
Project: SCORM Compliant Content Packaging for Wiki-based

Content Development

Student: Michael Aram Mentor: Gustaf Neumann

Abstract

In this paper we present an early prototype of a
wiki-based SCORM authoring platform, which
was developed in the context of the Google
Summer of Code 2009. We based our imple-
mentation upon OpenACS’ existing wiki appli-
cation XoWiki and tried to realize the concepts
of SCORM (e.g. organizations) using existing
implementations (e.g. the categories pack-
age).

1 Introduction

SCORM The Sharable Content Object Ref-
erence Model (SCORM) [2] is a well estab-
lished standard in the e-learning world. As a
reference model it acts as an additional layer
above other established e-learning standards,
coming from a variety of organizations (IMS,
ADL, . . . ). It focuses on the interoperability
of learning management systems. To achieve
that, it standardizes the way in which learning
material should be packaged, so it can easily be
transported (content aggregation model). In
short, these content packages are folders that
contain learning resources which can be dis-
played by a web browser and a file that con-
tains meta information about these resources.

Moreover, SCORM specifies how the com-
munication between a content package and a
learning management system should take place
(run time environment). Finally, current ver-
sions of SCORM provide the means for defining
rules whether or not and in which order sub-

parts of the content package can be accessed
by the learner (sequencing). SCORM’s con-
tent aggregation model relies on, and extends,
the IMS Content Packaging specification [3].

There are a number of open source editors
for SCORM content available, like e.g. the
RELOAD Editor1 or the eLearning XHTML
editor (eXe)2. However, many of these editors
are designed to be standalone client applica-
tions and support the traditional idea of one
person authoring learning material for an au-
dience.

From the perspective of the vendor of a
learning management system, implementing
support to handle SCORM packages seems to
be a sensible investment, as it opens the system
for externally developed learning content.

.LRN and OpenACS .LRN is a power-
ful open source learning management sys-
tem based on the Open Architecture Com-
munity System (OpenACS), both completely
written in Tcl. The xo*-familiy of pack-
ages (xotcl-core, xowiki and xowf) estab-
lished itself as a flexible, generic, object ori-
ented toolkit, enabling rapid development of
arbitrary applications for both OpenACS and
.LRN. XoWiki [4] is one of the most flexi-
ble wiki-frameworks, supporting advanced con-
cepts like for example structured wiki features,
multiple access policies, flexible application in-
tegration and workflows. In the e-learning
context, XoWiki can be used as a single tool

1http://www.reload.ac.uk/editor.html
2http://exelearning.org

Page 1



for content-development for (adaptive) content
presention, blog style content distribution and
assessement. Actually, it is used in huge .LRN
installations like the Learn@WU platform of
the Vienna University of Economics and Busi-
ness3.

2 Implementation Concepts

XoWiki as a wiki application implicitly sup-
ports collaborative authoring and easy-to-use
wiki-style content creation. However, to turn
XoWiki into a SCORM player and authoring
environment, it obviously had to be extended.
The main fields we had to consider were

• importing existing content packages,

• playing the content package (i.e. provid-
ing a run time environment),

• authoring, i.e. changing the contents of
the package and its metadata, and

• exporting the content as distributable
content package.

A SCORM content package may contain a hi-
erarchy of folders. These folders are “ordinary”
file-system folders and may be used by the con-
tent developer to organize the contents of the
package. For example, he might want to put
all graphics into an images folder. These fold-
ers have no didactic meaning and are not di-
rectly presented to the learner. However, to be
able to import a content package as-it-is into
an XoWiki instance, we have to represent this
hierarchic structure.

Moreover, to play a valid SCORM package,
a special JavaScript object has to be provided,
the so-called “API Adapter”. It is used to ex-
change information with the learning manage-
ment system, e.g. the students’ name.

In our approach, each SCORM package is
represented as a single XoWiki instance. Thus,
authoring the actual contents of a SCORM
package, i.e. the contained HTML pages and
files, basically means editing a wiki instance.

3https://learn.wu.ac.at

Figure 1: XoWiki-SCORM Player

Figure 1 shows a screenshot of an exam-
ple SCORM content package4 played by an
xowiki-scorm instance.

2.1 Folders

The main challenge regarding the import of
content packages into a wiki instance was the
lack of a “folder” implementation for XoWiki.
So far, each XoWiki instance used to have a sin-
gle content repository folder associated. This
means that all content inside an XoWiki in-
stance was stored inside this single folder in a
flat structure.

