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Abstract—Tcl's support for the implementation of domain 
specific languages (DSLs) has been used to define a language for 
describing the readout and initial unpacking of data from nuclear 
physics experiments. The DSL described has been tailored to the 
Weiner VM-USB USB/VME interface module, and the 
NSCLSpecTcl data analysis software. I will describe the 
extensions to TCL and a case study where this system was 
deployed at Säteilyturvakeskus (STUK) [1], the Radiation and 
Nuclear Safety Authority of Finland. 

 

I. INTRODUCTION 

In this paper we will describe the implementation and 
deployment of a domain specific language for describing 
nuclear physics experiments.  Interpretation of this language by 
extended Tcl interpreters provides for an end-to-end 
configuration of an experiment. 
 
The presentation is divided into the following sections: 
 

• Background - describes nuclear physics experimental 
techniques, how these techniques are crossing over into 
the field of environmental nuclear physics. 

•  Hardware and software structure 
• Domain specific language structure and usage 
•  Results and Conclusions – describes the experienced of 

the Säteilyturvakeskus  (STUK) Particles And Non 
Destructive Analysis (PANDA) group with the deployed 
system. 

II. BACKGROUND 

 
To set the stage for the development of the DSL, we need two 
pieces of background.  The first are the techniques of modern 
accelerator based nuclear physics experiments, the second, 

problems making measurements in the field of environmental 
nuclear physics.  The discussion of these disparate fields will 
turn up a surprising opportunity for synergy that the PANDA 
group at STUK is in the process of exploiting. 
 

A. Nuclear Physics Experimental Techniques 

In accelerator-based experiments in nuclear physics, an 
accelerator produces a beam of ions moving with some energy.  
These ions bombard an experimental target where the some 
incident nuclei will interact with a nucleus in the target. 
 
The result of each collision is a projectile fragment, and zero or 
more target fragments. Detectors arranged around the target 
provide measures, of the energy, mass and atomic number of 
these fragments.  Computerized data acquisition systems 
acquire data from each event, and present them to applications 
that can record or analyze each collision online. 
 
This simplified description glosses over the uncontrolled nature 
of these experiments.  For each collision, several variables 
cannot be controlled: 
 

• The incoming beam of accelerated ions is not mono-
energetic. 

• The incoming beam may not be pure. 
• The distance between the centers of mass of the 

projectile and target nucleus (impact parameter) is 
random. 

• The quantum mechanical nature of the nucleus implies 
that even given identical pre-conditions, the result is 
some probability distribution over the kinematically 
allowed results. 

 
Physicists have become quite adept at using coincidence 
experiments, and event selection to analyze only the results of 
interesting interactions. 
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B. Environmental Nuclear Physics 

 
Environmental Nuclear Physics seeks to understand, and 
quantify the hazards to people, and the ecology from the 
radionuclides in the environment.  The Säteilyturvakeskus 
(STUK) is a Finnish governmental agency that, among other 
things, studies environmental nuclear physics in Finland and the 
surrounding regions.  
 
STUK's work includes: 
 

• Locating and quantifying presence of Radon gas due to 
the uranium rich geology of   Finland. 

• Monitoring the remaining traces of the Chernobyl plume 
of 1986. 

• Checking for leaks and released waste from nuclear 
power plants. 

• Contract work with former Soviet Union states to 
determine if dredging harbors is safe given that nobody 
knows where and how the Soviet Union disposed of 
spent naval nuclear reactor cores. 

• Verification that nuclear power plants meet required 
construction standards. 

 
The tool of choice for environmental nuclear physics is gamma 
ray spectroscopy.  Fissionable nuclei decay by alpha emission 
to a daughter nucleus. After alpha decay, the daughter nucleus 
is in an excited state that rapidly decays to the ground state 
emitting a gamma ray with energy that is characteristic of the 
energy of the excited state.  The energy of the gamma ray can 
uniquely identify daughter nucleus and therefore the parent. 
 
Just as the description of accelerator-based experiments is 
simplified, the previous paragraph oversimplifies the process of 
analyzing a sample of air, earth or water for the presence of 
specific isotopes.  Figure I. below shows the rate at which 
counts in a high purity Ge detector increment as a function of 
energy [2].  

 
Due to the presence of naturally occurring radioactive elements 
isotopes, over 50 distinct peaks are observed in this spectrum, 
which sits on top of a large continuum of background. 
Since samples tend to be small, this natural background often 
obscures the peaks one is looking for.   It is here that we can 
find a synergy between experimental nuclear physics and 
environmental nuclear physics. 
 
