
Gridgen is meshing software used by engineers and scientists worldwide since 1984 to reliably
generate high quality grids for engineering analysis. Gridgen Glyph, which is Gridgen's Tcl-
based scripting language, provides full access to the functionalities available interactively in
Gridgen. It allows users to extend Gridgen's functions as well as develop specialized meshing
applications. This paper shows how a new Gridgen capability, automated block topology change,
is developed through a script using Glyph, Tcl and Tk. This feature changes grid topologies in a
matter of seconds while interactively changing grid topologies can require hours of a user's time.

To conduct computational fluid dynamics
(CFD) and finite element analysis (FEA), a
two-dimensional (2D) or three-dimensional
(3D) grid needs to be constructed for the
geometry beforehand. Gridgen is a complete
toolkit for generating grids with a variety of
cell types (i.e., hexahedra, tetrahedra, prism
and pyramid) that meet the simulation
requirements.
During the construction of a grid in Gridgen,
users will work with four types of hierarchical
entities:

� blocks: volume grids
� domains: surface grids
� connectors: curve grids
� database: geometry data that defines

the shape of the object being gridded

Typically the database is first obtained from a
computer aided design (CAD) system and
imported into Gridgen. It can also be created
using Gridgen. However, the database is not

required for Gridgen to generate grids. The
remaining three grid entity types are created
from the bottom of the hierarchy, connectors,
up. This is usually known as the “bottom-up”
meshing approach.
As an interactive code, Gridgen can grid
practically anything, but at the price of user
effort and time. As a response to user requests
for streamlined gridding, Gridgen has been
enhanced with Glyph, which is essentially Tcl
with Gridgen-specific commands added to it.
It contains approximately 230 default,
display, grid construction, geometry, query,
analysis software, and utility commands.
Glyph scripts are comprised of a series of
commands. They may be functions native to
Tcl/Tk, Gridgen-specific functions, or user
defined functions. Being used to drive
Gridgen in either interactive or batch mode,
Glyph scripts allow users to develop
specialized gridding applications with a
customized user interface.

61

As shown in Fig. 1, an O-grid is a series of
blocks with grid lines arranged into an “O”
shape or a wrapping nature.

In contrast to the H-grid (Fig. 1), the O-H
topology reduces skew (i.e., poor quality
quads with large included angle) where a
block corner must lie on continuous
curves/surfaces (i.e., cylinder). It also
improves efficiency of grid point clustering
near walls. That is, it helps resolve the
boundary layer locally near solid bodies
without unnecessarily increasing overall grid
point count.
Since Gridgen does not have automatic O-H
grid creation capability, users have to modify
a single H-block or H-blocks into the 5 block
topology by hand: Center H-grid block and 4
O-grid blocks (Fig. 2).

This can be very time consuming because
new domains and connectors need to be
created manually for constructing these
blocks. Therefore, an add-on script was
created for O-H grids to be constructed
automatically.

The add-on script, referred to as “Butterfly
Maker”, is written in Tcl/Tk 8.3 and Glyph.
It has approximately 4,000 lines and 50
procedures.
For example, the following small procedure,
getConByNode, is used for returning the
connectors at a given node (Nodes are
connector end points in Gridgen):

proc getConByNode { pt conList } {
 set tol [gg::tolNode]
 foreach con $conList {
 set pta [gg::conGetPt $con \
 -arc 0]
 set ptb [gg::conGetPt $con \
 -arc 1]

 set dist_a [GetDist $pt $pta]
 set dist_b [GetDist $pt $ptb]

 if { $dist_a < $tol } {
 return "$con $ptb"
 } elseif { $dist_b < $tol } {
 return "$con $pta"
 }
 }
}

This code segment loops through a given
connector list, and singles out the connectors
whose nodes are close enough to a given
point. The commands that begin with “gg::”
are the Glyph commands. For instance,
“gg::conGetPt” returns the coordinates of a
point on a connector where the arc length is 0.
Standard Tcl/Tk interpreters are linked to
Gridgen. This allows the Tcl/Tk commands to
be understood by Gridgen when they are used
in Glyph scripts.