We decided to implement these folders us-
ing the OpenACS content repository folders.
As a consequence, our prototype allows for
each XoWiki instance a hierarchy of content-
repository folders, instead of only a single root
folder.

2.2 Organizations

The IMS CP specification, on which the
SCORM content aggregation model is based,
allows the structuring of content in so called or-
ganizations, which are represented as XML in

4One of the “Golf Examples” provided by
Rustici Software (http://www.scorm.com/scorm-
explained/technical-scorm/golf-examples/).

Page 2



the manifest file. In contrast to the folders in-
troduced above, these organizations are finally
presented to the learner to navigate through
the content of the SCORM package. A content
package may only have one folder structure,
but an arbitrary amount of organizations.

There are already two established methods
for organizing the pages inside an XoWiki in-
stance, i.e. categories and page order.

One can use the categories OpenACS
package to create category trees and relate
them to the XoWiki instance. Each wiki page
can be mapped to an arbitrary amount of cat-
egories. In SCORM terminology, a wiki page
acts as a resource and the categories which it
is mapped to are items.

The second approach is based on XoWiki’s
“book mode” and uses “page order values”,
which may be assigned to each XoWiki page.
This approach is the basis for exporting exist-
ing “XoWiki Books” as SCORM content pack-
ages, but it limited to only one organization
per package.

When importing a content package, our pro-
totype maps existing organizations to both cat-
egory trees and (the default organization) as
page order values.

3 Summary & Outlook

Among the outcomes of this project are the
OpenACS packages ims-cp and scorm, which
are prototypical implementations of the respec-
tive standards, and the xowiki-scorm package,
a sub-package of xowiki that is based upon
them.

Our prototype is a proof of concept and is
still subject to changes and development. At
the time of writing, the ims-cp package im-
plements the most important concepts defined
by the IMS CP 1.1.4 specification, i.e. classes
to generate and manipulate manifests (includ-
ing organizations, items, files, and resources)
and render them into an XML representation.
Concepts that were not immediately needed
for a prototypical implementation (most no-
tably metadata, sub-manifests and external re-

Figure 2: XoWiki-SCORM Architecture
Overview

sources) have still to be dealt with, though.
The scorm package focuses on version 1.2 of

the SCORM. In the current state, it can be
seen as a lightweight extension of the ims-cp
package that contains static resources (e.g.
XML Schema files, which are required by all
valid SCORM packages) and includes them in
the manifest. In addition to that, it provides
the client-side JavaScript-based API Adapter
together with the server-side SCORM API.
However, the server-side API currently only
satisfies the most basic needs of content pack-
ages, e.g. answering their calls to essential
SCORM API functions like LMSInitialize()
or LMSFinish(). The persistence and correct
handling of session data generated by a stu-
dent during a learning session still has to be
implemented.

The xowiki-scorm package provides the
classes for importing the resources of a
SCORM content package into an XoWiki in-
stance. The mapping of SCORM organizations
to data structures used by XoWiki (i.e. cate-
gory trees and page order values) is also imple-
mented in this package. Additionally, it con-
tains template files that allow the playing of
a SCORM content package (as shown in Fig-
ure 1) by providing the client-side API and a
dedicated frame, as specified by the SCORM

Page 3



standard. Finally, an export mechanism has
been integrated that dumps the contents of
an XoWiki instance into a SCORM compliant
content package and considers the associated
category trees and page order values when gen-
erating the manifest.

In the upcoming months, we will focus on
implementing the missing features mentioned
above. Development progress will be published
on the project’s homepage [1].

References

[1] XoWiki-SCORM. URL http://wiki.
tcl.tk/23190. Homepage of the GSoC
2009 Project: SCORM Compliant Content
Packaging for Wiki-based Content Develop-
ment.

[2] Philip Dodds (ADL) et al. SCORM 1.2
Documentation Suite. Technical report,
Advanced Distributed Learning Initiative,
2001. URL http://www.adlnet.gov.

[3] Colin Smythe (IMS) and Alex Jackl
(IMS). IMS Content Packaging Speci-
fication v1.1.4. Technical report, IMS
Global Learning Consortium, 2004. URL
http://www.imsglobal.org/content/
packaging/.

[4] Gustaf Neumann. XoWiki Documenta-
tion. URL http://media.wu-wien.ac.
at/download/xowiki-doc/.

Page 4