In most cases we are interested in heavy elements.  These decay 
by  emitting an  alpha particles as well as a characteristic 
gamma ray.  The normal experimental nuclear physics 
technique would be to set up a pair of detectors:  One sensitive 
to alpha particles and the other sensitive to gammas.  In 
analyzing the data, or at the electronics trigger level, we would 
require a gamma to be in time coincidence (in the same decay 
event), as an alpha. 
 
Figure 2 below shows the results of tests STUK did at the 
nuclear research lab in Jyväskylä [3].  Alpha-Gamma 
coincidence events were acquired from the "Thule" particle, a 
25µm diameter particle that is thought to be a piece of weapons 
grade material.  Note how the background is completely 
removed by requiring the coincidence.  
 

 
The two (possibly three) peaks that remain come from (right to 
left) the decays of 241Am and 235U and 239Pu.  The Uranium 
and Plutonium peaks are present because 239Pu is the weapons 
grade material of choice and 235U is a daughter product of the 
decay of 239Pu. 241Am is produced as an unintended by-
product of the process that produces 239Pu. 
 

III. HARDWARE AND SOFTWARE 

 
On the basis of its tests at Jyväskylä, STUK contracted to have 
a dedicated data taking system constructed.  They chose to base 
this system on the open sourced NSCL data acquisition 

 

Figure 1 Natural gamma background spectrum 
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system[4] and the NSCLSpecTcl [5] online analysis and display 
system.   While the initial contract specified data taking from a 
32x32 double sided silicon strip detector (DSSSD) and a  
High Purity Germanium (HPGe) detector, the counting 
chamber they constructed was considerably more flexible.  The 
contract therefore specified a system that was expandable and 
upgradeable by STUK personnel. 
 
Figure 3 shows the STUK PANDA (Particles And Non 
Destructive Analysis) counting chamber.  An airlock allows the 
sample holder to be removed from the system without losing 
vacuum in the counting area.  The chamber contains two 
counting areas.  Counting area 1 is initially instrumented with a 
DSSSD detector and an HPGe detector.  The HPGe detector is 
the detector of choice for high precision gamma ray 
spectroscopy.   The DSSSD detector is charged particle 
sensitive, and consists of 32 vertical and 32 horizontal 
segments.  The subdivision of the detector allows for a 
reconstruction of the position of the sample in a sample holder.  
The bag of Panda brand licorice on the counting chamber gives 
a sense for the size of the chamber. 

 
Counting area 2 is not yet populated.  However one idea for 
future expansion would be to do a coarse determination of the 
position of the active particle in the sample holder in position 1 
and then moving the sample to counting area 2 for a more 
precise position identification or more precise alpha energy 
determination. Future developments could include the 
deployment of other charged particle detectors in counting area 
1, such as micro channel plate detectors or pixilated silicon 
detectors. 
 
The electronics used to take data from this system is shown in 
block diagram form in Figure 4: 
 
 

• The Mesytec, MADC32 is a new peak sensing ADC 
capable of digitizing peak heights from signals that have 
rise times and durations typical of those seen in nuclear 
particle detectors.  

• The VM-USB is an FPGA based intelligent readout system 
It is capable of sub-microsecond trigger latencies and can 
initiate a VME-bus transfer every 230ns.  It transfers data 
to a host computer at full USB-2 data rates. 

 
Software is the standard NSCL data acquisition system with the 
readout component tailored for the VM-USB.  See the block 
diagram in Figure 5 below for the structure of this software.   
 

IV. THE DOMAIN SPECIFIC LANGUAGE 

  We chose to use a domain specific language to configure the 
readout program and NSCLSpecTcl's initial unpack of the raw 
event data.  A domain specific language allows users who are 
not expert hardware programmers to easily select and configure 
the set of digitizers they use and which ones to read in response 

 

Figure 3 The STUK  PANDA setup 

 

Figure 4 STUK electronics block diagram 

 

Figure 5 Software block diagram 
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to a trigger.  Using the DSL description of the experiment to 
drive NSCLSpecTcl's event unpacking ensures consistency 
between the readout software and the analysis software.  
 
  In this section several aspects of the DSL will be described: 
 
• The general form of the language 
• The Readout program's configuration parameter subsystem. 
• How the Readout program uses the language 
• How NSCLSpecTcl interprets the DSL configuration. 
 

