
NRE: the non-recursive engine in Tcl8.6

Miguel Sofer

October 16, 2008

Abstract

Tcl8.6 has a completely redesigned execution model
that allows among others arbitrary deep recursion in
constant C-stack space. The design is derived from the
ideas already present in mod-8-3-branch, implemented
at a different level and much generalized. It is com-
pletely transparent to extensions, users of the standard
Tcl APIs keep perfect compatibility.

We describe the basic design of NRE, with special
emphasis on the trampolines that manage the execu-
tion flow and the structures that are kept in the C stack
and heap during evaluation/execution. Extensions can
take advantage of stackless execution using the new
evaluation APIs.

New exciting possibilities will just be hinted at, a
separate paper describes a couple of them in deeper
detail.

1 Introduction

Usual Tcl scripts can cause deep recursive calls to the
evaluation engine, as witnessed by the choice maximal
nesting level of 1000 as default. In order to insure that
the C stack does not blow up, Tcl has attempted to es-
timate the C-stack depth and error out before the stack
is overrun and the operating systems shuts down the
program. The mechanisms for stack checking are no-
toriously fragile and non-portable, in contrast with the
rest of Tcl’s core. Additional problems include that
some platforms have either relatively small C stacks
by default (BSDs), are very stack-hungry (Windows
debug builds) or are even severely stack constrained
(small machines like routers running Cisco’s IOS).

A special Tcl build (maintained as mod-8-3-branch)
was developed specifically to address IOS’s con-

straints (among other goals); Andreas Kupries re-
ported on that effort in the “Tcl on small machines”
section of the Tcl2002 Conference, in a paper titled
Experiences with Modularizing the Tcl Core for Better
Portability. The early and very limited version of the
NRE engine I contributed to that effort helped obtain
a notable reduction in the stack consumption of usual
Tcl scripts. The present version offers essentially1 un-
limited recursion depth: the limit is now set by the size
of the heap instead of the C stack.

Tcl’s stackful execution, which essentially follows
the C model, also poses a barrier for lightweight coop-
erative multitasking independent of OS threading sup-
port. Tcl’s outstanding event loop does provide facili-
ties for cooperative multitasking, but requires an unfa-
miliar coding style and saving state in global variables.
NRE enables a simpler approach viacoroutines, which
together with the event loop provide an extremely gen-
eral and flexible approach to cooperative multitasking.
NRE’s liberation of the C stack also allows new con-
structs liketailcalls, which are considered to be funda-
mental for functional programming. These new con-
structs are the subject of another paper, we just men-
tion them here as additional advantages brought by the
NRE engine.

NRE was engineered to be completely backwards
compatible, both in the source and binary sense2: no
script or C extension should need adapting to the new
engine. There is a C api that extensions can use
to be able to exploit NRE: the traditional Tcl_Eval*
APIs maintain the standard execution model, and new

1really unlimited depth is offered by using the newtailcall com-
mand

2Compatibility is guaranteed for extensions that do not include
tclInt.h. Most extensions that do include it will also be unaffected,
but the guarantee is not valid for them as some structs did suffer
changes.

1

Tcl_NREval* APIs are provided for extensions that
want to profit from stackless execution. This deci-
sion permits a gradual migration to the new execution
model, or none at all.

A further goal is to remain fully portable, that is,
not to resort to special features that might be provided
by specific compilers or platforms. NRE is coded in
standard C, it does not touch the C stack at all: it just
avoids keeping so much information in it, moving data
from the stack to a special Tcl maintained stack which
is allocated on the heap.

NRE is somewhat related toStackless Python3. I
confess to having read some documentation on stack-
less years ago, but I have not looked at the code nor
studied the documents in any depth. That means that I
do not really know how close or remote the familiarity
between stackless and NRE might be.

As to the (not really good) name: NRE stands for
Non-Recursive Engine. The main design goal is to
avoid recursive calls to TclExecuteByteCode(), the
main component of Tcl’s engine.

2 The NRE execution model: in-
troductory example

Let us start with an example, consider the script:

proc foo args {...; moo $a $b; ...}

proc moo args {...; puts hello; ...}

foo 1 2 3

Up to Tcl8.5 the C stack while puts is running looks
essentially as follows:

1. Tcl_EvalObjv # running "foo 1 2 3"

2. TclObjInterpProc

3. TclExecuteByteCode # executing foo’s body

4. Tcl_EvalObjv # running "moo $a $b"

5. TclObjInterpProc

6. TclExecuteByteCode # executing moo’s body

7. Tcl_EvalObjv # running TclPutsObjCmd

3http://www.stackless.com/

8. Tcl_PutsObjCmd

With NRE foo is completely gone from the stack,
which now looks like

1. Tcl_EvalObjv # running "foo 1 2 3"

2. TclNRRunCallbacks # run callbacks registered
by TclNRInterpProc

3. TclExecuteByteCode # executing moo’s body

4. TclNRRunCallbacks # invoking TclPutsObjCmd

5. Tcl_PutsObjCmd

Remark that foo’s body does not seem to be present in
the C stack. The way this happens is as follows4

