
Eagle: Tcl Implementation in C# 1 Joe Mistachkin

Eagle: Tcl Implementation in C#
 Joe Mistachkin <joe@mistachkin.com>

1. Abstract

Eagle [1], Extensible Adaptable Generalized Logic Engine, is an implementation of the Tcl [2]
scripting language for the Microsoft Common Language Runtime (CLR) [3]. It is designed to be a
universal scripting solution for any CLR based language, and is written completely in C# [4]. Su-
perficially, it is similar to Jacl [5], but it was written from scratch based on the design and imple-
mentation of Tcl 8.4 [6]. It provides most of the functionality of the Tcl 8.4 interpreter while bor-
rowing selected features from Tcl 8.5 [7] and the upcoming Tcl 8.6 [8] in addition to adding en-
tirely new features.

This paper explains how Eagle adds value to both Tcl/Tk and CLR-based applications and how it
differs from other “dynamic languages” hosted by the CLR and its cousin, the Microsoft Dy-
namic Language Runtime (DLR) [9]. It then describes how to use, integrate with, and extend Ea-
gle effectively. It also covers some important implementation details and the overall design phi-
losophy behind them.

2. Introduction
This paper presents Eagle, which is an open-source [10] implementation of Tcl for the Microsoft
CLR written entirely in C#. The goal of this project was to create a dynamic scripting language
that could be used to automate any host application running on the CLR.

3. Rationale and Motivation
Tcl makes it relatively easy to script applications written in C [11] and/or C++ [12] and so can also
script applications written in many other languages (e.g. FORTRAN, Prolog, SML, etc.) How-
ever, applications written for a managed execution environment, such as a Java Virtual Machine
(JVM) [13] or the CLR cannot easily integrate with native code. In particular, the native call inter-
faces for Java [14] and the CLR, respectively the Java Native Interface (JNI) [15] and Platform In-
voke (P/Invoke) [16], are very complex and somewhat fragile. In the case of integrating with the
CLR the normal Tcl implementation can be used, but doing so requires extensive use of
P/Invoke, can be very difficult to implement correctly, and does not make full use of the other
facilities provided by the CLR.
Until now, there were several approaches to scripting CLR applications. One approach involved
using Visual Studio Tools for Applications (VSTA) [17] (the successor to Visual Basic for Appli-
cations (VBA)) [18]. Another involved the use of Domain Specific Languages (DSL) [21].

The VSTA approach assumes that the users that wish to customize or script the application have
extensive knowledge of programming in one of the supported languages (e.g. Visual Basic.NET
[19] or C#). Application customization is accomplished exclusively through managed assemblies,
not source code. This approach does not lend itself to using dynamic languages and makes it
more difficult to write, test, and debug customizations. It also makes it more difficult to ship cus-
tomizations for modification and use by others. Finally, redistribution of VSTA can be expensive
and requires a per-seat or royalty based license; royalty payments range from one to five percent
of net receipts [20].

Eagle: Tcl Implementation in C# 2 Joe Mistachkin

While the DSL approach may be well suited for some problem domains it is not a general pur-
pose scripting solution.

A third approach involves using one of the “dynamic languages”, i.e. languages based on the
DLR: examples include IronPython [23] (managed Python [24]), IronRuby [25] (managed Ruby [26]),
IronLisp [27] (managed Lisp [28]), IronScheme [29] (managed Scheme [30]), Nua [31] (managed Lua
[32]), or Managed JScript [33]. This is essentially a variant on the second approach.

In general, the DLR approach is workable; however, the existing languages based on it are not
application centric. They are general purpose programming languages. Eagle fits in this same
space. Like Tcl before it, Eagle was designed primarily with the goals of application integration,
extensibility, and automation in mind.

4. Original Requirements
The functional requirements included:

• It must be general-purpose.
• It must be thread-safe.

• It must be customizable.
• It must be localizable.

• It must be user-friendly enough for non-programmers to use.
• It must be powerful enough for programmers to use.
• It must be simple to extend and integrate with.

• It must be capable of debugging scripts.
• It must be exception-safe.

• It must use the “strong guarantee” whenever possible.
• It must assume that all third-party code can throw exceptions.