H-grid

O-H grid

62

The script uses a Tk interface to allow the
user to select blocks to modify and enter
some meshing parameters. Fig. 3 shows the
user interface consisting of 4 frames:

A. Block selection
B. Propagating direction selection
C. Parameter input & preview
D. Execution

Frame A enables block selection via either the
list box or clicking on the button

. A scrollbar is added to
the list box to display all of the blocks if there
are many. The list box selection is bound to
the <<ListboxSelect>> virtual event
generated by the listbox widget. If the
definition of this virtual event changes, all
windows bound to it will respond
immediately to the new definition.

bind .right.top.list \
 <<ListboxSelect>> { BlkSelect }

The button is
linked to the procedure shown below:

proc select { } {
 global Mode Selected_Blocks
 global Propagate Direction
 global Structured_Blocks
 if { $Mode == "BLOCKS" && [llength
$Structured_Blocks] <= 0 } {

 tk_messageBox -title "Error: \
 No Blocks Available" -message\
 "There are no structured blocks \
 in the current grid." -type ok \
 -icon error
 return
 }

 CleanupCons
 wm withdraw .

 if { $Mode == "BLOCKS" } {
 set tSel [gg::dispPick BLOCK \
 -select [getDataList] \
 -explicit $Structured_Blocks \
 -message \
 "Please select blocks for
 butterfly topology to apply"]
 .right.top.list selection clear \
 0 end
 foreach i $tSel {
 .right.top.list selection set\
[lsearch $Structured_Blocks $i]
\[lsearch $Structured_Blocks $i]
 }
 if {[winfo exists .]} {
 wm deiconify .
 }
 }
}

The contents of the list box will be updated
accordingly if any blocks are selected in the
Gridgen display.
Once the target blocks are selected, the user
specifies the propagating direction ()
in frame B. In Gridgen, the orientation of a
structured block is represented in terms of (I,
J, K). By selecting I, for example, the script
will create 5 domains on the butterfly faces
(i.e., I_min and I_max) of the selected blocks
then propagate this topology in the I direction
throughout all selected blocks.
In frame C, the three dimensional scalar can
be defined in the input field. This variable is a
vector with three elements corresponding to I,
J and K direction respectively. It allows the
user to control the size of the O-grid portion.
For grid refinement, users can specify the
dimension of the connectors between the
inner and outer boundaries of the O-grid in
the input box.

63

The check button is
grayed out unless the propagating direction is
specified. Toggling on this option will set the
global variable to 1, align the IJK
orientation of all selected blocks in the
propagating direction, and call the procedure

. Pressing the
button will update the display with the newly
created internal connectors for topology
review. For performance concerns, the new
domains and blocks will not be created at this
point.
There are 3 buttons packed in frame D: ,

 and . The first two buttons are
linked to similar actions except OK will
perform the additional step of having Gridgen
save the new grid and exit. Abort cleans up
the temporary connectors then restores the
original grid and settings, i.e., display and
default attributes.

As shown in Fig. 4, to create O-H grids (b)
based on two adjacent H-blocks (a), the
following are the main steps:

1. Validate user input.
2. Obtain the block list in the I direction

and realign blocks if necessary.
3. Determine which domains will be

turned into “butterfly domains” and
which will be kept.

4. Locate the center domain on each
butterfly face and create its butterfly
connectors.

5. Make sure no conflicts occur at the
block interfaces.

6. Create new internal connectors in the I
direction by which the new blocks are
bounded.

7. Match up the distribution of these new
connectors with their counterparts in
the original blocks.

8. Assemble the butterfly domains and
internal domains using the new
connectors that were created.

9. Assemble the new blocks using the
new domains and remaining original
domains at the outer boundary.

Validating user input is especially important
when multiple entries (i.e., value input and
selection) are allowed in the user interface.
With that in mind, the following items are
checked before the main calculation begins:

1. Is the scaling factor valid? The three
elements must be in the range of (0, 1).

2. Is the grid point number valid? The grid
point number must be greater than 3.

3. Are there any temporary connectors that
need to be eliminated? Temporary
connectors are created for topology
preview. They have to be removed
whenever preview is updated.