• Tcl_EvalObjv (level 1) is called with "foo 1 2 3"

• TclNRInterpProc registers callbacks for postpro-
cessing and cleanup, then registers a callback to
run foo’s body bytecodes and returns

• Tcl_EvalObjv calls TclNRRunCallbacks

• TclNRRunCallbacks calls TEBC with foo’s body

• TEBC calls TclNREvalObjv with "moo $a $b"

• TclNREvalObjv does some checks, adds call-
backs for postprocessing the proc’s return, adds a
callback to invoke TclNRInterpProc and returns
immediately

• TEBC calls TclNRRunCallbacks

• TclNRRunCallBacks invokes TclNRInterpProc,
which registers a callback to run moo’s bytecodes

• TclNRRunCallbacks notices that the (new!) top
callback demands executing a bytecode, and that
it was itself called by TEBC: it returns to TEBC
to let it handle the bytecodes

• TEBC saves its state in order to resume executing
foo’s body later on, and starts execution of moo’s
body

4This is the pre-optimisation model; it is almost certain that some
peepholing shortcuts will be taken in the optimised releaseversion

2

• TEBC calls TclNREvalObjv with "puts hello",
which registers a callback to run TclPutsObjCmd

• TEBC calls TclNRRunCallbacks

• TclNRRunCallbacks invokes TclPutsObjCmd

After that what will happen is

• Tcl_PutsObjCmd returns normally, without reg-
istering a new callback

• TclNRRunCallbacks runs the callbacks regis-
tered by TclNREvalObjv at puts’ invocation and
returns

• TEBC notes that no new bytecode evaluation has
been registered and proceeds with the execution
of moo’s body

• When moo’s body returns, TEBC processes
moo’s return, notes that this was a nested call, re-
stores the state of foo’s execution and continues
executing foo’s body

In the pre-NRE model, a proc’s implementation
TclObjInterpProc() does some preparation (check ar-
guments, push a CallFrame, compiles the body if
necessary, initializes arguments and local variables)
and then calls TEBC with the body’s bytecodes. On
TEBC’s return it processes the result and pops the
CallFrame before itself returning.

The new TclNRInterpProc() does the same prepa-
rations, registers a callback to process the result and
pop the CallFrame, registers a callback to execute the
body’s bytecodes and returns immediately5

That is: in the standard execution model the proc’s
implementation runs the bytecodes, whereas in the
new model it registers a request that its caller run them
and returns. In this manner the C call stack has been
freed.

The structures that are maintained in the C-stack are
a sort of two-level semi-permeable trampoline. The
main player is TclNRRunCallbacks: it will run all
callbacks until the top callback coincides with what
it found at the top when it was first called. It func-
tions as a trampoline in the sense that it will also run

5All values necessary for postprocessing (for instance the
name of the proc) are passed to the callback via arguments to
Tcl_NRAddCallback, see below.

callbacks that were registered by commands it called
itself. It is semi-permeable in the sense that it may al-
low some callbacks to go through: when TclNRRun-
Callbacks was itself called from TEBC, and when the
top callback is a request for bytecode evaluation6, it
will just return and let TEBC handle the callback.

Thus, if all commands were NRE-enabled, Tcl’s
C stack when executing a bytecode will just con-
tain Tcl_EvalObjv, TclNRRunCallbacks and TEBC.
If some commands are not NRE-enabled, the C stack
will contain a sequence of (Command implementation,
Tcl_EvalObjv, TclNRRunCallbacks, TEBC) triplets -
one for each non-NRE enabled command in the call
sequence.

3 The NRE API: adapting to
stackless execution

A command that does not evaluate a script or com-
mand (like puts in the previous example) needs no
adaptation whatsoever: the NRE engine will process
it normally. A command that calls one of the stan-
dard Tcl_Eval* functions is not NRE-enabled: it occu-
pies the C stack until the requested evaluation returns.
Should the evaluation require executing a bytecode, a
new TEBC will be instantiated to run it.