A. Form of the DSL 

 
The DSL we have created and used describes how to configure 
VME based electronics, and how the VM-USB should respond 
to triggers. A command ensemble represents each supported 
electronics module type.  While the STUK system is now 
entirely composed of Mesytec MADC-32 ADCs, command 
ensembles that support many other digitizers in use in nuclear 
experimental physics have also been implemented.  Each 
command ensemble implements a minimum of three standard 
subcommands: 
 
• create - creates a new instance of this module type and 

supplies a name and an optional configuration string 
• config - further configures an existing instance of a module 

type.  
• cget   - queries the configuration of a module type as a set 

of configuration option/value pairs. 
 
The configuration of a module instance is a set of option/value 
pairs.   Each module type declares the set of options it supports. 
The resemblance to Tk is intentional. Where Tk creates and 
configures 'virtual objects' that have screen presence, our DSL 
creates and configures software proxies that control actual 
hardware physically present in the system. 
 
The VM-USB is capable of responding to up to 8 trigger 
conditions.   These include front panel signals, a repeating 
timer, and VME backplane interrupts.  In response to a trigger, 
the VM-USB executes a set of pre-programmed VME 
operations called a stack.   Stacks can contain arbitrary VME 
reads and writes as well as block transfers. Write data is inline 
while data read is buffered into the event that corresponds to 
the trigger.  Blocks of events are delivered to the host computer 
over the USB-2 interface. 
 
  The VM-USB is modeled as an electronics module class that 
can provide stack instances. Stack instances can be configured 
just like any other electronics module.  They have a -trigger 
option that specifies the trigger source, and -modules option 
that is a list of other non-stack modules that will be read in 
response to the stack instance's trigger.  

Here is a segment of the initialization file used for the STUK 
alpha-gamma coincidence measurements: 

The first set of madc commands create and configure the 
MADC32 instance named dsssd1.y. The vertical strips (y 
orientation), will be digitized by this ADC.  The -thresholds 
option takes a Tcl list of 32 channel thresholds. If any channel's 
signal height would convert below its threshold value, the data 
from that channel is suppressed from the event’s output data. 
 
The stack command creates and configures the events stack. 
This stack is used to respond to the primary event trigger.  The 
primary event trigger is configured to be the VM-USB NIM1 
input.  The list of modules to read is the value of the -modules 
switch.  A 15-microsecond delay between trigger and stack 
execution is configured to allow the modules to convert their 
input signals before their readout begins. 
 

B. Configuration Parameter Subsystem 

The create subcommand of a device command in the DSL will 
create an instance of a device driver class. The management of 
the configuration database is a significant part of what a 
physical device driver module must do.  Configuration 
management has been factored into a subsystem dedicated to 
processing, validating, and storing and fetching configuration 
parameters. 
 
When a device driver instance is created, it is responsible for 
registering its configuration options.  Configuration option 
values are strongly typed and in many cases additional 
constraints may apply.  For example, the madc32 –threshold 
value must be a list of exactly 32 integers and each integer must 
lie in the range 0 through 4095.   
 
When the device driver registers a parameter option with its 
configuration database, it can specify an optional validation 
function.  The validation function, or validator, verifies that a 
proposed configuration option value is legal.  An optional 

madc create dsssd1.y  -base 0x50000000 -id 5 -ipl 0 
madc config dsssd1.y  -gatemode common \ 
                                     -gategenerator disabled 
madc config dsssd1.y  -inputrange 8v 
madc config dsssd1.y  -timestamp on -timingsource vme \ 
                                     -timingdivisor $madcTimeDivisor 
madc config dsssd1.y  -thresholds $thresholds 
... 
stack create events 
stack config events -trigger nim1 \ 
                    -modules [list dsssd1.x dsssd1.y hpge ]  \ 
                    -delay 15 

Example 0 Configuration file segment 
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validator parameter allows value constraints to be passed to the 
validator.    
 
The configuration subsystem supplies validators for the most 
commonly used data types.    These stock validators include a 
flexible set of constraint arguments that cover most needs.  For 
example, the list validator constraint parameter is a structure 
that allows lower and upper limits to be set on the list size as 
well as an additional validator function and parameter to be 
applied to each element of the list.  Configuration parameter 
values are always stored as strings. 
 
Device driver instances must query the device database when 
programming the hardware. The configuration subsystem 
provides functions that allow drivers to fetch configuration 
parameters from their configuration databases.  While 
configuration parameter values are stored as strings, the 
configuration parameter database subsystem provides member 
functions that allow a parameter to be fetched and converted 
into the most common data types as well. 

