
 1

Abstract—Tcl's support for the implementation of domain
specific languages (DSLs) has been used to define a language for
describing the readout and initial unpacking of data from nuclear
physics experiments. The DSL described has been tailored to the
Weiner VM-USB USB/VME interface module, and the
NSCLSpecTcl data analysis software. I will describe the
extensions to TCL and a case study where this system was
deployed at Säteilyturvakeskus (STUK) [1], the Radiation and
Nuclear Safety Authority of Finland.

I. INTRODUCTION

In this paper we will describe the implementation and
deployment of a domain specific language for describing
nuclear physics experiments. Interpretation of this language by
extended Tcl interpreters provides for an end-to-end
configuration of an experiment.

The presentation is divided into the following sections:

• Background - describes nuclear physics experimental
techniques, how these techniques are crossing over into
the field of environmental nuclear physics.

• Hardware and software structure
• Domain specific language structure and usage
• Results and Conclusions – describes the experienced of

the Säteilyturvakeskus (STUK) Particles And Non
Destructive Analysis (PANDA) group with the deployed
system.

II. BACKGROUND

To set the stage for the development of the DSL, we need two
pieces of background. The first are the techniques of modern
accelerator based nuclear physics experiments, the second,

problems making measurements in the field of environmental
nuclear physics. The discussion of these disparate fields will
turn up a surprising opportunity for synergy that the PANDA
group at STUK is in the process of exploiting.

A. Nuclear Physics Experimental Techniques

In accelerator-based experiments in nuclear physics, an
accelerator produces a beam of ions moving with some energy.
These ions bombard an experimental target where the some
incident nuclei will interact with a nucleus in the target.

The result of each collision is a projectile fragment, and zero or
more target fragments. Detectors arranged around the target
provide measures, of the energy, mass and atomic number of
these fragments. Computerized data acquisition systems
acquire data from each event, and present them to applications
that can record or analyze each collision online.

This simplified description glosses over the uncontrolled nature
of these experiments. For each collision, several variables
cannot be controlled:

• The incoming beam of accelerated ions is not mono-
energetic.

• The incoming beam may not be pure.
• The distance between the centers of mass of the

projectile and target nucleus (impact parameter) is
random.

• The quantum mechanical nature of the nucleus implies
that even given identical pre-conditions, the result is
some probability distribution over the kinematically
allowed results.

Physicists have become quite adept at using coincidence
experiments, and event selection to analyze only the results of
interesting interactions.

A Domain Specific Language for defining
Nuclear Physics Experiments.

R. Fox
National Superconducting Cyclotron Laboratory

Michigan State University
East Lansing, MI 48824-1321

K. Paräjärvi, J. Turunen, H. Toivonen
Säteilyturvakeskus
Helsinki, Finland

 2

B. Environmental Nuclear Physics

Environmental Nuclear Physics seeks to understand, and
quantify the hazards to people, and the ecology from the
radionuclides in the environment. The Säteilyturvakeskus
(STUK) is a Finnish governmental agency that, among other
things, studies environmental nuclear physics in Finland and the
surrounding regions.

STUK's work includes:

• Locating and quantifying presence of Radon gas due to
the uranium rich geology of Finland.

• Monitoring the remaining traces of the Chernobyl plume
of 1986.

• Checking for leaks and released waste from nuclear
power plants.

• Contract work with former Soviet Union states to
determine if dredging harbors is safe given that nobody
knows where and how the Soviet Union disposed of
spent naval nuclear reactor cores.

• Verification that nuclear power plants meet required
construction standards.

The tool of choice for environmental nuclear physics is gamma
ray spectroscopy. Fissionable nuclei decay by alpha emission
to a daughter nucleus. After alpha decay, the daughter nucleus
is in an excited state that rapidly decays to the ground state
emitting a gamma ray with energy that is characteristic of the
energy of the excited state. The energy of the gamma ray can
uniquely identify daughter nucleus and therefore the parent.

Just as the description of accelerator-based experiments is
simplified, the previous paragraph oversimplifies the process of
analyzing a sample of air, earth or water for the presence of
specific isotopes. Figure I. below shows the rate at which
counts in a high purity Ge detector increment as a function of
energy [2].

Due to the presence of naturally occurring radioactive elements
isotopes, over 50 distinct peaks are observed in this spectrum,
which sits on top of a large continuum of background.
Since samples tend to be small, this natural background often
obscures the peaks one is looking for. It is here that we can
find a synergy between experimental nuclear physics and
environmental nuclear physics.