In order to exploit NRE, that is, to be able to request
an evaluation to be done by its caller, a command has
to use the new Tcl_NREval* functions instead. The
API provided for extension writers includes the func-
tions:

• Tcl_NREvalObj(interp, objPtr, flags)

• Tcl_NREvalObjv(interp, objc, objv, flags)

• Tcl_NRCmdSwap(interp, cmd, objc, objv, flags)

• Tcl_NRAddCallback(interp, postProcPtr, data0,
data1, data2, data3)7

• Tcl_NRCreateCommand(interp, cmdName, ob-
jProc, nreProc, clientData, deleteProc)8

6or other special instructions to TEBC (like yield and tailcall,
described in the companion paper)

7The rationale for providing four ClientData field is given below
8The need for a new function instead of hijacking

Tcl_CreateObjCommand is explained below

3

• Tcl_NRCallObjProc(interp, nreProc, clientData,
objc, objv)

An NRE-enabled command requires two implemen-
tations: the regular objProc and a new nreProc. The
last utility function permits a simple construction of
the objProc given an nreProc implementation.

Consider a command that has a structure sketch as in
Standard Command. The corresponding NRE-enabled
command can be coded as sketched inNRE Command.

It is apparent that NRE-enabling a command is akin
to splitting it in pre- and post-processing parts, and in-
suring that the two parts communicate via the callback
arguments.

4 NRE-adapted commands in the
core (current status)

Most commands in the core are adapted to NRE, that
is, they execute without occupying the C stack9. The
list includes:

• all procs and lambdas (arguments toapply)

• imported commands

• same-interp aliases

• commands created vianamespace ensemble

• scripts evaluated byeval, uplevel, namespace
eval, if, for, foreach

• TclOO object commands

The main remaining exceptions are command and vari-
able traces,source, ...

5 The NRE execution model:
some implementation details
and technical choices

5.1 Oh so many stacks

Apart from the now diminished C stack, Tcl maintains
state in three preexisting and two new stacks:

9These commands are also interruptible byyield, see the com-
panion paper

1. the evaluation stack (actually implemented as a
stack of stacks, but that is neither here nor there).
The evaluation stack is used by the bytecode en-
gine to hold the state of execution of a bytecode.
The evaluation stack is attached to an execution
environment, which is normally in a one-to-one
relation with an interp. NRE exploits the differ-
ence, and allows more than one execution envi-
ronment per interp (used for coroutines)

2. the stack of CallFrames, one per interp. A new
CallFrame is pushed for each proc or lambda
body, as well as for scripts run bynamespace
eval. Used for command and variable resolution,
the stack is exposed byinfo level

3. the stack of CmdFrames, one per interp. A new
CmdFrame is pushed by each command that is
evaluated. The stack is exposed byinfo frame.

4. the new stack of callbacks, one per execution en-
vironment.

5. a new stack of BottomData, maintained by
TEBC. A new BottomData is pushed by each
ByteCode, it is used to store information that per-
mits executing different ByteCodes in the same
instance of TEBC. Physically the BottomData is
maintained within the evaluation stack; logically
each TEBC instance has its own stack.

TEBC reorganization will certainly lead to moving
some of the unfrequently used automatic variables to
the BottomData, and possibly to a cleaner conceptual
merging of the evaluation stack and the stack of Bot-
tomData.

5.2 TEBC magic

The old NRE engine in mod-8-3-branch featured a
clever TEBC, able to recognize procs (and only procs)
and execute them in place. The new NRE relies on
cleverness elsewhere, TEBC remains a simple minded
worker. It just learned one interesting new trick, and a
couple of minor ones.

The big new trick is that TEBC is now capable of
storing enough data about the state of a bytecode’s exe-
cution to enable suspending that execution and resum-
ing it at a later time. That data is stored in the new Bot-
tomData struct. When a proc calls another proc, TEBC

4

int
MyCmdObjProc(

ClientData clientData,
Tcl_Interp *interp,
int objc, /* Number of arguments. */
Tcl_Obj *const objv[]) /* Argument objects. */

{
<preparation>
result = Tcl_EvalObjEx(interp, objPtr, flags);
<postprocessing>
<cleanup>
return result;

}
Tcl_CreateObjCommand(interp, name, MyCmdObjProc, clientData, deleteProc);

Standard Command

typedef struct TEOV_callback {
Tcl_NRPostProc *procPtr;
ClientData data[4];
struct TEOV_callback *nextPtr;

} TEOV_callback;

TEOV_callback struct

saves the caller’s state and starts executing the callee.
When the callee returns, TEBC restores the caller to its
previous state and resumes its execution. TEBC itself
only returns when its stack of BottomData is empty.

5.3 struct TEOV_callback

The main new struct defined by NRE is the
TEOV_callback (see figure). The choice of an array
of four ClientData is a bit unusual, maybe even myste-
rious. NRE churns callbacks at an insane rate, so that
the allocation and deallocation of these structs has to
be extremely fast. The choice was made to use (sub-
vert?) the fastest allocator available in the Tcl core: the
Tcl_Obj allocator. A Tcl_Obj struct gives us enough
space for four pointers, so that is a maximum. It turns
out that in most cases a callback does not need any
more data than that; restricting the interface to the stan-
dard single ClientData would force a separate alloca-
tion/freeing of a struct in all cases where more than
one datum is needed.

