
A bytecode assembler for Tcl

Ozgur Dogan Ugurlu*

University of San Francisco, San Francisco, CA
dogeen@gmail.com

Kevin B. Kenny
GE Global Research Center, Niskayuna, NY

kenny@ge.com
Abstract. Tcl, like most dynamic languages, operates by compiling its programs to an intermediate 
language (“bytecode”) that is executed by an interpreter. This paper presents an assembler for the Tcl 
bytecode  language.  Prior  to  the  development  of  the  assembler,  a  Tcl  program  could  generate 
bytecode only from Tcl scripts (or from C code using unpublished interfaces in the Tcl core). With 
the advent of the assembler, a Tcl script can generate specified bytecode directly. This ability should 
enable readier experimentation with compile-time optimizations, with targeting other languages onto 
the Tcl bytecode engine, and with trading off Tcl's dynamic nature for speed of execution. Some of 
the challenges faced in developing the assembler are presented, and some preliminary observations 
about the performance that can be gained from assembly code are made.

1 Introduction
Tcl,  like  most  dynamic  computer  languages, 
interprets  its  programs  in  two  phases.  In  the 
first  phase,  the  code  is  compiled  to  an 
intermediate language (“bytecode”), and in the 
second,  a  virtual  machine  interprets  the 
bytecode  produce  the  program's  results.  The 
translation  of  Tcl  commands  to  bytecode 
happens late in the proceeding – usually at the 
first  time  that  a  procedure  is  called,  or  even 
later – and the bytecode compiler is extremely 
conservative.  For  instance,  it  is  careful  to 
preserve source code for  recompilation in  the 
event  that  a  core  command  like  [set] or 
[for] is  redefined  while  the  code  is 
executing.  Because  of  this  conservatism,  the 
bytecode is often not as efficient as it might be. 
Moreover,  since  evaluating  Tcl  scripts  is  at 
present the only means of generating bytecode, 
it  is  difficult  for  people  to  experiment  with 
different  compilation  strategies  or  with 
targeting  other  languages  into  Tcl's  bytecode 
interpreter.

This  paper  presents  an  assembler  that  will 
aceept an abstract  representation of bytecodes 
in  a  Tcl-like  syntax  and  prepare  them  for 
evaluation  in  Tcl.  This  assembler  is  the  first 
time that bytecode has been exposed at a user 
level (even in C!) and is expected to open the 
door to experimentation with the engine.

Section  2  presents  a  brief  overview  of  Tcl's 
bytecode  language.  Section  3  discusses  the 
internal  programming  interfaces  that  support 
the compilation of scripts and expressions, and 
how they are  adapted  to  processing assembly 
language.  Section  4  presents  the  assembly 
language notation in brief. Section 5 discusses 
some of the problems that the assembler must 
solve in order to generate code that will execute 
safely in the execution engine. Section 6 goes 
into  more  detail  about  potential  uses  of  a 
bytecode assembler, including some estimation 
of  the  performance  difference  between 
handwritten assembly code and Tcl. Section 7 
discusses the work that remains to be done, and 
Section 8 presents some conclusions.
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2 How Tcl bytecode works.
The Tcl bytecode interpreter is an abstract stack 
machine, akin to Forth or PostScript. All of its 
instructions  work by moving operands to  and 
from  an  operand  stack.  The  commonest 
instructions  move  constants  and  variables  to 
and from the stack, or remove operands from 
the  stack  and  replace  them  with  results.  For 
example, the Tcl code:
set x [expr {$x * 2}]

might compile to bytecode like:
load x; # move $x to top of stack
push 2; # push “2” on top of stack
mult;  # multiply top two stack
 # elements. Replace with

# product.
store x;# put top of stack in $x
pop; # discard top of stack

As  the  just-in-time  compiler  is  processing  a 
script  to  produce  bytecodes,  it  tracks  what 
distinct constants are present in the script, and 
places  them  in  an  array  of  Tcl_Obj  pointers 
called the “literal pool.” (There is one instance 
of the literal pool per bytecode compilation; in 
practice,  this  translates  very  nearly  to  one 
instance per procedure.) The push instruction, 
in the actual bytecode, contains the index in the 
current compilation's literal pool of the constant 
to be stored on the stack.