In most cases we are interested in heavy elements. These decay
by emitting an alpha particles as well as a characteristic
gamma ray. The normal experimental nuclear physics
technique would be to set up a pair of detectors: One sensitive
to alpha particles and the other sensitive to gammas. In
analyzing the data, or at the electronics trigger level, we would
require a gamma to be in time coincidence (in the same decay
event), as an alpha.

Figure 2 below shows the results of tests STUK did at the
nuclear research lab in Jyväskylä [3]. Alpha-Gamma
coincidence events were acquired from the "Thule" particle, a
25µm diameter particle that is thought to be a piece of weapons
grade material. Note how the background is completely
removed by requiring the coincidence.

The two (possibly three) peaks that remain come from (right to
left) the decays of 241Am and 235U and 239Pu. The Uranium
and Plutonium peaks are present because 239Pu is the weapons
grade material of choice and 235U is a daughter product of the
decay of 239Pu. 241Am is produced as an unintended by-
product of the process that produces 239Pu.

III. HARDWARE AND SOFTWARE

On the basis of its tests at Jyväskylä, STUK contracted to have
a dedicated data taking system constructed. They chose to base
this system on the open sourced NSCL data acquisition

Figure 1 Natural gamma background spectrum

0 200 400 600 800 1000
0

10

20

150

200

250

300

350

400

C
ou

nt
s

 γ-spectrum
 Background
 α-gated γ-spectrum

 241Am
59.5 keV

Figure 2 Thule particle spectrum

 3

system[4] and the NSCLSpecTcl [5] online analysis and display
system. While the initial contract specified data taking from a
32x32 double sided silicon strip detector (DSSSD) and a
High Purity Germanium (HPGe) detector, the counting
chamber they constructed was considerably more flexible. The
contract therefore specified a system that was expandable and
upgradeable by STUK personnel.

Figure 3 shows the STUK PANDA (Particles And Non
Destructive Analysis) counting chamber. An airlock allows the
sample holder to be removed from the system without losing
vacuum in the counting area. The chamber contains two
counting areas. Counting area 1 is initially instrumented with a
DSSSD detector and an HPGe detector. The HPGe detector is
the detector of choice for high precision gamma ray
spectroscopy. The DSSSD detector is charged particle
sensitive, and consists of 32 vertical and 32 horizontal
segments. The subdivision of the detector allows for a
reconstruction of the position of the sample in a sample holder.
The bag of Panda brand licorice on the counting chamber gives
a sense for the size of the chamber.

Counting area 2 is not yet populated. However one idea for
future expansion would be to do a coarse determination of the
position of the active particle in the sample holder in position 1
and then moving the sample to counting area 2 for a more
precise position identification or more precise alpha energy
determination. Future developments could include the
deployment of other charged particle detectors in counting area
1, such as micro channel plate detectors or pixilated silicon
detectors.

The electronics used to take data from this system is shown in
block diagram form in Figure 4:

• The Mesytec, MADC32 is a new peak sensing ADC
capable of digitizing peak heights from signals that have
rise times and durations typical of those seen in nuclear
particle detectors.

• The VM-USB is an FPGA based intelligent readout system
It is capable of sub-microsecond trigger latencies and can
initiate a VME-bus transfer every 230ns. It transfers data
to a host computer at full USB-2 data rates.

Software is the standard NSCL data acquisition system with the
readout component tailored for the VM-USB. See the block
diagram in Figure 5 below for the structure of this software.

IV. THE DOMAIN SPECIFIC LANGUAGE

 We chose to use a domain specific language to configure the
readout program and NSCLSpecTcl's initial unpack of the raw
event data. A domain specific language allows users who are
not expert hardware programmers to easily select and configure
the set of digitizers they use and which ones to read in response

Figure 3 The STUK PANDA setup

Figure 4 STUK electronics block diagram

Figure 5 Software block diagram

 4

to a trigger. Using the DSL description of the experiment to
drive NSCLSpecTcl's event unpacking ensures consistency
between the readout software and the analysis software.

 In this section several aspects of the DSL will be described:

• The general form of the language
• The Readout program's configuration parameter subsystem.
• How the Readout program uses the language
• How NSCLSpecTcl interprets the DSL configuration.