C. Readout’s Use of the DSL 

Each supported electronics module consists of two C++ classes.  
The first class is the module device driver.  Instances of the 
module device driver are responsible for:  
 
• Describing a set of configuration parameters, their 

validators and constraints. 
• Preparing a hardware device for data taking in accordance 

with its configuration database settings. 
• Contributing elements to the stacks to which this instance 

was added. 
 
The second class is the module's command ensemble.  The 
command ensemble is implemented using the template pattern.  
Specific command ensemble classes need only provide a 
function that knows how to create a driver instance for their 
module type. 
  
At the beginning of each run Readout; 
• Forgets all existing module device driver instances.  
• Constructs a new Tcl interpreter to process the 

configuration DSL script. 
• Gets each module device driver to register its command 

ensemble with the interpreter 
• Processes the script.  
• Initializes appropriate modules, and stacks. 
 
When the configuration script is processed, it will, in invoke 
commands in the DSL.  The create subcommand of each DSL 
command ensemble creates a new device driver instance, 
attaches a configuration database to that instance. 
Readout then asks the driver instance to declare its 
configuration parameters to its configuration database instance. 

 
The config command locates the appropriate device driver 
instance, obtains its configuration database and passes 
configuration value/option pairs to the driver instance reporting 
any errors.   This command can operate without involving the 
device driver instance in any way, unless the driver has 
provided a custom validator. 
 
The cget subcommand locates the driver instance, and its 
configuration database, and produces a dump of that database 
as a Tcl list of name/value pairs as the command result.  cget 
provides the configuration script with the ability to introspect 
the properties of known modules. 
 
Any errors detected when processing the configuration script 
result in an informative error message.  Errors cancel data 
taking.  
 
When the configuration script has been processed without 
errors, the hardware is initialized, and stacks loaded into the 
VM-USB. The VM-USB must be programmed respond to 
triggers.  The stacks defined in the DSL description drive the 
hardware initialization and stack generation. The assumption is 
that there's no point in initializing hardware that does not 
participate in data taking. 
 
When a driver instance is created it is stored with two lookup 
keys.  The first key is the name of the instance (the name on the 
create subcommand).  The second key is the class of device 
(provided by the creator). The Readout software gets a list of 
all of the driver instances of class stack.  These are instances of 
VM-USB stack drivers.  The stacks are asked to initialize 
themselves.  They do this by locating the driver instance for 
each module in their -module configuration option list and 
asking each one to initialize itself in turn. The driver instance 
initialization member functions interrogate their configuration 
database and interact with the VM-USB to setup the hardware 
as desired. At this time the stack also does whatever stack 
specific initialization it must do such as setting the trigger 
condition for the stack. 
 
Once the hardware has been initialized, the stack module 
instances take another pass through their module lists.  Each 
module instance is asked to contribute instructions to a data 
structure that is a direct representation of a VM-USB stack.  
These stacks are then loaded into the VM-USB, and VM-USB 
trigger processing is enabled.   
 

D. NSCLSpecTcl’s use of the DSL 

 
NSCLSpecTcl is a general-purpose histogramming package for 
nuclear physics event data.  NSCLSpecTcl has been described 
in detail in a previous Tcl conference [5].   Figure 6 below 
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shows the flow of data through NSCLSpecTcl and highlights 
the subset of SpecTcl that must manage the domain specific 
experiment description file. 
 

NSCLSpecTcl's first stage of analysis decodes raw events to a 
set of parameters.  Normally this decode is done by hand 
written experiment specific code. Since the format of an event 
is fully determined by the order and types of the modules read 
out, using a DSL to specify the experiment enables the use of a 
general-purpose event decoder that is driven by that 
description.  
 
NSCLSpecTcl needs only a subset of the information supplied 
by the module creation and configuration commands.  
Specifically, for each module, it must know the type of that 
module.  For each stack, it must know the stack number 
(determined by the trigger configuration) and the ordered list of 
modules in that stack. 
 
Some further metadata must be supplied, however.   
NSCLSpecTcl needs to know the names of the parameters into 
which the channels of each electronics module must be 
unpacked.  The user supplies this data via a Tcl array.  The Tcl 
array is indexed by module name.  Its elements are the list of 
the names of parameters the named module has.  In early 
versions of the DSL, each module device driver provided a  
-parameters option, which was ignored by the device driver and 
processed by NSCLSpecTcl.  Users, however think of the 
electronics configuration and parameter naming as separate 
processes and therefore reacted better to this scheme. 
 