• It must not let any exceptions propagate outward from its public classes and interfaces.
The non-functional requirements included:

• It must be written for the CLR in a managed language.
• It must be suitable for use in all types of CLR based applications (e.g. client, server, con-

sole, WinForms, WPF [22], ASP.NET, etc).
Based on the requirements, it was decided that the Tcl language (i.e. the syntax and the core
command set) was a good basis for the new scripting language. The following additional re-
quirements were added specifically to address issues related to implementing a Tcl-style dy-
namic scripting language on the CLR:

• The language syntax must be 100% compatible with Tcl 8.4 (i.e. it must obey the
“Endekalogue” [46] or “11 rules”).

• The semantics of the core command set should be as backward compatible as possible
with those in Tcl 8.4 and as forward compatible as possible with those in Tcl 8.5 and Tcl
8.6.

Eagle: Tcl Implementation in C# 3 Joe Mistachkin

To ensure a high degree of compatibility with Tcl, several algorithms were blatantly stolen from
it:

• The string matching (i.e. glob style matching) algorithm.
• The script parsing algorithm.

• The list building and parsing algorithms.
• The script evaluation and substitution algorithms.

• The recursive descent expression parser algorithm.
• Parts of the algorithm for expression evaluation.

• The algorithms for quite a few of the built-in commands (e.g. if, for, foreach, etc).

The script evaluation and substitution algorithms have since been heavily customized while re-
taining compatibility with Tcl. The expression parser has also been customized, with the inclu-
sion of some additional operators.

Due to the lack of a byte-code compiler, I execute the expression tokens directly, which is a
dramatic departure from modern versions of Tcl. On the other hand, it does simplify the imple-
mentation a lot.

5. System Requirements
• Supports Windows 2000 [47] or higher, including the 64-bit varieties.

• Can be deployed using “xcopy” [41] or installed using the provided setup.
• Requires only the .NET Framework Version 2.0 [48].

These are the base requirements; however, the .NET Framework Version 2.0 Service Pack 1 [49]
or higher is recommended. Also, having the .NET Framework 2.0 Software Development Kit [50]
and/or Visual Studio 2005 [51] or higher available is very useful.

• Tcl/Tk integration requires a threaded build of Tcl 8.4 or higher.

Installed instances of ActiveTcl [52] are detected automatically.

6. Design Philosophy
Tcl heavily influenced the design of Eagle. In particular:

• Everything is a string.
• Commands are free to interpret their arguments however they wish.

• The language supplies primitives that can be combined in useful ways.
However, there are some differences in the design that reflect the differences in the underlying
platforms:

• No per-thread data; all state is stored in the interpreter.

• No interpreter result.
Having no interpreter result merits special attention because it significantly reduces the coupling
between components.

Eagle: Tcl Implementation in C# 4 Joe Mistachkin

7. General Features
• Supports almost all of the core command set for Tcl 8.4 (approximately 90%).

• Supports Unicode [43] (UCS-2) [44] natively.
• Supports interactive debugging with single-step mode, breakpoints, variable watches,

state examination/modification, isolated evaluation, and scripting support via the debug
command.

• Supports script cancellation, runaway script detection, asynchronous events, and queue-
ing of scripts.

• Supports read-only variables, commands, procedures, and interpreters.

• Supports per-variable and interpreter-wide variable tracing.
• Supports the apply command from Tcl 8.5.

• Supports closures [45] via the new scope command.

• Supports integrating with Tcl/Tk via the tcl command, TIP 285 [42] ready, “stardll” com-
pliant.

• Supports database access via the sql command.

• Supports automation of any object in the CLR via the object command.

• Performs automatic reference counting and cleanup of object references stored in vari-
ables.

• Transparent handling of event delegates.
• Supports calling any function in any dynamic link library (DLL) [38] via the library

command.

8. Differences from Tcl/Tk
• No Tk functionality.
• No argument expansion syntax.

• No namespace support except the global namespace.
• No asynchronous input/output.

• No server sockets.
• No registry or dde commands.

• No pkg::create or pkg_mkIndex commands.

• No slave interpreters, no hidden commands, no aliases, and no Safe Tcl.
• No Tcl library, such as the http, msgcat, and tcltest packages.

• The following Tcl commands are not implemented: glob, fblocked, fileevent, fcopy,
memory, binary, scan, format, trace, and history.