In a similar way, the compiler maintains a table 
of  local  variables  known  in  a  procedure.  A 
variable whose name is known at compile time 
can  be  addressed  by  index  into  the  local 
variable  table:  the  load instruction  in  the 
bytecode above gives the variable's index in the 
local variable table. In addition to these tables, 
there  are  several  other  tables  that  can  be 
addressed, that hold auxiliary data for complex 
instructions,  “exception  ranges”  (which 
describe the locations to which break, continue, 
and errors will  divert  control  flow in a  given 
block of code), and commands. Commands are 
present in order to identify places where code 
must  be  recompiled  if  the  definition  of  a 

command changes on the fly,  (for instance,  if 
user  code  redefines  or  overloads  a  core  Tcl 
command). 

Most  of  the  bytecode  instructions  come  in 
multiple  varieties.  First,  there are  usually two 
sizes  of  operand:  1-byte  (useful  for  short 
indices  into  the  literal  pool  and  the  constant 
table)  and  4-byte  (for  when  the  tables  grow 
large enough that one byte will not suffice). In 
combination  with  these,  instructions  that 
operate  on variables  generally come in  scalar 
(for when an operand is completely known at 
compile time – and known to be local  to  the 
procedure), array (for where an array name is 
known,  but  the  array  key  is  not),  stack  (for 
when a scalar's name cannot be determined at 
compile  time,  for  instance  for  Tcl  code  like 
[set  $x]),  and  array-stack  (the  most 
complicated  case,  used  to  access  dynamically 
named  or  non-local  arrays)  variants.   A few 
instructions  also  allow  for  immediate  data 
operands as opposed to having all their data on 
the stack.

Control  transfers  take  the  form of  jumps and 
conditional  jumps  jumpTrue and 
jumpFalse.  The latter  consume an operand 
from the  stack  and  decide  whether  or  not  to 
jump based  on whether  or  not  its  is  equal  to 
zero. There is also an invoke instruction that 
calls a Tcl command, break,  continue and 
done instructions that escape an inner context 
to an outer one (using the exception range table 
to  determine  where  to  go),  and  a  set  of 
operations for returning and throwing errors.

Most if not all of the math operations and built-
in  functions  in  expressions  have  bytecode 
instructions  that  support  them;  all  of  these 
instructions work by consuming some number 
of  operands  from  the  stack  and  producing  a 
single result.

In addition, there are highly complex operations 
that manage things like [foreach] loops and 
[dict update] blocks.  These instructions 
frequently  reference  elaborate  data  structures 
stored in the “auxiliary data” arrays.



All  told,  there  are  about  150  different 
instructions  in  the bytecode engine.  More get 
added with every Tcl release.

For a more comprehensive explanation of Tcl 
bytecode execution, see [LEWI96]. 

3 How compilation works.
Tcl  scripts  are  compiled  as  late  as  possible: 
generally,  for  instance,  a  procedure  body  is 
compiled when the procedure is first invoked. A 
script  is  compiled  by  breaking  it  apart  into 
commands (and comments, which are ignored), 
breaking  the  commands  into  words,  and 
breaking the words into tokens (which may be 
constant  strings,  or  variable,  command  or 
backslash substitutions). The parsing interfaces 
that the compiler uses are also exported at the C 
level from the Tcl library.

Code  generation  is  orchestrated  in  a  data 
structure  called  a  CompileEnv.   This 
structure  manages  a  group  of  dynamically 
resizable  arrays  that  hold  the  bytecodes,  the 
literal  pool,  the  local  variable  table,  the 
exception and command ranges, and so on.