A. Form of the DSL

The DSL we have created and used describes how to configure
VME based electronics, and how the VM-USB should respond
to triggers. A command ensemble represents each supported
electronics module type. While the STUK system is now
entirely composed of Mesytec MADC-32 ADCs, command
ensembles that support many other digitizers in use in nuclear
experimental physics have also been implemented. Each
command ensemble implements a minimum of three standard
subcommands:

• create - creates a new instance of this module type and

supplies a name and an optional configuration string
• config - further configures an existing instance of a module

type.
• cget - queries the configuration of a module type as a set

of configuration option/value pairs.

The configuration of a module instance is a set of option/value
pairs. Each module type declares the set of options it supports.
The resemblance to Tk is intentional. Where Tk creates and
configures 'virtual objects' that have screen presence, our DSL
creates and configures software proxies that control actual
hardware physically present in the system.

The VM-USB is capable of responding to up to 8 trigger
conditions. These include front panel signals, a repeating
timer, and VME backplane interrupts. In response to a trigger,
the VM-USB executes a set of pre-programmed VME
operations called a stack. Stacks can contain arbitrary VME
reads and writes as well as block transfers. Write data is inline
while data read is buffered into the event that corresponds to
the trigger. Blocks of events are delivered to the host computer
over the USB-2 interface.

 The VM-USB is modeled as an electronics module class that
can provide stack instances. Stack instances can be configured
just like any other electronics module. They have a -trigger
option that specifies the trigger source, and -modules option
that is a list of other non-stack modules that will be read in
response to the stack instance's trigger.

Here is a segment of the initialization file used for the STUK
alpha-gamma coincidence measurements:

The first set of madc commands create and configure the
MADC32 instance named dsssd1.y. The vertical strips (y
orientation), will be digitized by this ADC. The -thresholds
option takes a Tcl list of 32 channel thresholds. If any channel's
signal height would convert below its threshold value, the data
from that channel is suppressed from the event’s output data.

The stack command creates and configures the events stack.
This stack is used to respond to the primary event trigger. The
primary event trigger is configured to be the VM-USB NIM1
input. The list of modules to read is the value of the -modules
switch. A 15-microsecond delay between trigger and stack
execution is configured to allow the modules to convert their
input signals before their readout begins.

B. Configuration Parameter Subsystem

The create subcommand of a device command in the DSL will
create an instance of a device driver class. The management of
the configuration database is a significant part of what a
physical device driver module must do. Configuration
management has been factored into a subsystem dedicated to
processing, validating, and storing and fetching configuration
parameters.

When a device driver instance is created, it is responsible for
registering its configuration options. Configuration option
values are strongly typed and in many cases additional
constraints may apply. For example, the madc32 –threshold
value must be a list of exactly 32 integers and each integer must
lie in the range 0 through 4095.

When the device driver registers a parameter option with its
configuration database, it can specify an optional validation
function. The validation function, or validator, verifies that a
proposed configuration option value is legal. An optional

madc create dsssd1.y -base 0x50000000 -id 5 -ipl 0
madc config dsssd1.y -gatemode common \
 -gategenerator disabled
madc config dsssd1.y -inputrange 8v
madc config dsssd1.y -timestamp on -timingsource vme \
 -timingdivisor $madcTimeDivisor
madc config dsssd1.y -thresholds $thresholds
...
stack create events
stack config events -trigger nim1 \
 -modules [list dsssd1.x dsssd1.y hpge] \
 -delay 15

Example 0 Configuration file segment

 5

validator parameter allows value constraints to be passed to the
validator.

The configuration subsystem supplies validators for the most
commonly used data types. These stock validators include a
flexible set of constraint arguments that cover most needs. For
example, the list validator constraint parameter is a structure
that allows lower and upper limits to be set on the list size as
well as an additional validator function and parameter to be
applied to each element of the list. Configuration parameter
values are always stored as strings.

Device driver instances must query the device database when
programming the hardware. The configuration subsystem
provides functions that allow drivers to fetch configuration
parameters from their configuration databases. While
configuration parameter values are stored as strings, the
configuration parameter database subsystem provides member
functions that allow a parameter to be fetched and converted
into the most common data types as well.

C. Readout’s Use of the DSL

Each supported electronics module consists of two C++ classes.
The first class is the module device driver. Instances of the
module device driver are responsible for:

• Describing a set of configuration parameters, their

validators and constraints.
• Preparing a hardware device for data taking in accordance

with its configuration database settings.
• Contributing elements to the stacks to which this instance

was added.