• The following Tcl library routines are not implemented: auto_execok, auto_import,
auto_load, auto_mkindex, auto_mkindex_old, auto_qualify, auto_reset,

Eagle: Tcl Implementation in C# 5 Joe Mistachkin

tcl_findLibrary, tcl_endOfWord, tcl_startOfNextWord,
tcl_startOfPreviousWord, tcl_wordBreakAfter, and tcl_wordBreakBefore.

• For the open command, command pipelines and serial ports are not supported.

• For the exec command, Unix-style input/output redirection and command pipelines are
not supported.

• For the load and unload commands, the semantics are not identical to those of Tcl be-
cause the binary package management is radically different due to the nature of the CLR.

• For the clock format command, some of the Tcl formatting characters are not sup-
ported.

• For the clock scan command, recognition of relative date/time strings (e.g. “1 day ago”,
“next Wednesday”, etc.) is not supported.

• For the fconfigure command, all options except “-encoding” and “-translation” are
not supported.

• For the regexp command, the “-about” option is not supported.

• For the regexp command, using the “-start” option with the beginning of a line anchor
does not work properly due to lack of support for something like TCL_REG_NOTBOL
in the CLR regular expression engine.

• For the pid command, supplying the optional channelId argument is not supported (al-
ways returns empty string).

• For the proc command, arguments with default values are not supported.

• For the exit command, by default does not exit the process; it merely prevents further
trips through the engine and the interactive loop.

• For the after idle command, we evaluate the script immediately prior to the next
evaluation because we have no idle detection.

• For the array command, the “statistics” sub-command is not supported.

• For the array command, the search sub-commands (i.e. “anymore”, “nextelement”,
“donesearch”, “startsearch”) are not supported.

• For the “env” array, the array names, array get, and info exists commands are not
supported.

• Documentation of the integration and extensibility API is incomplete.
• Support for tcltest functionality is incomplete.

• Unit tests are incomplete.
The following commands have no counterpart in the Tcl core command set:

• The base64 command handles encoding and decoding Base64 [55] encoded data.

• The debug command allows scripts to communicate with the script debugger.

• The do command implements the “do while” control structure.

Eagle: Tcl Implementation in C# 6 Joe Mistachkin

• The guid command handles creating, parsing, and validating Globally Unique Identifiers
(GUID) [56].

• The hash command handles hashing data using cryptographic hash functions such as
MD5 [57], SHA1, and SHA512 [58].

• The throw command allows scripts to throw exceptions.

• The uri command handles building and parsing of Uniform Resource Identifiers (URI)
[59].

• The xml command handles serialization of objects to XML.

• The host command allows scripts to communicate with the host application via the
IHost interface.

• The invoke command invokes a command or procedure and passes the specified argu-
ments unmodified.

• The library command allows native library functions to be declared, called, and man-
aged.

• The object command allows managed objects to be created, used, and disposed.

• The scope command allows call frames and their variables to be created and manipu-
lated.

• The sql command allows access to ADO.NET [60] accessible databases.

• The try command implements the “try finally” control structure.

• The kill command allows processes to be terminated.

The following commands have additional options:

• The regsub command has an “-eval” option to evaluate a script for every match.

• The switch command has a “-substring” option to perform prefix matching (e.g. pat-
tern “foo” matches string “foobar").

• The switch command has a “-subst” option to perform substitutions on a pattern prior
to matching against it.

• The rename command has a “-nodelete” option to allow a command or procedure to be
renamed to an empty string without being deleted.

• The exit command has a “-force” option to exit the process instead of merely invalidat-
ing the interpreter.

The file command has several new subcommands:

• The “information” subcommand to retrieve platform specific information about a file or
directory.

• The “rights” subcommand to determine the available access rights for a file or direc-
tory.

• The “same” subcommand to determine if two file or directory names refer to the same
physical file or directory.

Eagle: Tcl Implementation in C# 7 Joe Mistachkin

• The “sddl” subcommand to return or set the security descriptor for a file or directory us-
ing the Security Descriptor Definition Language (SDDL) [61].

• The “version” subcommand to return the version information for an executable file.

The exec command has several new options:

• The “-directory” option to set the working directory for the process.

• The “-exitcode” option to specify the variable name where the process exit code should
be stored.

• The “-nocapture” option to prevent capturing the process exit code and output.

• The “-nocarriagereturns” option to remove carriage returns from captured output.

• The “-shell” option to launch the process using the shell.

• The “-success” option to specify a successful exit code for the process other than zero.

