
Supporting Embedded Software Development
Doing the Heavy Lifting with Tcl/Tk

Andrew Mangogna

amangogna@modelrealization.com

17th Annual Tcl/Tk Conference
Oakbrook Terrace, Illinois

October 13-15, 2010

Andrew Mangogna () Supporting Embedded Software Development October 13-15, 2010 1 / 14

It’s a Small World After All
It’s also a Harsh World

Small Memory
I 32 KiB to 128 KiB Flash
I 4 KiB to 16 KiB RAM

Dedicated Functionality
I Runs Only One Program
I Low Rate of Field Updates

Safety Critical
I Rigorous Development Process
I Specific Testable Requirements
I Documented Quality

Ultra-low Power
I Standby Current in µA
I Dynamic Current in mA
I 99% Asleep

Andrew Mangogna () Supporting Embedded Software Development October 13-15, 2010 2 / 14

Counter Measures
Operate at a Higher Level of Abstraction

Specify More, Program Less
Factor Data Management and Execution Policies Into
One Place

I Debug, Test and Reuse
I Stop Coding Execution Sequencing Over and Over

Single Threaded Execution Architecture
I Single Theaded, Foreground / Background Concept
I Closely Match Processor Execution Capabilities
I Event Driven
I State Machine
I Interrupts

Bind Behavior Before Run Time Using Data

Andrew Mangogna () Supporting Embedded Software Development October 13-15, 2010 3 / 14

Pycca
Pass Your “C” Code Along

Pycca Supports Specifying the Data Required by the
Execution Architecture
Pycca Processes a Domain Specific Language

I Specify Data Structures
I Specify Relationships Between Data Structures
I Specify State Machines
I State Machine Action Code is “C”
I Functions and State Actions are Repackaged and Passed Through
I Generates Required Data Structures (e.g. Transition Matrix)

Written Tcl (no Python, despite the name)

Delivered as a Starpack

Andrew Mangogna () Supporting Embedded Software Development October 13-15, 2010 4 / 14

Pycca Workflow

Pycca

Pycca Source

"C" Source

Compile/Link

STSA Library

Executable

Andrew Mangogna () Supporting Embedded Software Development October 13-15, 2010 5 / 14

Example Pycca Source
A Very Small Extract

machine

state Idle() {

//# Find the related Motor instance.

//# Generate Stop to motor.

PYCCA_generate(Stop, Motor, self->R2, self) ;

}

transition Idle - Run -> FillingForWashing

state FillingForWashing() {

//# Find the related Valve instance.

//# Generate Open to Value.

PYCCA_generate(Open, Valve, self->R3, self) ;

}

transition FillingForWashing - Full -> Agitating

.....

end

Andrew Mangogna () Supporting Embedded Software Development October 13-15, 2010 6 / 14

Pycca Internals

Parsing

Internal Data Structures

Semantic Analysis

Template Expansion

Serialization

Andrew Mangogna () Supporting Embedded Software Development October 13-15, 2010 7 / 14

Pycca Internal Data Flow

parse
populated

schema

semantic

analysis

template

expand

schema

serialize

pycca

source

"C"

source

saved

schema

Andrew Mangogna () Supporting Embedded Software Development October 13-15, 2010 8 / 14

Pycca Internal Schema
A Small Extract Only

Class

* ClassId
*2 ClassName
− Line
− StorageSlots

* *2 DomainId (R2)

− PolyEvents
− StorageClass

StateModel

− DefTrans

− Line

* DomainId (R5, R16)
* ClassId (R5, R16)

− InitialState (R16)

behaves
according to

describes the
behavior of

State
* *2 DomainId (R6)
* *2 ClassId (R6)
* StateId
*2 StateName
− Params
− Line
− Code
− CodeLine

has a default
initial state

R5 ?

R6

R16?

1

is the initial state

is part of1 contains

1

*

Andrew Mangogna () Supporting Embedded Software Development October 13-15, 2010 9 / 14

TclRAL Implementation of Schema

relvar create StateModel {

DomainId int

ClassId int

DefTrans string

InitialState string

Line int

} {DomainId ClassId}

relvar create State {

DomainId int

ClassId int

StateId int

StateName string

Params list

Line int

Code string

CodeLine int

} {DomainId ClassId StateId}\

{DomainId ClassId StateName}

relvar association R6\

State {DomainId ClassId} *\

StateModel {DomainId ClassId} 1

relvar association R16\

StateModel {DomainId ClassId InitialState} ?\

State {DomainId ClassId StateName} 1

Andrew Mangogna () Supporting Embedded Software Development October 13-15, 2010 10 / 14

Semantic Analysis by Query
Finding Isolated States

Find isolated states, i.e. states that have no outgoing or

incoming transitions

set noIns [relation semiminus $::Transition $::State\

-using {DomainId DomainId ClassId ClassId NewState StateName}]

set noOuts [relation semiminus $::NormalTrans $::State\

-using {DomainId DomainId ClassId ClassId StateName StateName}]

set isoStates [relation intersect $noIns $noOuts]

relation foreach isolated $isoStates {

relation assign $isolated Line StateName

reporterror "state has no incoming or outgoing transitions"\

$Line $StateName

}

Andrew Mangogna () Supporting Embedded Software Development October 13-15, 2010 11 / 14

Friends of Pycca
If you’ve got it, then use it

Pycca (via TclRAL) can save the schema population
which other programs can then access.

pyccaexplore View State Machine Transition Matrix

pycca2dot Layout State Machine Graphs

mechtrace State Machine Tracing Package

Andrew Mangogna () Supporting Embedded Software Development October 13-15, 2010 12 / 14

The Moral to Our Story

Pycca is a language processing program that looks like a
database application.

The use of relational data structures provides a flexible and
powerful way to structure the internals of the program.

The pycca language is a convenient syntax for populating
relational data structures.

Relational data has a single consistent access algebra that
operates on a set at a time basis.

Tcl has many different relation data extensions to match the
scale of the application.

You will be happy with yourself if you encode the rules of your
application in data.

Andrew Mangogna () Supporting Embedded Software Development October 13-15, 2010 13 / 14

Resources

http://tcl-cm3.sourceforge.net

http://tclral.sourceforge.net

Andrew Mangogna () Supporting Embedded Software Development October 13-15, 2010 14 / 14