When  a  script  is  being  compiled,  if  the 
compiler  encounters  a  built-in  command  that 
has a “compilation procedure” associated with 
it, it invokes the compilation procedure, passing 
it  the  arguments  to  the  command  (in  a 
Tcl_Parse structure)  and  the  compilation 
environment.  Commands  such  as  [if] and 
[for] will then invoke the parser recursively 
to parse embedded expressions and scripts. 

Because of Tcl's dynamic nature, a parse error 
in an individual command does not prevent the 
entire script from being compiled. Instead, code 
is  inserted  to  invoke the  uncompiled  form of 
any  command  whose  compilation  procedure 
reports  an  error.  If  something  changes  before 
the direct invocation is called (for instance, the 
command  is  redefined),  the  direct  evaluation 
will still succeed.

The  fact  that  there  is  a  fallback  to  direct 
evaluation  means  that  not  all  commands' 
compilation procedures can handle all cases. In 
complicated situations, a compilation procedure 
can “throw up its hands,” and defer the problem 
to  run  time.  This  technique  is  necessary,  for 
instance, to handle unbraced expressions, where 
the correct parse cannot be determined until the 
results  of  command  and  variable  substitution 
are known.

The  assembler  fits  into  this  structure  by 
defining  an  [assemble] command  in  the 
tcl::unsupported namespace.  This 
command's compilation procedure emits inline 
code  into  the  bytecode  of  the  script  that 
contains  the  [assemble] call.  In  the  event 
that  the  assembly code  cannot  be parsed,  the 
run-time  command  creates  a  fresh 
CompileEnv and tries again at run time. Only 
this  second  attempt  will  report  an  ultimate 
failure.

4 The assembly language
The  assembler  uses  the  same  parser  as  Tcl 
itself,  so the assembly language has the same 
fundamental  syntax  as  Tcl.  Because  the 
assembly  language  is  simpler,  several  things 
that can appear in a parsed Tcl script (namely, 
variable  and  command  substitutions,  and  {*} 
expansion)  simply  are  reported  as  errors. 
Comments,  separation  of  commands  with 
semicolons and newlines, joining of lines with 
terminal  backslashes,  and  quoting  all  follow 
exactly the same rules as Tcl, so the syntax of 
assembly  code  should  be  familiar  to  a  Tcl 
programmer.

Since  the  compilation  environment  is  shared 
between the assembly code and the containing 
script,  local  variables  and  the  current 
namespace are the same for both. The sharing 
of the compilation environment also allows for 
mixing of languages, as we shall see below.

Each  'command'  in  the  assembly  code 
represents a single bytecoded instruction. As a 



convenience  to  the  programmer,  one  source 
instruction may map into a choice of bytecodes, 
so  the  assembly  programmer  need  not  worry 
about the correct  choice of operand sizes and 
addressing modes.

A few “operations”  are  provided  that  do  not 
correspond to bytecode instructions. The most 
significant of these are label, which defines a 
symbolic  name  for  the  current  instruction 
pointer, so that jump instructions can refer to it, 
and two language-mixing primitives, eval and 
expr. 

When  eval appears  in  the  source  text,  its 
operand  (which  must  be  a  constant  string)  is 
interpreted  as  a  Tcl  script,  by calling  the  Tcl 
script  compiler  recursively  in  the  same 
compilation environment. Of course, the script 
can share the same variables and appears in the 
same  namespace  as  the  assembly  code.  (The 
result  at  runtime  is  that  nothing  is  consumed 
from the stack and the script's result is pushed 
to  the  stack.)  Similarly,  expr results  in 
compiling  a  Tcl  expression  (again,  a  constant 
string) and pushing its result to the stack.

This language mixing means that code can be 
written in the language most appropriate to the 
problem.  Where  a  given  source  notation  is 
particularly  convenient  (for  example,  infix 
expressions),  the  programmer  can  simply 
switch  languages.  The  power  of  all  three 
notations  (arithmetic  expressions,  Tcl  scripts, 
and bytecode assembly) is captured in a single 
package. (To be fair, this idea was anticipated 
in  the  compiler  for  the  L  programming 
language [BONI06].)

