
A bytecode assembler for Tcl

Ozgur Dogan Ugurlu*

University of San Francisco, San Francisco, CA
dogeen@gmail.com

Kevin B. Kenny
GE Global Research Center, Niskayuna, NY

kenny@ge.com
Abstract. Tcl, like most dynamic languages, operates by compiling its programs to an intermediate
language (“bytecode”) that is executed by an interpreter. This paper presents an assembler for the Tcl
bytecode language. Prior to the development of the assembler, a Tcl program could generate
bytecode only from Tcl scripts (or from C code using unpublished interfaces in the Tcl core). With
the advent of the assembler, a Tcl script can generate specified bytecode directly. This ability should
enable readier experimentation with compile-time optimizations, with targeting other languages onto
the Tcl bytecode engine, and with trading off Tcl's dynamic nature for speed of execution. Some of
the challenges faced in developing the assembler are presented, and some preliminary observations
about the performance that can be gained from assembly code are made.

1 Introduction
Tcl, like most dynamic computer languages,
interprets its programs in two phases. In the
first phase, the code is compiled to an
intermediate language (“bytecode”), and in the
second, a virtual machine interprets the
bytecode produce the program's results. The
translation of Tcl commands to bytecode
happens late in the proceeding – usually at the
first time that a procedure is called, or even
later – and the bytecode compiler is extremely
conservative. For instance, it is careful to
preserve source code for recompilation in the
event that a core command like [set] or
[for] is redefined while the code is
executing. Because of this conservatism, the
bytecode is often not as efficient as it might be.
Moreover, since evaluating Tcl scripts is at
present the only means of generating bytecode,
it is difficult for people to experiment with
different compilation strategies or with
targeting other languages into Tcl's bytecode
interpreter.

This paper presents an assembler that will
aceept an abstract representation of bytecodes
in a Tcl-like syntax and prepare them for
evaluation in Tcl. This assembler is the first
time that bytecode has been exposed at a user
level (even in C!) and is expected to open the
door to experimentation with the engine.

Section 2 presents a brief overview of Tcl's
bytecode language. Section 3 discusses the
internal programming interfaces that support
the compilation of scripts and expressions, and
how they are adapted to processing assembly
language. Section 4 presents the assembly
language notation in brief. Section 5 discusses
some of the problems that the assembler must
solve in order to generate code that will execute
safely in the execution engine. Section 6 goes
into more detail about potential uses of a
bytecode assembler, including some estimation
of the performance difference between
handwritten assembly code and Tcl. Section 7
discusses the work that remains to be done, and
Section 8 presents some conclusions.

* Research sponsored by the Google Summer of Code, 2010

2 How Tcl bytecode works.
The Tcl bytecode interpreter is an abstract stack
machine, akin to Forth or PostScript. All of its
instructions work by moving operands to and
from an operand stack. The commonest
instructions move constants and variables to
and from the stack, or remove operands from
the stack and replace them with results. For
example, the Tcl code:
set x [expr {$x * 2}]

might compile to bytecode like:
load x; # move $x to top of stack
push 2; # push “2” on top of stack
mult; # multiply top two stack
 # elements. Replace with

product.
store x;# put top of stack in $x
pop; # discard top of stack

As the just-in-time compiler is processing a
script to produce bytecodes, it tracks what
distinct constants are present in the script, and
places them in an array of Tcl_Obj pointers
called the “literal pool.” (There is one instance
of the literal pool per bytecode compilation; in
practice, this translates very nearly to one
instance per procedure.) The push instruction,
in the actual bytecode, contains the index in the
current compilation's literal pool of the constant
to be stored on the stack.

In a similar way, the compiler maintains a table
of local variables known in a procedure. A
variable whose name is known at compile time
can be addressed by index into the local
variable table: the load instruction in the
bytecode above gives the variable's index in the
local variable table. In addition to these tables,
there are several other tables that can be
addressed, that hold auxiliary data for complex
instructions, “exception ranges” (which
describe the locations to which break, continue,
and errors will divert control flow in a given
block of code), and commands. Commands are
present in order to identify places where code
must be recompiled if the definition of a

command changes on the fly, (for instance, if
user code redefines or overloads a core Tcl
command).