• The “-stderr” option to specify the variable name where the output captured from the
standard error channel should be stored.

• The “-stdout” option to specify the variable name where the output captured from the
standard output channel should be stored.

9. Integration with the CLR, WinForms, WPF, and ASP.NET
Integration with any managed class is accomplished using the object command. Arguments and
return values are automatically marshaled to and from their string representations. Opaque object
handles represent return values and the values of arguments passed by reference when they are of
types that are not readily convertible to string.

The marshaler understands the following data types, including their reference and nullable varia-
tions, where applicable:

Type Handling
System.Boolean

Numeric or any “boolean string” (e.g. “true", “false",
etc).

System.SByte
Numeric in the range -128 to 127.

System.Byte
Numeric in the range 0 to 255.

System.Char
Numeric in the range 0 to 65535.

System.Int16
Numeric in the range -32768 to 32767.

System.UInt16
Numeric in the range 0 to 32768.

System.Int32
Numeric in the range -2147483648 to 2147483647.

System.UInt32
Numeric in the range 0 to 4294967295.

System.Int64
Numeric in the range -9223372036854775808 to

Eagle: Tcl Implementation in C# 8 Joe Mistachkin

Type Handling
9223372036854775807.

System.UInt64
Numeric in the range 0 to 18446744073709551615.

System.Decimal
Numeric in the range ±1.0 × 10-28 to ±7.9 × 1028.

System.Single
Numeric in the range ±1.5 × 10-45 to ±3.4 × 1038.

System.Double
Numeric in the range ±5.0 × 10-324 to ±1.7 × 10308.

System.DateTime
Dates and time strings from 12:00:00 AM, January 1,
0001 to 11:59:59 PM, December 31, 9999 (in 100-
nanosecond units) or any numeric in the range 0 to
3155378975999999999.

System.Enum
The string name or numeric value of any defined value
in the enumeration.

System.Guid
Any string that can be parsed by the CLR as a Sys-
tem.Guid.

System.Uri
Any string that can be parsed by the CLR as a Sys-
tem.Uri.

System.Version
Any string that can be parsed by the CLR as a Sys-
tem.Version in the format “ma-
jor.minor[.build[.revision]]”.

System.Delegate
Any string that can be parsed as a script. Only delegates
derived from or with a method signature that matches
System.EventHandler are supported. Scripts can be reg-
istered and unregistered for events of an object using the
“add_<eventName>” and “remove_<eventName>”
methods of that object, respectively.

System.Object
Any string that represents an opaque object handle
available in the interpreter. All types are supported be-
cause all other types derive from this type.

System.Type
Any string that represents the name of a type available
in the interpreter. Names do not have to be fully quali-
fied if the namespace has been imported via object
import.

System.Array
Elements may be of any supported type, nested and
multi-dimensional arrays are supported.

StringList
Any string that can be parsed as a Tcl-style list. Return
values that are a single-dimensional array of a primitive
type are converted to this type. This type is from the

Eagle: Tcl Implementation in C# 9 Joe Mistachkin

Type Handling
Eagle library.

10. Integration with the Host Application

The IHost interface is an integration point that allows the host application to customize how in-
teractive input and output are handled. It also allows interception of requests for library scripts
(e.g. “init.eagle”).

All methods of the IHost interface must be synchronous; therefore, it may be necessary to use a
thread other than the primary user-interface thread to handle incoming IHost method calls.

11. Integration with Native Libraries
Integration with any native library function is accomplished using the library command. Ar-
guments and return values are automatically marshaled to and from their string representations.
Here is an explanatory example:

set GetStdHandle [library declare -functionname GetStdHandle \
 -returntype IntPtr -parametertypes [list UInt32] -module \
 [library load kernel32.dll]]

puts stdout [library call $GetStdHandle -11]; # STD_OUTPUT_HANDLE

12. Extensibility
The primary mechanism for adding functionality is through the creation of new commands. You
do this by implementing the ICommand interface, and registering the implementation using the
AddCommand method of the Interpreter object.
The IExecute interface is a subset of the ICommand interface. There is a default implementa-
tion of the ICommand interface, but for the command to actually do anything, it must imple-
ment the IExecute interface, which consists of a single method named “Execute” defined as:

ReturnCodes Execute(
 IInterpreter interpreter,
 IClientData clientData,
 ArgumentList arguments,
 ref Result result);

Commands and binary packages are allowed, though not required, to maintain internal state, and
will be notified when they are being initialized or terminated through the IState interface.