Literals  and  variables  are  added  to  the  local 
tables  as  they are  encountered,  and a  symbol 
table  is  maintained  of  jump  labels.  The 
assembler  runs  in  a  single  pass;  jumps  to 
undefined  labels  are  emitted  as  4-byte  jumps 
(because the jump displacement is not known in 
advance) and the address of the jump target is 
filled in when the label is encountered.

5 Challenges faced with the 
assembler

Fitting the assembler into the Tcl compilation 
system,  which  was  not  designed  for  user 
extension,  involved  some  interesting 
challenges.  Among  these  were  stack 
management and the possibility of instructions 
for which correct code cannot be generated.

5.1 Stack management
Tcl's  execution  system  preallocates  space  for 
the operand stack, so that individual push and 
pop operations do not need to check for stack 
overflow.  The  way  it  does  this  is  that  each 
bytecode  sequence  is  expected  to  assert  the 
maximum number of operands that it  can put 
on  the  stack.  In  assembly  code,  which  shifts 
operands  onto  and  off  the  stack  freely 
interspersed  with  jumps,  this  depth  can  be 
difficult to determine.

Moreover,  assembly code  that  unbalances  the 
stack  could  crash  the  interpreter  quite  easily. 
For these reasons, we decided early on that the 
assembler  will  require  a  comprehensive 
analyzer for maximum stack consumption and 
for  stack  safety.  It  works  according  to  the 
following outline:

1. It  partitions  the  program into  a 
series of “basic blocks”: segments of 
code that  are  executed sequentially 
without jumps. Any appearance of a 
jump  in  a  program ends  the  basic 
block  in  which  it  appears;  any 
appearance of a label begins a new 
basic block, since the label is at least 
a potential jump target.

2. As  code  is  generated,  the 
checker  updates  the  stack 
requirements of the basic blocks. It 
tracks three numbers: the high water 
mark  (the  maximum  number  of 



stack  elements  that  the  block  may 
have  pushed),  the  low  water  mark 
(the minimum stack depth – which 
may be negative if a block of code 
begins by consuming operands), and 
the  net  effect  (the  difference 
between the stack depth on entry to 
and exit from the block).

3. After  all  code  is  generated,  the 
checker  begins  at  the  entry  to  the 
assembly program, and visits  basic 
blocks  in  a  depth-first  traversal  of 
the  control  flow graph.  Each basic 
block  has  zero,  one  or  two 
successors: zero if it is a return (or, 
in some cases, a break, continue or 
error);  one  if  it  ends  with  an 
unconditional  jump  or  execution 
falls  off  the  end  without  jumping, 
and two if it ends with a conditional 
jump (the succeeding block, and the 
jump target). As it walks the graph, 
it uses the net effects to compute the 
stack depth on entry to every block 
other than the first.

4. If  a  block  in  the  traversal  is 
already visited, the stack depths are 
checked for consistency.  If  a block 
can  be  arrived  at  by  two  different 
paths  through  the  code  that  have 
different net effect on the stack, an 
error  is  reported.  If  a  block  is  not 
visited,  its  stack  depth  on  entry  is 
recorded  and  its  successors  are 
visited  recursively.  The  low  water 
mark  is  also  examined,  to  guard 
against  rogue  assembly  code 
underflowing  the  stack.  The  high-
water mark for stack consumption is 
also tracked.

5. Once  all  blocks  have  been 
visited,  low  and  high-water  stack 
commitments are known. The stack 

depth at the end of the exit block is 
the  net  effect  on  the  stack  of  the 
assembly  code.  It  is  enforced  that 
assembly  code,  like  any  other  Tcl 
command, leaves a single result on 
the stack.