Most of the bytecode instructions come in
multiple varieties. First, there are usually two
sizes of operand: 1-byte (useful for short
indices into the literal pool and the constant
table) and 4-byte (for when the tables grow
large enough that one byte will not suffice). In
combination with these, instructions that
operate on variables generally come in scalar
(for when an operand is completely known at
compile time – and known to be local to the
procedure), array (for where an array name is
known, but the array key is not), stack (for
when a scalar's name cannot be determined at
compile time, for instance for Tcl code like
[set $x]), and array-stack (the most
complicated case, used to access dynamically
named or non-local arrays) variants. A few
instructions also allow for immediate data
operands as opposed to having all their data on
the stack.

Control transfers take the form of jumps and
conditional jumps jumpTrue and
jumpFalse. The latter consume an operand
from the stack and decide whether or not to
jump based on whether or not its is equal to
zero. There is also an invoke instruction that
calls a Tcl command, break, continue and
done instructions that escape an inner context
to an outer one (using the exception range table
to determine where to go), and a set of
operations for returning and throwing errors.

Most if not all of the math operations and built-
in functions in expressions have bytecode
instructions that support them; all of these
instructions work by consuming some number
of operands from the stack and producing a
single result.

In addition, there are highly complex operations
that manage things like [foreach] loops and
[dict update] blocks. These instructions
frequently reference elaborate data structures
stored in the “auxiliary data” arrays.

All told, there are about 150 different
instructions in the bytecode engine. More get
added with every Tcl release.

For a more comprehensive explanation of Tcl
bytecode execution, see [LEWI96].

3 How compilation works.
Tcl scripts are compiled as late as possible:
generally, for instance, a procedure body is
compiled when the procedure is first invoked. A
script is compiled by breaking it apart into
commands (and comments, which are ignored),
breaking the commands into words, and
breaking the words into tokens (which may be
constant strings, or variable, command or
backslash substitutions). The parsing interfaces
that the compiler uses are also exported at the C
level from the Tcl library.

Code generation is orchestrated in a data
structure called a CompileEnv. This
structure manages a group of dynamically
resizable arrays that hold the bytecodes, the
literal pool, the local variable table, the
exception and command ranges, and so on.

When a script is being compiled, if the
compiler encounters a built-in command that
has a “compilation procedure” associated with
it, it invokes the compilation procedure, passing
it the arguments to the command (in a
Tcl_Parse structure) and the compilation
environment. Commands such as [if] and
[for] will then invoke the parser recursively
to parse embedded expressions and scripts.

Because of Tcl's dynamic nature, a parse error
in an individual command does not prevent the
entire script from being compiled. Instead, code
is inserted to invoke the uncompiled form of
any command whose compilation procedure
reports an error. If something changes before
the direct invocation is called (for instance, the
command is redefined), the direct evaluation
will still succeed.

The fact that there is a fallback to direct
evaluation means that not all commands'
compilation procedures can handle all cases. In
complicated situations, a compilation procedure
can “throw up its hands,” and defer the problem
to run time. This technique is necessary, for
instance, to handle unbraced expressions, where
the correct parse cannot be determined until the
results of command and variable substitution
are known.

The assembler fits into this structure by
defining an [assemble] command in the
tcl::unsupported namespace. This
command's compilation procedure emits inline
code into the bytecode of the script that
contains the [assemble] call. In the event
that the assembly code cannot be parsed, the
run-time command creates a fresh
CompileEnv and tries again at run time. Only
this second attempt will report an ultimate
failure.

4 The assembly language
The assembler uses the same parser as Tcl
itself, so the assembly language has the same
fundamental syntax as Tcl. Because the
assembly language is simpler, several things
that can appear in a parsed Tcl script (namely,
variable and command substitutions, and {*}
expansion) simply are reported as errors.
Comments, separation of commands with
semicolons and newlines, joining of lines with
terminal backslashes, and quoting all follow
exactly the same rules as Tcl, so the syntax of
assembly code should be familiar to a Tcl
programmer.

Since the compilation environment is shared
between the assembly code and the containing
script, local variables and the current
namespace are the same for both. The sharing
of the compilation environment also allows for
mixing of languages, as we shall see below.