Two commands stackmap and parammap have been added to 
NSCLSpecTcl.  stackmap defines, for each stack the order and 
type of the modules read by that stack. parammap defines the 
set of parameters each module supplied SpecTcl. A pure Tcl 
script interprets the experiment description file for 

NSCLSpecTcl , issues the appropriate stackmap and 
parammap commands, and even creates an initial set of 
spectra for all of the raw parameters. 
 
NSCLSpecTcl DSL script interpretation is broken into two 
components.  configFile.tcl interprets the DSL creating global 
arrays that are an equivalent description of the experiment.  A 
second script, spectclSetup.tcl operates on this global data to 
issue the correct set of parammap and stackmap commands 
along with the appropriate NSCLSpecTcl commands.   
 
Separating the parsing of the configuration file from issuing the 
resulting NSCLSpecTcl commands allows the configFile.tcl 
package to be re-used.  The STUK contract specified the 
delivery of a conversion program from NSCL Event file format 
to an equivalent XML representation. In writing this program 
we were able to re-use configFile.tcl as well as the 
NSCLSpecTcl module unpackers.  

V. RESULTS AND CONCLUSIONS 

Development of the software for STUK contract was was 
completed in late May 2008.  Acceptance testing with pulsers 
was done at the NSCL in June 2008 and required very little 
tweaking.  An installation/training visit to STUK was arranged 
for late July.  R. Fox spent an initial 5 days in Helsinki doing 
installation and training. This was followed by nine days for the 
STUK staff to use the system by themselves (while R. Fox 
junketed about Helsinki, Estonia and Germany) Finally, R. Fox 
returned to STUK for two days of follow up. 
 
The system was assembled, connected to the detectors and 
taking data from a triple alpha source within the first 1/2-day.  
As STUK had not yet received their HPGe detector we were 
unable to look at gamma ray spectra.   The next few days 
demonstrated several issues with the Mesytec MADC32, which 
fortunately could be resolved via e-mailed firmware updates, 
applied while at STUK. This trouble shooting often involved 
re-cabling the DSSSD to different ADC channels, which, in 
turn changed the position mapping between ADC, channel and 
detector position.  The DSL and metadata approach allowed us 
to change the configuration file almost as quickly as we 
changed cabling. 
  
With the ADC issues resolved, R. Fox provided about 2 or 
three hours of training on configuration script writing with the 
DSL.  One of the STUK staff members involved with the 
project, K. Peräjärvi, had some prior experience with Tcl. 
Following the training, the STUK staff was presented with the 
following set of real-world exercises: 
 
1. Re-cable the DSSSD back to its original configuration and 

adjust the channel/parameter map appropriately. 
2. Add a pulser channel that would simulate a high-resolution 

silicon detector in station 2. 

 

Figure 6 SpecTcl Dataflow 
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3. Determine and set the MADC32 thresholds to suppress 
channels without valid conversions. 

 
The STUK users easily handled these problems. 
 
At the end of the first week of onsite support, the STUK staff 
was able to borrow an HPGe detector from Jyväskylä that could 
be used with their chamber.  In their week of unsupported use 
they took data from the Thule particle described in section II 
and were easily able to reproduce the background subtracted 
spectrum from their Jyväskylä test run.  Additional run time 
allowed them to clearly see the 239Pu peak that was only 
tentatively identified during the Jyväskylä tests. 
 
Throughout the installation and training, members of other 
groups at STUK often stopped by the lab to see the system.  All 
were excited about the capabilities of the system, and at how 
easy it was to reconfigure the software via the DSL.  Many 
speculated on other applications for the system. 
 
The European Atomic Energy Commission EURATOM is 
closely following the work at STUK with the idea that the 
system could be distributed to safety groups in other member 
countries. 
 
For the most part we are satisfied with the DSL.  The main 
weakness is the need to modify the source code of the compiled 
readout application to add support for a new device type to the 
system.  If I we were starting again, it might be a better choice 
to expose lower level VM-USB primitives to the Readout 
interpreter and then build the device driver software on top of 
that in pure Tcl (e.g. as snit::type’s). 
 
This approach is possible for the Readout software, because 
device driver software is only involved at the start of data 
taking, and therefore not speed critical. NSCLSpecTcl is a 
different matter, however.  The device unpacking software lives 
in the innermost innermost loop of software that must process 
literally millions of events.  NSCLSpecTcl does not have to 
interact with the hardware and is therefore much simpler 
software for members of the physics community to extend. 
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