4. Is the propagating block list valid? In
order to have a valid propagating block
list, all the selected blocks have to be

a) Two adjacent H-topology blocks

b) New O-H block system

64

connected one to another in the
propagating direction. The following
procedure, getParallelDirection, is used
to determine whether the two adjacent
blocks (blk1 and blk2) share a face in the
propagating direction. Being used with
several other procedures, it quickly sorts
out the block/face orientation and
execution will pause if invalid
block/direction input is observed.

proc getParallelDirection { blk1
dirmm blk2 } {
 set face [gg::blkGetFace \
 $blk1 $dirmm]
 set retDir ""
 foreach dir {I J K} {
 if { [gg::blkGetFace \
 $blk2 ${dir}MIN]==$face|| \
 [gg::blkGetFace \
 $blk2 ${dir}MAX]==$face } {
 set retDir $dir
 }
 }

 if { $retDir == "" } {
 ErrorMsg "Faces of [gg::blkName
 $blk1] and [gg::blkName $blk2]
 in the propagating direction do
 not match. Not supported."
 quit
 } else { return $retDir }
}

If the user selects blocks before and after
toggling on Propagate Topology in the user
interface, duplicated blocks may be added to
the propagating block list. To ensure no
duplicates occur, the propagating block list
needs to be updated dynamically. The
following lines are added to the butterfly
block creation procedure. This forces the
procedure to immediately return if a duplicate
is detected.

if { [lsearch -exact $createdBflyBlks
$blk] >= 0 } {
 puts "INFO: Duplicated blocks are \
 found in the propagating \
 block list."
 return
}

The createdBflyBlks list is defined as a global
variable that is updated whenever a butterfly
block is created.

The indexing method plays an important role
in creating new connectors, domains and
blocks especially in complicated applications.
For good performance, the indexing system
should operate independently to the (I, J, K)
system once it is defined.

if {$dir == "I"} {
 set max1 $jd
 set max2 $kd
 set ind3_max $id
 set ind1_min_face JMIN
 set ind1_max_face JMAX
 set ind2_min_face KMIN
 set ind2_max_face KMAX
 set ind3_min_face IMIN
 set ind3_max_face IMAX
} elseif {$dir == "J"} {
 set max1 $id
 set max2 $kd
 set ind3_max $jd
 set ind1_min_face IMIN
 set ind1_max_face IMAX
 set ind2_min_face KMIN
 set ind2_max_face KMAX
 set ind3_min_face JMIN
 set ind3_max_face JMAX
} else {
 set max1 $id
 set max2 $jd
 set ind3_max $kd
 set ind1_min_face IMIN
 set ind1_max_face IMAX
 set ind2_min_face JMIN
 set ind2_max_face JMAX
 set ind3_min_face KMIN
 set ind3_max_face KMAX
}
if { $dir == "ALL" } {
 set capMin 1
 set capMax 1
} else {
 set capMin 0
 set capMax 0
}

The string “ind3” stands for the propagating
direction selected by the user. The strings
“ind1” and “ind2” stand for the other two

65

directions respectively. Once defined, the
indices for all the domains and connectors can
be represented by two of the following
variables:

� ind1_min/max
� ind2_min/max
� ind3_min/max
� location on butterfly face (i.e., center,

ogrid1, ogrid2, ogrid3 and ogrid4)
Table 1 shows how the grid entities are
related to each other through the universal
indices.

Block Name center

Domain Index

(center, ind3_min),
(center, ind3_max),
(center, ind1_min),
(center, ind1_max),
(center, ind2_min),
(center, ind2_max)

Connector Index

(ind2_min, ind3_min),
(ind1_max, ind3_min),
(ind2_max, ind3_min),
(ind1_min, ind3_min)

......

Block Name ogrid1

Domain Index

(ogrid1, ind3_min),
(ogrid1, ind3_max),

(original face 1),
(center, ind2_min),

(corner1),
(corner2)

Connector Index

(ind2_min, ind1_min),
(ind1_min, ind3_max),
(ind2_max, ind1_min),
(ind1_min, ind3_min)

......

The following code segment assembles the
“ogrid1” block using the universal indexing
system:

gg::blkBegin -type STRUCTURED

 gg::faceBegin
 gg::faceAddDom \
 $doms(ogrid1,ind3_min)
 gg::faceEnd
 gg::faceBegin
 gg::faceAddDom \
 $doms(ogrid1,ind3_max)
 gg::faceEnd
 gg::faceBegin
 foreach dm $face1 {
 gg::faceAddDom $dm
 }
 gg::faceEnd
 gg::faceBegin
 gg::faceAddDom \
 $doms(center,ind2_min)
 gg::faceEnd
 gg::faceBegin
 gg::faceAddDom $doms(corner1)
 gg::faceEnd
 gg::faceBegin
 gg::faceAddDom $doms(corner2)
 gg::faceEnd
set blks(ogrid1) [gg::blkEnd]

This indexing method helps the script
perform efficiently and makes the debugging
process easier.