Each 'command' in the assembly code
represents a single bytecoded instruction. As a

convenience to the programmer, one source
instruction may map into a choice of bytecodes,
so the assembly programmer need not worry
about the correct choice of operand sizes and
addressing modes.

A few “operations” are provided that do not
correspond to bytecode instructions. The most
significant of these are label, which defines a
symbolic name for the current instruction
pointer, so that jump instructions can refer to it,
and two language-mixing primitives, eval and
expr.

When eval appears in the source text, its
operand (which must be a constant string) is
interpreted as a Tcl script, by calling the Tcl
script compiler recursively in the same
compilation environment. Of course, the script
can share the same variables and appears in the
same namespace as the assembly code. (The
result at runtime is that nothing is consumed
from the stack and the script's result is pushed
to the stack.) Similarly, expr results in
compiling a Tcl expression (again, a constant
string) and pushing its result to the stack.

This language mixing means that code can be
written in the language most appropriate to the
problem. Where a given source notation is
particularly convenient (for example, infix
expressions), the programmer can simply
switch languages. The power of all three
notations (arithmetic expressions, Tcl scripts,
and bytecode assembly) is captured in a single
package. (To be fair, this idea was anticipated
in the compiler for the L programming
language [BONI06].)

Literals and variables are added to the local
tables as they are encountered, and a symbol
table is maintained of jump labels. The
assembler runs in a single pass; jumps to
undefined labels are emitted as 4-byte jumps
(because the jump displacement is not known in
advance) and the address of the jump target is
filled in when the label is encountered.

5 Challenges faced with the
assembler

Fitting the assembler into the Tcl compilation
system, which was not designed for user
extension, involved some interesting
challenges. Among these were stack
management and the possibility of instructions
for which correct code cannot be generated.

5.1 Stack management
Tcl's execution system preallocates space for
the operand stack, so that individual push and
pop operations do not need to check for stack
overflow. The way it does this is that each
bytecode sequence is expected to assert the
maximum number of operands that it can put
on the stack. In assembly code, which shifts
operands onto and off the stack freely
interspersed with jumps, this depth can be
difficult to determine.

Moreover, assembly code that unbalances the
stack could crash the interpreter quite easily.
For these reasons, we decided early on that the
assembler will require a comprehensive
analyzer for maximum stack consumption and
for stack safety. It works according to the
following outline:

1. It partitions the program into a
series of “basic blocks”: segments of
code that are executed sequentially
without jumps. Any appearance of a
jump in a program ends the basic
block in which it appears; any
appearance of a label begins a new
basic block, since the label is at least
a potential jump target.

2. As code is generated, the
checker updates the stack
requirements of the basic blocks. It
tracks three numbers: the high water
mark (the maximum number of

stack elements that the block may
have pushed), the low water mark
(the minimum stack depth – which
may be negative if a block of code
begins by consuming operands), and
the net effect (the difference
between the stack depth on entry to
and exit from the block).

3. After all code is generated, the
checker begins at the entry to the
assembly program, and visits basic
blocks in a depth-first traversal of
the control flow graph. Each basic
block has zero, one or two
successors: zero if it is a return (or,
in some cases, a break, continue or
error); one if it ends with an
unconditional jump or execution
falls off the end without jumping,
and two if it ends with a conditional
jump (the succeeding block, and the
jump target). As it walks the graph,
it uses the net effects to compute the
stack depth on entry to every block
other than the first.

4. If a block in the traversal is
already visited, the stack depths are
checked for consistency. If a block
can be arrived at by two different
paths through the code that have
different net effect on the stack, an
error is reported. If a block is not
visited, its stack depth on entry is
recorded and its successors are
visited recursively. The low water
mark is also examined, to guard
against rogue assembly code
underflowing the stack. The high-
water mark for stack consumption is
also tracked.

5. Once all blocks have been
visited, low and high-water stack
commitments are known. The stack

depth at the end of the exit block is
the net effect on the stack of the
assembly code. It is enforced that
assembly code, like any other Tcl
command, leaves a single result on
the stack.

