
Comit's CVXT Tool

Venkat Iyer

Agenda

Who am I
What is CVXT
What is Hardware Simulation
How does Tcl/CVXT Help
The Challenges and Solutions
How Coroutines Helped
Coro'ized CVXT Implementation
CVXT Usage Example
Conclusions
Acknowledgements

Ask questions anytime. I stop when I run out of time.

About the Author

EE-like Undergrad, Comp Science Grad
Main work-like Interests:

Compilers and Languages
Tools and Automation
Hardware Logic Design and Generation

Tcl since early 90s 16-bit DOS Turbo C. Big Fan.
http://wiki.tcl.tk/vi - venkat@comit.com
17 years at Comit Systems, Inc: Chips/Boards/Systems/SW

Niche Contract Engg Firm in Silicon Valley.
Comit uses Tcl for: Web Site, Internal Systems, EDA Tool-
lets, Backup, everything

CVXT
Verification Engine from the 90s
Enables writing Tcl tests for hardware designs

Hardware Modeling

always @(a or b)
 y = a & b;

1. wait for a or b to change
2. compute a AND b
3. store the value in y
4. go back to step 1

This is called one hardware
process

Hardware Simulation

Event Driven Scheduling Kernels
Millions of Virtually Parallel "Processes"
Each Process suspended on signalling events or time
Very good at modeling hardware.

Issues:
Not designed for verification (many new efforts ongoing)
Level of abstractness somewhere between C and assembly
Testing extensions need more licenses ($$$$$$$$)
New language requires new thinking

Why Tcl

One less language. Most hardware designers know Tcl.
Most EDA tools use Tcl as the scripting language

Portable, Built to be embedded
Easy to support multiple simulators and platforms

vsim, ncsim, vcs, cver, icarus.
32/64. win/lnx/amd64/sparc

Event driven (more later)
Dynamic

Saves costly HDL re-compile times if tests change
Easier OS services access

display images as they're processed
send sniffed packets into the simulator

tcltest

Simple Example

set r [get tb.ethernet0.error]
if {$r == 0} {
 put tb.ethernet0.txen -value 1
 set w [wait -signal tb.ethernet0.eof -time 1000]
 set tb.ethernet0.txen -value 0
 if {$w eq "time"} {
 error "Packet was not transmitted in 1000 ns"
 }
}

"Thread" runs one user context, typically runs tcltest on a
part of a design. Say an ethernet interface.

Challenges

Mainly due to supporting various simulators from different
vendors on multiple platforms.

Threads
pthread libc incompatibilities
ucontext with thread-enabled Tcl, windows.

Multiple Tcl Versions in one Process Space
Still support 8.3.4 in the simulator
CVXT runs bleeding edge.

Multiple Tcl Versions in One Process

Build Tcl enabling shared support.

$./configure --enable-threads –enable-shared
$ make

Link forcing resolution
$ gcc -m64 -Wl,-Bsymbolic -o cvxt.so <cvxt objects> \
 <tcl core objects> -shared <platform specific -l flags>

cvxt.so is loaded into the simulator (from command line)
Initialization is a script-mod Tcl_AppInit + startup script
Extensions to cvxt are built with -DUSE_TCL_STUBS

Enter Coroutines

The perfect match
no more threads. --disable-threads worked
simplified build (no ucontext emulation on windows)
faster threads (about 10% improvement over 10000
switches)
enables multiple contexts per thread

called branches, which share globals/procs/..

Following slides explain CVXT Implementation using
coroutines.

Coro'd CVXT: Thread Creation
proc create_thread args {
 set u0 [interp create u0]
 foreach cmd [list get put] {
 $u0 alias $cmd $cmd
 }

 $u0 eval {
 proc wait args {
 return [yield [concat u0 $args]]
 }

 proc start {} {
 catch {
 user code here sourced from $args.
 }
 }
 }
 process [$u0 eval coroutine __run__ start]
}

Coro'd CVXT: Thread Switching
proc process l {
 set child [lindex $l 0]
 foreach arg [lrange $l 1 end] {
 add call backs into simulator,
 and remember in data structure
 }
}

proc callback args {
 # called by simulator
 figure out which threads need to be awakened
 foreach interp $wakeup_threads {
 process [$thread ::__run__ $args] ;# resume the coroutine.
 }
}

CVXT: TclOO Example, Definition
class create mailbox {
 constructor {} {
 set name [namespace tail [self object]]
 if {[catch {set mbdata $shvar(mailbox_$name)}]} {
 set mbdata [list]
 }
 set shvar(mailbox_$name) $mbdata
 }
 method put args {
 lappend shvar(mailbox_$name) $args
 }
 method get {} {
 while {![llength [set mbdata $shvar(mailbox_$name)]]} {
 wait -shvar mailbox_$name
 }
 set shvar(mailbox_$name) [lrange $mbdata 1 end]
 return [lrange $mbdata 0]
 }
}

CVXT: TclOO Example, Usage

Server

mailbox create reg_writer
while 1 {
 lassign [reg_writer get] mbox op addr data
 do the register transaction in simulator or hardware
 mailbox create $mbox
 $mbox put $read_data
}

Client

mailbox create reg_writer
mailbox create reg_response
reg_writer put reg_response read 0x30943544 0x33
set reg_value [reg_response get]

Conclusions

Coroutines are good
They make multicontext event driven programming
simpler (and in my case faster)

It's good to piggyback on a language like Tcl
Has well thought out features that CVXT

Tcl makes a good verification language

Acknowledgements

John Osterhout for the Tcl Language
Activestate, the TCT, maintainers and supporters of the Tcl
Language and the Wiki
Miguel Sofer for NRE.
Many Tclers in the Chatroom
Organizers of Tcl2009.