Since stack effects  are monitored closely,  and 
since  the  assembler  generates  no  unchecked 
memory  addresses  (a  program,  for  instance, 
cannot access outside the bounds of the literal 
pool or local variable table), it may turn out that 
the assembler always generates “safe” code in 
the sense that it will not cause pointer smashes 
in  the  Tcl  interpreter.  Nevertheless,  until  we 
have more user experience with it, the plan is to 
have  it  remain  in  the  tcl::unsupported 
namespace. (Translation: If it breaks, you own 
both pieces.)

5.2 Impossible instructions
There  are  several  situations  in  which  a 
sequence  of  assembly  code  will  contain  an 
instruction  for  which  it  is  impossible  to  emit 
correct  code.  The  first  of  these  occurs  if  the 
[assemble] command is invoked at runtime, and 
an operation tries to use a local variable table 
slot for a previously unseen variable. The LVT 
is  not  resizable,  and  therefore  the  variable 
cannot be converted to a slot number. (Another 
case  that  arises  is  that  the  'increment' 
instructions, puzzlingly, require the variable to 
be  in  one  of  the  first  256  slots  of  the  LVT 
because they lack 4-byte variants.) Finally, it is 
possible  that  a  programmer  simply  inserts  a 
reference to a namespace-qualified variable that 
cannot appear in the LVT.

In all of these cases, the correct thing to do is to 
put the variable name on the stack and then use 
a  stack-based  operation  to  manipulate  it.  The 
problem is that for array operations, the correct 
order  of  operations  is  that  first  the  variable 
name and then the key should be pushed; for 
stores,  appends  and  increments,  there  is  an 
additional  operand  that  must  also  follow  the 
variable  name.  Since  it  isn't  possible  to  “go 



back in time” and insert the push of the variable 
name when it was actually needed, the next best 
thing is to generate code to reorder the stack to 
put the operands in the correct sequence even 
when the variable name arrives late. This will 
result  in  silently  generating  additional 
instructions, but will at least yield correct code.

We  have  not  yet  attempted  to  deal  with 
impossible  instructions,  and  instead  report 
errors  when  they  are  encountered.  (It  is 
generally  fairly  simple  to  code  around  the 
problems  by  inserting  the  stack  operations 
explicitly.)  The  automated  recovery  from 
impossible instructions may be implemented by 
the time you read this.

6 What's the assembler good 
for?

An assembler is of primary use as the backend 
of  a  compiler,  either  a  compiler  for  a  new 
language, or object-code transformations on Tcl 
itself  (for  optimization,  code  instrumentation 
for profiling and callgraph analysis, and so on. 
Having the assembler available within the Tcl 
system allows bytecode to be generated from a 
very-high-level  language  such  as  Tcl,  rather 
than needing to resort to C code that is intimate 
with Tcl's execution system.

6.1 Performance and benchmarks
The  chief  reason  that  people  have  been 
interested in an assembler is performance. The 
dynamic nature of the Tcl language has made it 
difficult  to generate really good code from it. 
(Too  much  can  change  between  compilation 
and  execution).  The  problem  of  radical 
language change on the fly substantially limited 
early  attempts  such  as  [ROUS95] to  compile 
Tcl to machine code, even after heroic attempts 
([ROUS97]) to use type inference to constrain 
the problem. Assembly code can bypass all the 
expensive  runtime  checks  that  are  needed  to 
ensure that compiled code remains valid even 
in the face of such radical changes. 

Other  languages,  as  well,  can  target  the  Tcl 
execution  engine,  and  in  fact,  several  other 
languages  have  been  designed  ([SAH94], 
[BONI06]) that constrain the dynamic nature of 
Tcl  to  achieve  better  performance  while  still 
targeting the same execution engine.

The  folklore  in  the  Tcl  community  has 
predicted  that  optimization  at  the  bytecode 
level is likely to give disappointing results. The 
bytecodes,  the  pundits  have  said,  are  close 
enough  to  being  precise  counterparts  to  Tcl 
commands that little room for modification of 
the  code  sequences  is  actually  available.  Of 
course, without an assembler, there was no way 
to test this hypothesis. Given the assembler, we 
can attempt a benchmark to test how much we 
can improve a representative Tcl script by hand 
optimization.

