TclOO

I"ast, Present, Future...

Donal K. Fellows
University of Manchester / Tcl Core Team

Or “What I’'ve Been Doing for the Past
Few Years Instead of Watching Bad TV”...

MEeeRE

Where it came from, how it was

CJCVC!OPCC‘

Whatis T OO

. Ncw Starxc}arcl Objcct Sgstcm
. Fart of Tcl 8.6
— Available as extension for | ¢l 8.5

00::class create Toaster {
variable useCount
constructor {} { set useCount 0 }
method makeToast {{slices 1}} {
incr useCount
for {set i 0} {Si<Sslices} {incr i} {
puts
}
}

}

set t [Toaster new]
St makeToast;

Why?

. Tixisting Oi:)ject 595tcm5 had]ssues

o Some were too slow

— Some were messy intema”y
— Some were entanglecl with class libraries

s A” were Poor]y integratéé with Tc]
. Except Tk, whichis Plain inflexible

. Tcloo I xists to be a 5ma//©£>ject Sgstem
— Put deeply integrated with | cl

>
& A”ow other OO systems to be built
on toP

thre Did TCIOO Come

T rom?

!

. Man9 Frincipal Lineagcs
i

. General stgle of method ca”ing

— [incr Tcl]

. Wag of declaring classes) much syntax

Hse))

e Semantics of class system

=i Snit >
. Suppor’t &elegation and scriptabilitg

Who and \/\/hen?

Iirst Glimmérings at Tcl 2003
— Wl” Duquette and m\ljsehC

. Also lead to 8.5’s ensembles

Nearly 2 Years Later (ZOOﬁ)
— Steve | anders, Will and mgsehc wrote spec

I irst prototype f:)g me in 2006

— Started getting much useful FEE TR input
I ull prototype in 2007

(_ommitted to Tc] in 2008

— [Tew small things added since with usage
expeﬁence

Overa” (jestation was 3-5 Years!

=

Deve]opment

. Scripteci Frototgpc
— \/erg difficult, so scrappcd in favour of...

¢ C\/S Fcature Branch of Tcl
— Written in C
— F]annc—:d for deep integration
= No unrelated changes

=

Keg Milestones

i. |nitial SPcchCication

2 Working Method [nvocation
5. Deftinition (_ommand

i 2 5tarting the | est Suite

5. (seneric Method £ AF]
6. Convcr‘cing to a Fackagc

.5 Doinga Release @’:

Lessons Leame&...

Make a ["lan

— Define what success is!
Studg the Compc—:tition
~ Steal their goocﬂ ideas!

Be (leanin Dcvclopment

— No releases until Peop]e will be able to run it

— | Dor’t mix in irrelevant features

Testing is \/ital

=

TclOO: Present

Features, Use and Performance

What does TclOO Offer? |

Powerful Object System
Small Feature Set
Stability

Deep Integration with Tcl
Can be Driven from C API
Fast Core

The Example Again

00::class create Toaster {
variable useCount

constructor {} {
set useCount O

}

method makeToast {{slices 1}} {
incr useCount
for {set i 0} {$i < $slices} {incr i} {
puts "made slice $i from use $useCount”
}

J
J

set toastie [Toaster new]
$toastie makeToast; # =2 made slice 1 from use 1

10/02/09 Tcl Conference 2009, Portland Oregon 12

Making our Toaster Fly
with a Mixin
00::.class create FlyingObject {
method takeOff! {} { ... }

method land {} { ... }
method getAltitude {} { ... }

}

00::0bjdefine $toastie mixin FlyingObject
$toastie takeOff!
$toastie makeToast

TclOO Power

Same Basic Semantic Model as XOTcl

Single Rooted Multiple Inheritance
— Subclassable Class Objects in Object System

Mixins (“ad hoc” classes) and Filters
— Enables things like Prototypes and Aspects

Two Types of Methods
— Procedure-like
— Forwarded/Delegated

TclOO Features ﬂ

As Few as Possible
— Scriptable and Composable

Every Object has its own Namespace
— Holds all variables

Objects can be Renamed

Objects can be Reclassed

Definitions by Scripts

— Somewhat similar to [incr Tcl] and Snit definitions
Introspection Integrated into [info]

Scripting: Class Variables

proc ::00::Helpers::.classvar {name args} {
Get reference to class’s namespace
set ns [info object namespace [uplevel 1 {self class}]]

Double up the list of variable names
set vs [list $name $name]
foreach v $args {lappend vs $v $v}

Link the caller’s locals to the class’s variables
tailcall namespace upvar $ns {*}$vs

10/02/09 Tcl Conference 2009, Portland Oregon 16

Scripting: Class Methods

proc ::00::define::classmethod {name {args "} {body ""}} {
Create the method on the class if the caller gave
arguments and body
if {[llength [info level O]] == 4} {
uplevel 1 [list self method $name $args $body]
}

Get the name of the class being defined
set cls [lindex [info level -1] 1]

IMake connection to private class “my” command by
forwarding

tailcall forward $name [info object namespace $cls]::my $name

10/02/09 Tcl Conference 2009, Portland Oregon 17

Stability and Testing

e Test Suite Covers Normal and Error Cases
— Includes checks for various clean teardowns
— Includes checks for leaking memory

e Goal: As Stable and Robust as Tcl
— Should be no unchecked failures ever

Production Use of TclOO ﬂ

e Powers TDBC

— Also show that TclOO supports UML Composition
e Supports itcl-ng

— This is [incr Tcl] in Tcl as contrib. package

— Uses TclOO0 to provide basic OO framework
e Commercial Uses

— Ansaldo STS use it in their railway maintenance
support product

e Reported at EuroTcl 2009

e TDBC uses Cunning Lifetime

Tricks in TDBC: Lifetime

Management Techniques
— UML Class Composition

Based on Ownership

— Each Statement owned by
one Connection

— Each ResultSet owned by one
Statement
Implemented by Placing
Owned into Owner’s
Namespace