Since stack effects are monitored closely, and
since the assembler generates no unchecked
memory addresses (a program, for instance,
cannot access outside the bounds of the literal
pool or local variable table), it may turn out that
the assembler always generates “safe” code in
the sense that it will not cause pointer smashes
in the Tcl interpreter. Nevertheless, until we
have more user experience with it, the plan is to
have it remain in the tcl::unsupported
namespace. (Translation: If it breaks, you own
both pieces.)

5.2 Impossible instructions
There are several situations in which a
sequence of assembly code will contain an
instruction for which it is impossible to emit
correct code. The first of these occurs if the
[assemble] command is invoked at runtime, and
an operation tries to use a local variable table
slot for a previously unseen variable. The LVT
is not resizable, and therefore the variable
cannot be converted to a slot number. (Another
case that arises is that the 'increment'
instructions, puzzlingly, require the variable to
be in one of the first 256 slots of the LVT
because they lack 4-byte variants.) Finally, it is
possible that a programmer simply inserts a
reference to a namespace-qualified variable that
cannot appear in the LVT.

In all of these cases, the correct thing to do is to
put the variable name on the stack and then use
a stack-based operation to manipulate it. The
problem is that for array operations, the correct
order of operations is that first the variable
name and then the key should be pushed; for
stores, appends and increments, there is an
additional operand that must also follow the
variable name. Since it isn't possible to “go

back in time” and insert the push of the variable
name when it was actually needed, the next best
thing is to generate code to reorder the stack to
put the operands in the correct sequence even
when the variable name arrives late. This will
result in silently generating additional
instructions, but will at least yield correct code.

We have not yet attempted to deal with
impossible instructions, and instead report
errors when they are encountered. (It is
generally fairly simple to code around the
problems by inserting the stack operations
explicitly.) The automated recovery from
impossible instructions may be implemented by
the time you read this.

6 What's the assembler good
for?

An assembler is of primary use as the backend
of a compiler, either a compiler for a new
language, or object-code transformations on Tcl
itself (for optimization, code instrumentation
for profiling and callgraph analysis, and so on.
Having the assembler available within the Tcl
system allows bytecode to be generated from a
very-high-level language such as Tcl, rather
than needing to resort to C code that is intimate
with Tcl's execution system.

6.1 Performance and benchmarks
The chief reason that people have been
interested in an assembler is performance. The
dynamic nature of the Tcl language has made it
difficult to generate really good code from it.
(Too much can change between compilation
and execution). The problem of radical
language change on the fly substantially limited
early attempts such as [ROUS95] to compile
Tcl to machine code, even after heroic attempts
([ROUS97]) to use type inference to constrain
the problem. Assembly code can bypass all the
expensive runtime checks that are needed to
ensure that compiled code remains valid even
in the face of such radical changes.

Other languages, as well, can target the Tcl
execution engine, and in fact, several other
languages have been designed ([SAH94],
[BONI06]) that constrain the dynamic nature of
Tcl to achieve better performance while still
targeting the same execution engine.

The folklore in the Tcl community has
predicted that optimization at the bytecode
level is likely to give disappointing results. The
bytecodes, the pundits have said, are close
enough to being precise counterparts to Tcl
commands that little room for modification of
the code sequences is actually available. Of
course, without an assembler, there was no way
to test this hypothesis. Given the assembler, we
can attempt a benchmark to test how much we
can improve a representative Tcl script by hand
optimization.

Let's examine a Tcl script to compute Stanisław
Ulam's “3n+1 function” [WEIS??]. The script is
fairly simple, performing a handful of
mathematical operations (albeit in a quite
chaotic manner).
proc ulam1 {n} {
 set max $n
 while {$n != 1} {

if {$n > $max} {
 set max $n

}
if {$n % 2} {
 set n [expr {3 * $n + 1}]
} else {
 set n [expr {$n / 2}]
}

 }
 return $max
}

Figure 1. on the following page gives an
overview of the generated bytecode. Contrary
to the expert opinion (which one of the authors
[Kenny] of this paper used to share), there
appear to be several opportunities to optimize
it. (Some other possibilities can be found in
[KENN02].)