Let's examine a Tcl script to compute Stanisław 
Ulam's “3n+1 function” [WEIS??]. The script is 
fairly  simple,  performing  a  handful  of 
mathematical  operations  (albeit  in  a  quite 
chaotic manner).
proc ulam1 {n} {
   set max $n
   while {$n != 1} {

if {$n > $max} {
        set max $n

}
if {$n % 2} {
  set n [expr {3 * $n + 1}]
} else {
  set n [expr {$n / 2}]
}

   }
   return $max
}

Figure  1. on  the  following  page  gives  an 
overview of the generated bytecode.  Contrary 
to the expert opinion (which one of the authors 
[Kenny]  of  this  paper  used  to  share),  there 
appear to be several opportunities to optimize 
it.  (Some  other  possibilities  can  be  found  in 
[KENN02].)

First, we can observe that there are various bits 
of  completely  useless  code.  For  instance,  in 



block L111 at the bottom of the chart, there is a 
sequence – in straight-line code – that simply 
pushes a zero onto the operand stack and pops 
it  off  again.  This  sequence  can  be  removed 
entirely  without  ill  effect.  (There  are  perhaps 
similar cases elsewhere in the flow.)

It is tempting to consider further optimizations 
such  as  tail  merging  and  common 
subexpression  elimination.  Let's  start  by 
examining the code flowing into block  L103 
just below the centre of the diagram. Both the 
earlier blocks end with store n. It would be 
tempting  to  place a  single   store n at  the 
head of  L103 instead. 

Unfortunately,  without  further  information 
about  the  program,  it's  also  incorrect!  The 
problem is that an variable trace can determine 
(through the error stack, if by no other means) 
what  command caused it  to fire.  If  there  is  a 
trace present on the variable n, then at least one 
execution  path will  present  the wrong calling 
command to the trace.

That  said,  few  Tcl  programs  ever  attempt  to 
establish  traces  on  procedure-local  variables. 
While  it  is  challenging  to  prove  that  local 
variable  traces  are  possible  (commands  could 
get redefined, or other traces could set them), a 
programmer  –  and  certainly  an  assembly 
programmer – can make such assumptions with 
impunity.  So  let's  start  moving  code  around, 
beginning  with  that  offending  store  n 
instruction.

When  the  instruction  is  moved  as  suggested, 
there is then a straight-line sequence:
store n
pop
load n

This  is  another  sequence  with  an  obvious 
optimization:  remove  the  second  two 
instructions (and add the load to the bottom of 
block  L0).  Popping  the  value  that  we  just 
stored,  only to  load  it  back  again,  is  another 
thing that simply wastes time.

If  we  continue  propagating  similar  changes 
through  the  flowchart,  we  eventually  realize 
that – if we assume there are no traces on local 
variables – we can simply keep their values on 
the stack, and use deep stack accessors to bring 
them  to  the  top  at  need.   This  technique  is 
almost  precisely  parallel  to  doing  “frame 
pointer  omission”  in  compilers  targeting  x86 
hardware  ([OSTE07])  in  that  it  gains 
performance by keeping local references stack-
relative,  and  that  it  makes  debugging  (either 
with  conventional  debuggers,  or  with  Tcl's 
traces) much more challenging.

Figure 1. Flowchart of 'ulam1'
Nevertheless,  let  us  proceed,  with  more 
enthusiasm than caution to revise the code so 



that n is at top of stack on entry to each block, 
and max is the next on the stack.  Loading n is 
then  simply  dup,  while  loading  max is 
over 1. 

Figure 2. shows the transformed code. The only 
really tricky bit is the translation of set max 
$n. Readers are invited to verify for themselves 
that the codeburst in block L24 has the desired 
effect.