If the command exists as part of a set of commands, a binary package can be created that imple-
ments the IPlugin interface to facilitate managing those commands as a single unit. The default
implementation of the IPlugin interface automatically adds all commands implemented in that
binary package to the interpreter.

Custom math functions are also supported. You can define functions by implementing the
IFunction interface and registering it using the AddFunction method of the Interpreter object.

The IExecuteArgument interface is a subset of the IFunction interface. There is a default im-
plementation of the IFunction interface, but for the function to actually do anything, it must im-
plement the IExecute interface, which consists of a single method named “Execute” defined as:

Eagle: Tcl Implementation in C# 10 Joe Mistachkin

ReturnCodes Execute(
 IInterpreter interpreter,
 IClientData clientData,
 ArgumentList arguments,
 ref Argument value,
 ref Result error);

Sample projects are provided with the source distribution demonstrating most of the available
extensibility mechanisms.

13. Tcl/Tk Integration
Seamless integration with Tcl and Tk is made possible through the use of the tcl command. The
following subcommands are defined:

Command Description

tcl cancel ?-unwind? ?--? path
?result?

Initiates cancellation of the script being evalu-
ated in interpreter identified by path.

tcl canceled interp Returns an empty string if the script being evalu-
ated in the interpreter identified by interp has
not been canceled; otherwise, an error is gener-
ated.

tcl command create srcCmd interp
targetCmd

Arranges for the Tcl command targetCmd to
refer to the Eagle command srcCmd in the Tcl
interpreter identified by interp.

tcl command delete interp tar-
getCmd

Deletes the previously registered Eagle command
association for the Tcl command targetCmd in
the Tcl interpreter identified by interp. If no
such association exists, an error is generated.

tcl command exists interp tar-
getCmd

Returns non-zero if the specified Tcl command
targetCmd refers to an association with an
Eagle command in the Tcl interpreter specified
by interp.

tcl convert interp string type Attempts to convert string to the registered
object type type in the interpreter specified by
interp.

Eagle: Tcl Implementation in C# 11 Joe Mistachkin

Command Description

tcl create ?options? Creates a Tcl interpreter and arranges for the Tcl
command “eagle” to refer to the Eagle com-
mand “eval”.

If the “-nobridge” option is present, the “ea-
gle” command is not created in the interpreter.

If the “-noinitialize” option is present,
library initialization will be skipped for the inter-
preter.

If the “-safe” option is present, all known po-
tentially-unsafe core functionality (both com-
mands and variables) will be removed from the
interpreter.

tcl delete interp Deletes the interpreter identified by interp. If
the interpreter is currently in use an error is gen-
erated.

tcl eval interp arg ?arg ...? Concatenates the arguments, evaluates the result
as a Tcl script in interpreter identified by in-
terp, and returns the value.

tcl exists interp Returns non-zero if the interpreter identified by
interp exists.

tcl expr interp arg ?arg ...? Concatenates the arguments and, evaluates the
result as a Tcl expression in the interpreter iden-
tified by interp, and returns the value.

tcl find ?pattern? Attempts to find all installed instances of the Tcl
runtime library. If one or more instances are
found they are returned as a list of fully qualified
file names filtered by pattern; otherwise, an
error is generated.

Eagle: Tcl Implementation in C# 12 Joe Mistachkin

Command Description

tcl load ?options? ?path? Loads the Tcl runtime library. If path is not
supplied, a search for all installed instances of
the Tcl runtime library is performed and then the
highest version available is loaded; otherwise
path is treated as the path and file name of the
Tcl runtime library to load.

If the “-flags” option is present, it can be used
to restrict the Tcl runtime library search. Please
refer to the FindFlags enumeration for the com-
plete list of legal values and their meanings.

If the “-minimumversion” option is present,
it is the minimum acceptable version of the Tcl
runtime library.

If the “-maximumversion” option is present,
it is the maximum acceptable version of the Tcl
runtime library.

If the “-unknownversion” option is present,
it is the version to use during the Tcl runtime
library selection process when the version cannot
be determined based on the file name.

tcl master Returns the master interpreter. If the Tcl runtime
library has not been loaded, an error is generated.

tcl ready ?interp? Returns non-zero if the Tcl runtime library has
been loaded and optionally checks if the inter-
preter identified by interp exists and is valid.

tcl resetcancel ?options? interp Resets the script cancellation flags for the inter-
preter identified by interp.