First, we can observe that there are various bits
of completely useless code. For instance, in

block L111 at the bottom of the chart, there is a
sequence – in straight-line code – that simply
pushes a zero onto the operand stack and pops
it off again. This sequence can be removed
entirely without ill effect. (There are perhaps
similar cases elsewhere in the flow.)

It is tempting to consider further optimizations
such as tail merging and common
subexpression elimination. Let's start by
examining the code flowing into block L103
just below the centre of the diagram. Both the
earlier blocks end with store n. It would be
tempting to place a single store n at the
head of L103 instead.

Unfortunately, without further information
about the program, it's also incorrect! The
problem is that an variable trace can determine
(through the error stack, if by no other means)
what command caused it to fire. If there is a
trace present on the variable n, then at least one
execution path will present the wrong calling
command to the trace.

That said, few Tcl programs ever attempt to
establish traces on procedure-local variables.
While it is challenging to prove that local
variable traces are possible (commands could
get redefined, or other traces could set them), a
programmer – and certainly an assembly
programmer – can make such assumptions with
impunity. So let's start moving code around,
beginning with that offending store n
instruction.

When the instruction is moved as suggested,
there is then a straight-line sequence:
store n
pop
load n

This is another sequence with an obvious
optimization: remove the second two
instructions (and add the load to the bottom of
block L0). Popping the value that we just
stored, only to load it back again, is another
thing that simply wastes time.

If we continue propagating similar changes
through the flowchart, we eventually realize
that – if we assume there are no traces on local
variables – we can simply keep their values on
the stack, and use deep stack accessors to bring
them to the top at need. This technique is
almost precisely parallel to doing “frame
pointer omission” in compilers targeting x86
hardware ([OSTE07]) in that it gains
performance by keeping local references stack-
relative, and that it makes debugging (either
with conventional debuggers, or with Tcl's
traces) much more challenging.

Figure 1. Flowchart of 'ulam1'
Nevertheless, let us proceed, with more
enthusiasm than caution to revise the code so

that n is at top of stack on entry to each block,
and max is the next on the stack. Loading n is
then simply dup, while loading max is
over 1.

Figure 2. shows the transformed code. The only
really tricky bit is the translation of set max
$n. Readers are invited to verify for themselves
that the codeburst in block L24 has the desired
effect.

Figure 2. Hand-optimized version of 'ulam1'
What have these transformation achieved?
They've roughly halved the size of the code
(from 116 bytes down to 61). To see whether
they make a difference in speed, we run the Tcl
version and the assembly version on an
unloaded 2.6 GHz Core 2 machine, and turn the
two procedures loose on the first 30000
integers. For the given test case, in the best of
ten runs, we find that the Tcl version takes 1.46
seconds, while the assembly version takes 1.00
seconds. While a 32% improvement in run time
is not spectacular, it is surely something that
could be worth pursuing for code “hot spots”
that are the speed-determining steps of an
application.

6.2 Targeting other languages
As mentioned earlier, making bytecode
assembly available at the Tcl level makes it
much easier to integrate other bytecode-
targeting languages such as L or Rush. It would
be an interesting experiment to see whether a
language not originally designed to interoperate
with Tcl could be retargeted to the Tcl virtual
machine using a bytecode translation layer.
Identifying missing features in the Tcl virtual
machine might not only make it able to target
more languages, but also give ideas how to
improve its performance, stability or footprint
for Tcl itself.

6.3 Bytecode rewriting
In addition to optimization, bytecodes could be
rewritten to add functionality such as tracing.
By replacing operators like add and mult, it
might even be possible to do things like expand
the semantics of mathematical operators,
perhaps producing an [expr] that operates on
complex numbers or other extensions beyond
the integers and floating-point numbers. Tcl has
a rich heritage of allowing the programmer to
redefine the language to suit the needs of the
moment. Rewriting object code is simply
another place to insert hooks to do so.

7 Work yet to be done
The assembler described in this paper is still
very much at the “proof of concept” stage. It
still only emits about two-thirds of the
bytecodes that the Tcl engine has (although
some of remaining ones are of questionable
utility, and a few exist only to support legacy
bytecodes loaded with tbcload.) Finishing
the set looks fairly straightforward.