Figure 2. Hand-optimized version of 'ulam1'
What   have  these  transformation  achieved? 
They've  roughly  halved  the  size  of  the  code 
(from 116 bytes down to 61). To see whether 
they make a difference in speed, we run the Tcl 
version  and  the  assembly  version  on  an 
unloaded 2.6 GHz Core 2 machine, and turn the 
two  procedures  loose  on  the  first  30000 
integers. For the given test case, in the best of 
ten runs, we find that the Tcl version takes 1.46 
seconds, while the assembly version takes 1.00 
seconds. While a 32% improvement in run time 
is  not  spectacular,  it  is  surely something  that 
could be worth pursuing for code “hot spots” 
that  are  the  speed-determining  steps  of  an 
application.

6.2 Targeting other languages
As  mentioned  earlier,  making  bytecode 
assembly  available  at  the  Tcl  level  makes  it 
much  easier  to  integrate  other  bytecode-
targeting languages such as L or Rush. It would 
be an interesting experiment to see whether a 
language not originally designed to interoperate 
with Tcl could be retargeted to the Tcl virtual 
machine  using  a  bytecode  translation  layer. 
Identifying missing features  in the Tcl  virtual 
machine might not only make it able to target 
more  languages,  but  also  give  ideas  how  to 
improve its  performance,  stability or footprint 
for Tcl itself.

6.3 Bytecode rewriting
In addition to optimization, bytecodes could be 
rewritten to  add functionality such as tracing. 
By replacing operators like  add and  mult, it 
might even be possible to do things like expand 
the  semantics  of  mathematical  operators, 
perhaps  producing  an  [expr]  that  operates  on 
complex  numbers  or  other  extensions  beyond 
the integers and floating-point numbers. Tcl has 
a rich heritage of allowing the programmer to 
redefine the language to suit the needs of the 
moment.  Rewriting  object  code  is  simply 
another place to insert hooks to do so.

7 Work yet to be done
The assembler  described  in  this  paper  is  still 
very much at  the “proof of concept” stage.  It 
still  only  emits  about  two-thirds  of  the 
bytecodes  that  the  Tcl  engine  has  (although 
some  of  remaining  ones  are  of  questionable 
utility, and a few exist only to support legacy 
bytecodes  loaded  with  tbcload.)  Finishing 
the set looks fairly straightforward.

To solve  the  conundrum that  the  “impossible 
operations”  pose,  some  more  powerful 
instructions  for  stack  rearrangement  may  be 
needed. Adding them to the Tcl engine seems 
sensible,  and  there  appears  to  be  consensus 



among  the  maintainers  that  they  would  be 
useful for other purposes.

Finally,  before  the  object-to-object 
transformations  mentioned  in  the  last  section 
can be done in earnest, the Tcl disassembler has 

to  be  modified  to  produce  code  that  can  be 
assembled again. (Until now, it's been intended 
for display, not for machine processing, and it's 
accumulated  various  hard-to-parse 
accoutrements.)

8 Conclusions
The Tcl bytecode assembler has been a very frequently-requested feature, despite the fact that the Tcl 
pundits have frequently pooh-poohed it as being of less benefit than programmers think. Now that it 
is a reality, it seems to be at least potentially worthwhile (even without hacking in the bytecode 
engine, 30-40% speedups can be seen by rewriting in assembler code), and it will at least now be 
possible for assessments of its capability to be founded in science, rather than speculation. 

The  experimental  source  code  is  available  on  a  feature  branch  in  the  Tcl  repository,  if  other 
investigators want to examine it. To retrieve it, the command:
cvs -d:pserver:anonymous@tcl.cvs.sf.net:/cvsroot/tcl checkout \
        -r dogeen-assembler-branch tcl

will  retrieve  the  branched  source  tree  (a  modified  Tcl  8.6  HEAD).  User  documentation,  when 
prepared, will also be placed in that source tree.
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