The second class is the module's command ensemble. The
command ensemble is implemented using the template pattern.
Specific command ensemble classes need only provide a
function that knows how to create a driver instance for their
module type.

At the beginning of each run Readout;
• Forgets all existing module device driver instances.
• Constructs a new Tcl interpreter to process the

configuration DSL script.
• Gets each module device driver to register its command

ensemble with the interpreter
• Processes the script.
• Initializes appropriate modules, and stacks.

When the configuration script is processed, it will, in invoke
commands in the DSL. The create subcommand of each DSL
command ensemble creates a new device driver instance,
attaches a configuration database to that instance.
Readout then asks the driver instance to declare its
configuration parameters to its configuration database instance.

The config command locates the appropriate device driver
instance, obtains its configuration database and passes
configuration value/option pairs to the driver instance reporting
any errors. This command can operate without involving the
device driver instance in any way, unless the driver has
provided a custom validator.

The cget subcommand locates the driver instance, and its
configuration database, and produces a dump of that database
as a Tcl list of name/value pairs as the command result. cget
provides the configuration script with the ability to introspect
the properties of known modules.

Any errors detected when processing the configuration script
result in an informative error message. Errors cancel data
taking.

When the configuration script has been processed without
errors, the hardware is initialized, and stacks loaded into the
VM-USB. The VM-USB must be programmed respond to
triggers. The stacks defined in the DSL description drive the
hardware initialization and stack generation. The assumption is
that there's no point in initializing hardware that does not
participate in data taking.

When a driver instance is created it is stored with two lookup
keys. The first key is the name of the instance (the name on the
create subcommand). The second key is the class of device
(provided by the creator). The Readout software gets a list of
all of the driver instances of class stack. These are instances of
VM-USB stack drivers. The stacks are asked to initialize
themselves. They do this by locating the driver instance for
each module in their -module configuration option list and
asking each one to initialize itself in turn. The driver instance
initialization member functions interrogate their configuration
database and interact with the VM-USB to setup the hardware
as desired. At this time the stack also does whatever stack
specific initialization it must do such as setting the trigger
condition for the stack.

Once the hardware has been initialized, the stack module
instances take another pass through their module lists. Each
module instance is asked to contribute instructions to a data
structure that is a direct representation of a VM-USB stack.
These stacks are then loaded into the VM-USB, and VM-USB
trigger processing is enabled.

D. NSCLSpecTcl’s use of the DSL

NSCLSpecTcl is a general-purpose histogramming package for
nuclear physics event data. NSCLSpecTcl has been described
in detail in a previous Tcl conference [5]. Figure 6 below

 6

shows the flow of data through NSCLSpecTcl and highlights
the subset of SpecTcl that must manage the domain specific
experiment description file.

NSCLSpecTcl's first stage of analysis decodes raw events to a
set of parameters. Normally this decode is done by hand
written experiment specific code. Since the format of an event
is fully determined by the order and types of the modules read
out, using a DSL to specify the experiment enables the use of a
general-purpose event decoder that is driven by that
description.

NSCLSpecTcl needs only a subset of the information supplied
by the module creation and configuration commands.
Specifically, for each module, it must know the type of that
module. For each stack, it must know the stack number
(determined by the trigger configuration) and the ordered list of
modules in that stack.

Some further metadata must be supplied, however.
NSCLSpecTcl needs to know the names of the parameters into
which the channels of each electronics module must be
unpacked. The user supplies this data via a Tcl array. The Tcl
array is indexed by module name. Its elements are the list of
the names of parameters the named module has. In early
versions of the DSL, each module device driver provided a
-parameters option, which was ignored by the device driver and
processed by NSCLSpecTcl. Users, however think of the
electronics configuration and parameter naming as separate
processes and therefore reacted better to this scheme.

Two commands stackmap and parammap have been added to
NSCLSpecTcl. stackmap defines, for each stack the order and
type of the modules read by that stack. parammap defines the
set of parameters each module supplied SpecTcl. A pure Tcl
script interprets the experiment description file for

NSCLSpecTcl , issues the appropriate stackmap and
parammap commands, and even creates an initial set of
spectra for all of the raw parameters.