To solve the conundrum that the “impossible
operations” pose, some more powerful
instructions for stack rearrangement may be
needed. Adding them to the Tcl engine seems
sensible, and there appears to be consensus

among the maintainers that they would be
useful for other purposes.

Finally, before the object-to-object
transformations mentioned in the last section
can be done in earnest, the Tcl disassembler has

to be modified to produce code that can be
assembled again. (Until now, it's been intended
for display, not for machine processing, and it's
accumulated various hard-to-parse
accoutrements.)

8 Conclusions
The Tcl bytecode assembler has been a very frequently-requested feature, despite the fact that the Tcl
pundits have frequently pooh-poohed it as being of less benefit than programmers think. Now that it
is a reality, it seems to be at least potentially worthwhile (even without hacking in the bytecode
engine, 30-40% speedups can be seen by rewriting in assembler code), and it will at least now be
possible for assessments of its capability to be founded in science, rather than speculation.

The experimental source code is available on a feature branch in the Tcl repository, if other
investigators want to examine it. To retrieve it, the command:
cvs -d:pserver:anonymous@tcl.cvs.sf.net:/cvsroot/tcl checkout \
 -r dogeen-assembler-branch tcl

will retrieve the branched source tree (a modified Tcl 8.6 HEAD). User documentation, when
prepared, will also be placed in that source tree.

References
[BONI06] Bonilla, Oscar; Tim Daly, Jr. and Larry McVoy. "The L programming language: or, Tcl for
C programmers." Proc. 13th Ann. Tcl/Tk Conf.. Naperville, IL: Tcl Association, October 2006.
<http://www.bitmover.com/lm/papers/l.pdf>
[KENN02] Kenny, Kevin B.; Miguel Sofer and Jeffrey Hobbs. "Tcl bytecode optimization: some
experiences." Proc. 9th Ann. Tcl/Tk Conf.. Vancouver, British Columbia, Canada: ActiveState,
September 2002. <http://www.tcl.tk/community/tcl2002/archive/Tcl2002papers/kenny-
bytecode/paperKBK.pdf>
[LEWI96] Lewis, Brian T. "An on-the-fly bytecode compiler for Tcl." Proc. 4th Annual Tcl/Tk
Conference. Monterey, California: USENIX, July 1996. <http://www.usenix.org/publications/library/
proceedings/tcl96/full_papers/lewis/>
[OSTE07] Osterman, Larry. "FPO." Larry Osterman's Weblog. Redmond, WA: Microsoft, March
2007. <http://blogs.msdn.com/b/larryosterman/archive/2007/03/12/fpo.aspx>
[ROUS95] Rouse, Forest R. and Wayne Christopher. "A Tcl to C compiler." Proc. 3rd Ann. Tcl/Tk
Conf.. Toronto, Ontario, Canada: USENIX, July 1995.
<http://www.usenix.org/publications/library/proceedings/tcl95/full_papers/rouse.ps>
[ROUS97] Rouse, Forest R. and Wayne Christopher. "A typing system for a multiple-backend Tcl
compiler." Proc. 5th Annual Tcl/Tk Workshop. Boston, Mass.: USENIX, July 1997.
<http://www.usenix.org/publications/library/proceedings/tcl97/full_papers/rouse/rouse.pdf>
[SAH94] Sah, Adam; Jon Blow; and Brian Dennis. "An introduction to the Rush language." Proc.
2nd Tcl/Tk Workshop. New Orleans, LA: Computerized Processes Unlimited, May 1994. <number-
none.com/blow/papers/rush_tcl94.pdf>
[WEIS??] Weisstein, Eric. "Collatz problem." MathWorld. : A Wolfram Resource, .

mailto:anonymous@tcl.cvs.sf.net

<http://mathworld.wolfram.com/CollatzProblem.html>

	1 Introduction
	2 How Tcl bytecode works.
	3 How compilation works.
	4 The assembly language
	5 Challenges faced with the assembler
	5.1 Stack management
	5.2 Impossible instructions

	6 What's the assembler good for?
	6.1 Performance and benchmarks
	6.2 Targeting other languages
	6.3 Bytecode rewriting

	7 Work yet to be done
	8 Conclusions

