tables

Status and conclusions

The project is just starting

A lot of work still have to be done

It only “works” on Linux X86

It could be an interesting platform to play with

That's it...

Any help is welcome!!!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