If the “-force” option is present, this is done
even if the interpreter is currently in use.

tcl set interp varName ?newValue? Returns or sets the value of the variable var-
Name in the interpreter identified by interp.

tcl source interp fileName Evaluates file fileName in the interpreter iden-
tified by interp.

Eagle: Tcl Implementation in C# 13 Joe Mistachkin

Command Description

tcl subst ?options? interp string Performs backslash, command, and variable sub-
stitutions on string in the interpreter identified
by interp.

If the “-nobackslashes” option is present,
backslash substitutions are not performed.

If the “-nocommands” option is present, com-
mand substitutions are not performed.

If the “-novariables” option is present, vari-
able substitutions are not performed.

tcl types interp Returns the list of registered types for the inter-
preter identified by interp.

tcl unload Unloads the Tcl runtime library. If it is not
loaded or if any interpreter is currently in use, an
error is generated.

tcl unset interp varName Unsets the variable varName in the interpreter
identified by interp.

tcl update ?options? Processes pending events.

If the “-wait” option is present, block until an
event is processed.

If the “-all” option is present, all available
events are processed before returning.

14. Limitations

Performance is the primary limitation at this point; some operations are up to two orders of mag-
nitude slower than Tcl; however, there is certainly some room for performance gains through op-
timization.
Some commands provided by Tcl 8.4 are missing; however, plans are in place to implement
most of the missing commands.
Namespaces are not supported. There are no namespaces except the global namespace. Any at-
tempt to refer to a non-global namespace via the namespace command generates an error; how-
ever, using qualified variable names does not generate an error. The command “set foo::bar
1” actually creates a variable in the current call frame named “foo::bar”.

15. Future Directions
In the near term:

• Implement asynchronous input/output and server sockets.

• Implement most of the missing commands from Tcl 8.4.
• Complete the documentation.

Eagle: Tcl Implementation in C# 14 Joe Mistachkin

• Complete the unit testing framework and port the necessary tests from Tcl.
In the long term:

• Possibly implement the send command.

• Possibly support loading binary packages into isolated application domains [54].

In the deep and mysterious future:
• Possibly support full integration with Visual Studio.

16. Questions and Answers
How big is the project?
There are approximately 600 files in 120 directories. There are approximately 90 thousand
physical lines of source code, 43 thousand logical lines of source code, or 35 thousand lines of IL
code.

Where is the project hosted?
The project [34] is currently hosted on CodePlex [35]; however, there is currently no public reposi-
tory due to an impedance mismatch between what they offer and what is actually required.
What is the license for the project?

Eagle is licensed [36] under the same terms as Tcl/Tk [37].
Can I help?

Certainly, anybody is welcome to contribute to the project.
What tasks remain prior to the final 1.0 release?

Fix any bugs encountered during the beta period, write documentation, and add more unit tests.
No new features are planned before the final 1.0 release.

17. Conclusion
The initial scope of this project was modest; however, it eventually became clear that Eagle
could be used as the hub of a universal integration platform for any managed application. It is be-
ing released as open-source after more than a year in development in the hopes that people will
find it useful.

18. References
[1] Eagle, http://eagle.to/
[2] Tcl Developer Xchange, http://www.tcl.tk/

[3] Common Language Runtime (CLR), http://en.wikipedia.org/wiki/Common_Language_Runtime
[4] The C# Programming Language, http://msdn.microsoft.com/vcsharp/

[5] Jacl, http://tcljava.sf.net/
[6] Tcl/Tk 8.4, http://www.tcl.tk/software/tcltk/8.4.html

[7] Tcl/Tk 8.5, http://www.tcl.tk/software/tcltk/8.5.html
[8] Tcl/Tk 8.6, http://www.tcl.tk/software/tcltk/8.6.html

Eagle: Tcl Implementation in C# 15 Joe Mistachkin

[9] Dynamic Language Runtime (DLR), http://en.wikipedia.org/wiki/Dynamic_Language_Runtime
[10] Open Source Initiative, http://www.opensource.org/

[11] The C Programming Language, http://en.wikipedia.org/wiki/C_(programming_language)
[12] The C++ Programming Language, http://en.wikipedia.org/wiki/C%2B%2B