NSCLSpecTcl DSL script interpretation is broken into two
components. configFile.tcl interprets the DSL creating global
arrays that are an equivalent description of the experiment. A
second script, spectclSetup.tcl operates on this global data to
issue the correct set of parammap and stackmap commands
along with the appropriate NSCLSpecTcl commands.

Separating the parsing of the configuration file from issuing the
resulting NSCLSpecTcl commands allows the configFile.tcl
package to be re-used. The STUK contract specified the
delivery of a conversion program from NSCL Event file format
to an equivalent XML representation. In writing this program
we were able to re-use configFile.tcl as well as the
NSCLSpecTcl module unpackers.

V. RESULTS AND CONCLUSIONS

Development of the software for STUK contract was was
completed in late May 2008. Acceptance testing with pulsers
was done at the NSCL in June 2008 and required very little
tweaking. An installation/training visit to STUK was arranged
for late July. R. Fox spent an initial 5 days in Helsinki doing
installation and training. This was followed by nine days for the
STUK staff to use the system by themselves (while R. Fox
junketed about Helsinki, Estonia and Germany) Finally, R. Fox
returned to STUK for two days of follow up.

The system was assembled, connected to the detectors and
taking data from a triple alpha source within the first 1/2-day.
As STUK had not yet received their HPGe detector we were
unable to look at gamma ray spectra. The next few days
demonstrated several issues with the Mesytec MADC32, which
fortunately could be resolved via e-mailed firmware updates,
applied while at STUK. This trouble shooting often involved
re-cabling the DSSSD to different ADC channels, which, in
turn changed the position mapping between ADC, channel and
detector position. The DSL and metadata approach allowed us
to change the configuration file almost as quickly as we
changed cabling.

With the ADC issues resolved, R. Fox provided about 2 or
three hours of training on configuration script writing with the
DSL. One of the STUK staff members involved with the
project, K. Peräjärvi, had some prior experience with Tcl.
Following the training, the STUK staff was presented with the
following set of real-world exercises:

1. Re-cable the DSSSD back to its original configuration and

adjust the channel/parameter map appropriately.
2. Add a pulser channel that would simulate a high-resolution

silicon detector in station 2.

Figure 6 SpecTcl Dataflow

 7

3. Determine and set the MADC32 thresholds to suppress
channels without valid conversions.

The STUK users easily handled these problems.

At the end of the first week of onsite support, the STUK staff
was able to borrow an HPGe detector from Jyväskylä that could
be used with their chamber. In their week of unsupported use
they took data from the Thule particle described in section II
and were easily able to reproduce the background subtracted
spectrum from their Jyväskylä test run. Additional run time
allowed them to clearly see the 239Pu peak that was only
tentatively identified during the Jyväskylä tests.

Throughout the installation and training, members of other
groups at STUK often stopped by the lab to see the system. All
were excited about the capabilities of the system, and at how
easy it was to reconfigure the software via the DSL. Many
speculated on other applications for the system.

The European Atomic Energy Commission EURATOM is
closely following the work at STUK with the idea that the
system could be distributed to safety groups in other member
countries.

For the most part we are satisfied with the DSL. The main
weakness is the need to modify the source code of the compiled
readout application to add support for a new device type to the
system. If I we were starting again, it might be a better choice
to expose lower level VM-USB primitives to the Readout
interpreter and then build the device driver software on top of
that in pure Tcl (e.g. as snit::type’s).

This approach is possible for the Readout software, because
device driver software is only involved at the start of data
taking, and therefore not speed critical. NSCLSpecTcl is a
different matter, however. The device unpacking software lives
in the innermost innermost loop of software that must process
literally millions of events. NSCLSpecTcl does not have to
interact with the hardware and is therefore much simpler
software for members of the physics community to extend.

VI. REFERENCES

[1] http://www.stuk.fi
[2] A very long-term HPGe-background gamma spectrum

P Bossew Applied Radiation and Isotopes 62 (2005) 635-
644

[3] K. Peräjärvi et al. in publication process for IEEE TNS
and private communication with J. Turunen (STUK).

[4] Real-Time Results Without Real-Time Systems R. Fox et
al. IEEE TNS Vol 51. No. 3 June 2004 571-575

[5] SpecTcl: A Nuclear Physics Data Analysis package Ron
Fox Tcl 11'th Annual Tcl Conference New Orleans, LA
http://www.tcl.tk/community/tcl2004/Papers/RonFox/fox.p
df