Locating the four corner points of the center
H domain (Fig. 5) is one of the most
important tasks in the script. Fig. 5 illustrates
the location of the H domain on an I_min
butterfly face. Given a scaling factor (s1, s2,
s3), the four corners of the H domain are
calculated and its orientation is kept
consistent with the original H-block face.

Fig. 5 H domain on butterfly face

66

The 1st and 2nd elements (s1 and s2) of the
scaling factor are used for calculations in J
and K direction respectively in this example.
The 3rd element (s3), which is the I direction
scaling factor, is applied only if the
propagating direction is set to “All”.
To determine the grid point indices of the two
connectors in J and K directions (Fig. 5), a
“point snapping” method is used for. The arc
length between the index 1 and index 2, for
instance, is approximately the same as that of
the connector in the J direction after being
scaled.

Fig. 6 Point snapping method

As show in Fig. 6, the arc length (“test
length”) between the beginning of the
connector and each grid point is calculated. It
is then compared with the two “target
lengths” that determine where the two points
(index 1 and 2) might be. A point is snapped
when any of the following conditions is met:

� The test length is close to the target
length #1.

� The test length is close to the target
length #2.

� The difference of the test length and
target length #1 is smaller than the
local spacing.

� The difference of the test length and
target length #2 is smaller than the
local spacing.

The following code segment snaps points
based on the above method:

set targetLength_1 [expr $iLength \
*(1.0-[lindex $oScaleFac 0]) / 2.0]

set targetLength_2 [expr $iLength \
- $targetLength_1]

set testLength 0.0
for { set ii 1 } { $ii < $max1 } \
 {incr ii 1 } {
 set testLength [expr $testLength +
[lindex $iSpacing [expr $ii-1]]]
 if { [expr abs($targetLength_1
 $testLength)] < $tol ||
 [expr abs($targetLength_2
 $testLength)] < $tol ||
 expr abs($testLength
 $targetLength_1)] < [lindex
 $iSpacing [expr $ii-1]] ||
 [expr abs($testLength
 $targetLength_2)] < [lindex
 $iSpacing [expr $ii-1]] } {
 lappend corner1_Pts [expr $ii+1]
 }
}

A check is conducted once the points are
added to the list. If no point is snapped, a
backup scheme is enforced. With this arc
length based method, the H domain is always
placed in the center region regardless of the
connector distributions.
If the propagating direction is set to “All”,
that requires the points on the 3rd direction
(i.e., the I direction) to be snapped as well.
Once the indices are obtained, they are used
for creating the connectors of the H domain.
To ensure these connectors are constrained to
the original face, they are created by a series
of segments between adjacent grid points.
Here is the code segment that achieves this:

gg::conBegin
 gg::segBegin -type 3D_LINE
 for {set ind1 $ind1_min} {$ind1
 <= $ind1_max} {incr ind1} {
 if [catch {gg::blkGetPt $blk \
 [blkGetIJK $dir $ind1 $ind2\
 $ind3]} pt] {
 gg::segEnd -nosave
 gg::conEnd -nosave
 DomPtFailed $blk $pt
 return 0
 }
 gg::segAddControlPt $pt

67

 }
 gg::segEnd
if [catch {gg::conEnd} \
 con(ind2_min,ind3_min)] {
 set con(ind2_min,ind3_min) \
 [getConnectorByEndPoints \
 [gg::blkGetPt $blk \
 [blkGetIJK $dir $ind1_min \
 $ind2 $ind3]] $pt]
}

Moreover, the butterfly domains are later
projected onto the original surface for the
shape information to be maintained.

This function is written to tackle complicated
topological situations, for example, block
faces consisting of multiple domains. This
requires those connectors shared by adjacent
faces (i.e., A and B in Fig. 7) to be reported
and placed in order.