— Automatic deletion when
owner goes away

f

Connection
[|
Statement Statement Statement
[|
ResultSet ResultSet ResultSet

Tcl Integration ﬂ

* Available as Package for 8.5
— Thanks to ActiveState for build support

e Part of Tcl 8.6

— Fully supports NRE
e Doesn’t blow C stack
e Can [yield] inside method calls and constructors

e Connection to Tcl Procedure Engine

— Other OO extensions that use TclOO to implement
methods are no longer tightly coupled to Tcl

The TclOO C API

e TclOO uses its own C API

— Generic Method Definition Interface
e All standard methods built on top of that

— Construction API
 No destruction API; use existing facilities

— Introspection API
e [nformation about objects
e [nformation about current method

e The C APl is a Vital Part of TclOO

TclOO Performance ﬂ

e TclOO is Fast
— Fastest Object System for Tcl

e Massive Amount of Caching

— Especially of method interpretations
e |[n object, class and Tcl_Obj internal representation

— Caches flushed conservatively

e Critical Paths Analysed to Reduce Hot Allocs
— Object creation
— Method call

1800000
1600000
1400000
1200000
1000000
800000
600000
400000

Calls per second

200000
0

10/02/09

Performance: Basic Call

Tcl 8.5.2 Tcl 8.6b1.1

Tcl Conference 2009, Portland Oregon

® Procedure
m TclOO

m XOTcl

m [incr Tcl]
M Snit

m Stooop

24

Performance: Stateful Call

1200000

1000000

800000

600000

400000

Calls per second

200000

0

10/02/09

Tcl 8.5.2 Tcl 8.6b1.1

Tcl Conference 2009, Portland Oregon

® Procedure
m TclOO

m XOTcl

m [incr Tcl]
M Snit

m Stooop

25

Performance: Create/Delete

200000
180000
160000
140000
120000
100000
80000
60000
40000
20000
0

Calls per second

10/02/09

Tcl 8.5.2 Tcl8.6b1.1

Tcl Conference 2009, Portland Oregon

m TclOO

m XOTcl
[incr Tcl]

M Snit

m Stooop

26

70000

60000

50000

40000

30000

Calls per second

20000

10000

10/02/09

Performance;
Make/Call 10/Del.

Tcl 8.5.2 Tcl 8.6b1.1

Tcl Conference 2009, Portland Oregon

m TclOO

m XOTcl
[incr Tcl]

M Snit

m Stooop

27

Performance:
Superclass Call

700000
600000
< 500000
o
§ 400000 m TcloO
o m XOTcl
o
& e [incr Tcl]
(1°]
“ 200000 | Stooop

100000

0
Tcl 8.5.2 Tcl 8.6b1.1

10/02/09 Tcl Conference 2009, Portland Oregon 28

e

TclOO:; Futtires

Possible future directions

New TclOO© Featlires??

« Garbage Collection
— Only of unrenamed objects from “new” method

— Problematic because it doesn't fit Tcl's semantics
« Unlikely to break scripts that weren’t leaking

e Submethods

— More like Tk/Snit

— Very nice to use, but some tricky issues
 How does inheritance work?

— Portable scripts will make method names be
single words

10/02/09 Tcl Conference 2009, Portland Oregon

JazzingyUp TelO@ sgdntemals/s

e Slots

— Better way to manage configuration

 Likely to cause issues with anything named
starting with a “-” character

— But slots are objects
— Should methods and variables be objects?
* Needs investigation

 Poking in the Guts

—e.g., ways to change how methods are looked
up

* Currently some hacks for itcl-ng; want better...

10/02/09 Tcl Conference 2009, Portland Oregon

BuildinggasClass 4 ibraryry

* Already prototyped on Wiki
— Serialization
— Channel engine

— Megawidgets

 How to distribute between packages?
— Which in Tcl?

nich in Tk?

nich in Tcllib?

10/02/09 Tcl Conference 2009, Portland Oregon

Object!SenaliZatioon

e Write Objects to a String and

Read Back

— Can also go over sockets or through
files or ...

 Experimental Package on Wiki

http://wiki.tcl.tk/23444
Does not serialize classes

Does not deal with object name
clashes

Needs cooperation from objects to
explore object graph

10/02/09 Tcl Conference 2009, Portland Oregon

Channel EnginecClassess

* Classes to Make Writing Channels Easy
— Based on Andreas Kupries’s channel API
— Both full channels and transformations

* Prototype Code on Wik
— http://wiki.tcl.tk/21723
— Introspection to find what features to support

10/02/09 Tcl Conference 2009, Portland Oregon

Megawidgets
 Make Tk Widgets with TclOO Objects

— Work In “the same” way
— Wrap actual widgets

 Prototype Code on Wiki

— http://wiki.tcl.tk/21103

* Already Driven Two Features Added
— The ‘variable’ declaration

— Improved method forwarding to object-local
commands

10/02/09 Tcl Conference 2009, Portland Oregon

—ast,

t dea
don’t

Where Next?’

OO Intended to be Foundation

ight, small, stable, and above all Tcl-ish
s with the really complicated bits so you

nave to

* Features to Add Should be Community-
Driven

— If you

10/02/09

want it, let us know!

Tcl Conference 2009, Portland Oregon