5.4 struct Command and
Tcl_NRCreateCommand

The Command struct was grown by one field to acco-
modate the new nreProc pointer. The first implemen-
tation of NRE just stored the nreProc in the objProc’s
slot, as the core’s code needn’t really make a differ-
ence. But this arrangement was found to break at least
one common extension using an idiom which seems
to be frequent: find a command’s implementation via
Tcl_GetCommandInfo, and then invoke the objProc
directly without passing through the core’s Tcl_Eval*
API’s. This usage breaks miserably if it happens to
pick an nreProc, as it expects the command to have
run when the objProc returns10. The choice was made
to insure compatibility: every command needs to have
a functioning objProc that can be called directly by a
function that is ignorant about NRE. The compromise
also means that Tcl_SetCommandInfo clears the nre-
Proc - whenever this interface is used, we are back to
pre-NRE functionality.

Longer term it would probably be better to deprecate
invoking *objProc directly: extensions should use one
of the provided evaluation functions. At that time we
can slim down Command to have a single implemen-
tation, and provide APIs to allow extenders to invoke
it as a string, obj or nre procedure at their choice.

10Remember that an nreProc doesn’t run anything, it just registers
callbacks for TclNRRunCallbacks

5

int
MyCmdNreProc(

ClientData clientData,
Tcl_Interp *interp,
int objc, /* Number of arguments. */
Tcl_Obj *const objv[]) /* Argument objects. */

{
<preparation>
Tcl_NRAddCallback(interp, MyPostProc, data0, data1, NULL, NULL);
return Tcl_NREvalObj(interp, objPtr, flags);

}

int
MyPostProc(

ClientData data[],
Tcl_Interp *interp,
int result)

{
Tcl_Obj *fooPtr = data[0]; /* data0 retrieved */
MyStruct *mooPtr = data[1]; /* data1 retrieved */

<postprocessing>
<cleanup>
return result;

}

int
MyCmdObjProc(

ClientData clientData,
Tcl_Interp *interp,
int objc, /* Number of arguments. */

Tcl_Obj *const objv[]) /* Argument objects. */
{

return Tcl_NRCallObjProc(interp, MyCmdNreProc, clientData, objc, objv);
}

Tcl_NRCreateCommand(interp, name, MyCmdObjProc, MyCmdNreProc, clientData, deleteProc);

NRE Command

6

6 Remarks on performance and
the current state of the imple-
mentation

• The current implementation (Tcl8.6a3) has not
been optimized, the NRE runtime penalty may
be noticeable. The initial implementation has fo-
cused on correctness and simplicity of the code,
avoiding duplication even when it could have pro-
vided some speedup. Benchmarks of an ear-
lier implementation actually showed a very slight
speedup, but the implementation got a bit more
involved since.

• The beta phase will see a large investment in op-
timization. Some obvious opportunities are avail-
able: allowing TEBC to avoid some extra calls
by peepholing, inlining some frequent callbacks
in TclNRRunCallbacks, merging some frequent
callbacks into one, maybe streamlining the mem-
ory churn of callbacks.

• The current state of TEBC is even messier than
usual. Some code reorganization will definitely
happen.

• Debugging the NRE core is certainly no fun, as
stack traces as provided by eg gdb are not too in-
formative: one has to dig into the Tcl maintained
stacks to determine the state of the computation.
Tools to assist in debugging will be developed
during the beta phase, if only to preserve what
little remains of this author’s sanity.

7 New possibilities and outlook

NRE opens the door to interesting new possibilities,
enabled by doing surgery on the callback stack11:

• two of them (coroutines and tailcalls) are in-
cluded in Tcl8.6a3 and described in the compan-
ion paper.

• the possibility of registering new callbacks from
a callback for instance suggests the possibility of
programming in continuation passing style.

11Editing the callback stack is an endeavor that requires a lotof
care, especially in the absence of reasonable debugging tools.

• a modification of the management of CallFrames
in memory would enable closures and full one-
shot continuations, slightly more general than the
currently provided coroutines

8 Conclusion

Tcl’s new NRE evaluation model significantly reduces
Tcl’s C-stack footprint, enabling it to run on limited
hardware and providing essentially unlimited recur-
sion depth. It also opens the way to significant new
capabilities.

The burden it places on extension writers that want
to exploit the new capabilities is extremely light, and
no burden at all on extensions that do not evaluate Tcl
commands or that do not care about the new NRE fea-
tures.

The implementation in Tcl8.6a3 should be ready in
terms of features, but not yet in terms of code cleanli-
ness and performance.

7