Fig. 7 Detect connectors on sharing edge

A quick way to do this is to rule out
unqualified connectors (i.e., the internal
connectors within a face) as each domain is
inspected.

set dom_1 [lindex [gg::blkGetFace \
 $blk $face1] 0]
set dom_2 [lindex [gg::blkGetFace \
 $blk $face2] 0]
set face_2_BoundCons {}
foreach dom $dom_2 {
 set edgeList [gg::domGetEdge $dom]
 foreach edge $edgeList {
 foreach con $edge {
 if { [lsearch $face_2_BoundCons

 $con] >= 0 } {
 # DO NOTHING.
 } else {
 lappend face_2_BoundCons $con
 }
 }
 }
}

set sharingCons {}
foreach dom $dom_1 {
 set edgeList [gg::domGetEdge $dom]
 foreach edge $edgeList {
 foreach con $edge {
 if { [lsearch $face_2_BoundCons
 $con] >= 0 } {
 lappend sharingCons $con
 }
 }
 }
}

For these shared connectors to be assembled
into a domain edge, they must be connected
in the order required by the Glyph commands.
In other words, they need to be sorted if they
are not arranged that way.

Fig. 8 Sort shared connectors

Fig. 8 demonstrates how the connector list is
sorted within a few iterations to achieve the
desired order: #5, #4, #3, #2 and #1. Given
the initial arrangement: #4, #1, #5, #3, #2, for
example, two connectors switch their
locations at each iteration. One of them must
be adjacent to the end of the sorted connector
list.

68

proc edgeConsOrganizer {con1 Hcon
 con2 edge} {
 set nodeTol [gg::tolNode]
 set H_pta [gg::conGetPt $Hcon \
 -arc 0.0]
 set H_ptb [gg::conGetPt $Hcon \
 -arc 1.0]
 set cor1_pta [gg::conGetPt $con1 \
 -arc 0.0]
 set cor1_ptb [gg::conGetPt $con1 \
 -arc 1.0]
 foreach Hnode [list $H_pta $H_ptb]{
 foreach node [list $cor1_pta \
 $cor1_ptb] {
 if { [GetDist $node $Hnode] \
 > $nodeTol } {
 set edgeNode_1 $node
 }
 }
 }
 set conNum [llength $edge]
 set beginNode $edgeNode_1
 for { set i 0 } { $i < $conNum } {
incr i 1 } {
 set actualCon [lindex $edge $i]
 set temp [getConByNode
$beginNode [lrange $edge $i end]]
 set rightCon [lindex $temp 0]
 set rightConId [lsearch $edge
$rightCon]
 set beginNode [lrange $temp 1
end]
 if { [string equal $actualCon
$rightCon] != 1 } {
 set edge [lreplace $edge $i $i
$rightCon]
 set edge [lreplace $edge
$rightConId $rightConId $actualCon]
 }
 }
 return $edge
}

With the release of the new meshing
software, Pointwise, this script needs to be
rewritten using the 2nd version of Glyph that
uses an object-oriented paradigm. The
following improvements are being
considered:

� Handle other grid topologies: L-H, C-
H and O grids around body.

� Add custom libraries for specific
distributions of the O-rib connectors

to be specified. For instance, applying
a combined function of geometric and
hyperbolic tangent distributions.

� Allow arbitrary H-domain locations
(non-center) to be defined by users.
The current script tends to place the
H-domain at the center of a butterfly
face.

� Optimize frequently used components
to boost the script performance.

� Allow user to examine grid quality
before saving.

� Improve the user interface using the
advanced Tk widgets.

� Explore the possibility of parallelizing
the script for large applications.

[1] J. Steinbrenner, C. Fouts and N. Wyman,
2002, Scripting Language as a Means of
Automation in Gridgen, 8th International
Grid Conference, Honolulu, HI.
[2] Pointwise. Inc, Gridgen Glyph Reference
Manual.
[3] B. Welch, K. Jones and J. Hobbs, 2003,
Practical Programming in Tcl and Tk,
Pearson Education Inc.

I would like to express my thanks to those
who helped me with the project and writing
the paper. First and foremost, I’m grateful for
Dr. Richard Matus’s guidance, patience and
support throughout the entire project. I would
also like to thank Mr. Michael Jefferies and
Ms. Carolyn Dear for taking time to review
the paper. A special thank to Mr. Michael
Jefferies for helping me better understand the
Glyph environment.

69

70