[13] Java Virtual Machine (JVM), http://en.wikipedia.org/wiki/Java_Virtual_Machine
[14] The Java Programming Language, http://java.sun.com/

[15] Java Native Interface (JNI), http://java.sun.com/j2se/1.5.0/docs/guide/jni/
[16] Platform Invoke (P/Invoke),

[17] Visual Studio Tools for Applications (VSTA), http://msdn.microsoft.com/vsx2008/products/
[18] Visual Basic for Applications (VBA), http://msdn.microsoft.com/isv/

[19] Visual Basic.NET, http://msdn.microsoft.com/vbasic/
[20] Visual Studio Tools for Applications FAQ, http://www.summsoft.com/content/faq.aspx

[21] Domain Specific Languages (DSL), http://msdn.microsoft.com/vsx/
[22] Windows Presentation Foundation (WPF), http://windowsclient.net/

[23] IronPython, http://www.codeplex.com/IronPython
[24] Python, http://www.python.org/

[25] IronRuby, http://rubyforge.org/projects/ironruby
[26] Ruby, http://www.ruby.org/

[27] IronLisp, http://www.codeplex.com/IronLisp
[28] Lisp, http://www.lisp.org/

[29] IronScheme, http://www.codeplex.com/IronScheme
[30] Scheme, http://www.schemers.org/

[31] Nua, http://www.codeplex.com/Nua
[32] Lua, http://www.lua.org/

[33] Managed Jscript, http://en.wikipedia.org/wiki/Managed_JScript
[34] Eagle (CodePlex), http://www.codeplex.com/eagle

[35] CodePlex, http://www.codeplex.com/
[36] The Eagle License, http://eagle.to/standard/license.html

[37] Tcl/Tk License Terms, http://www.tcl.tk/software/tcltk/license.html
[38] Dynamic link library, http://en.wikipedia.org/wiki/Dynamic-link_library

[39] Managed C++, http://msdn.microsoft.com/visualc/
[40] Global Assembly Cache, http://en.wikipedia.org/wiki/Global_Assembly_Cache

[41] XCOPY Deployment, http://en.wikipedia.org/wiki/XCOPY_deployment
[42] TIP 285, http://tip.tcl.tk/285

Eagle: Tcl Implementation in C# 16 Joe Mistachkin

[43] Unicode, http://www.unicode.org/
[44] UCS-2, http://en.wikipedia.org/wiki/Universal_Character_Set

[45] Closures, http://en.wikipedia.org/wiki/Closure_(computer_science)
[46] Endekalogue, http://www.tcl.tk/man/tcl8.4/TclCmd/Tcl.htm

[47] Microsoft Windows 2000, http://www.microsoft.com/windows2000/
[48] Microsoft .NET Framework Version 2.0 RTM (x86),

http://www.microsoft.com/downloads/details.aspx?familyid=0856eacb-4362-4b0d-8edd-
aab15c5e04f5

[49] Microsoft .NET Framework Version 2.0 Service Pack 1 (x86),
http://www.microsoft.com/downloads/details.aspx?familyid=79bc3b77-e02c-4ad3-aacf-
a7633f706ba5

[50] Microsoft .NET Framework 2.0 Software Development Kit (x86),
http://www.microsoft.com/downloads/details.aspx?familyid=fe6f2099-b7b4-4f47-a244-
c96d69c35dec

[51] Microsoft Visual Studio 2005, http://msdn.microsoft.com/vs2005/
[52] ActiveTcl, http://www.activestate.com/Products/activetcl/

[53] startdll, http://wiki.tcl.tk/15969
[54] Application Domain, http://en.wikipedia.org/wiki/Application_Domain

[55] Base64, http://en.wikipedia.org/wiki/Base64
[56] Globally Unique Identifier (GUID), http://en.wikipedia.org/wiki/Globally_Unique_Identifier

[57] MD5, http://en.wikipedia.org/wiki/MD5
[58] SHA1, SHA512, http://en.wikipedia.org/wiki/SHA_hash_functions

[59] Uniform Resource Identifier (URI), http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
[60] ADO.NET, http://msdn.microsoft.com/system.data.aspx

[61] Security Descriptor Definition Language,
http://msdn.microsoft.com/library/aa379567(VS.85).aspx

