
A Plague of Gofers:
Generalized Rule-Based Data Entry

With Lazy Data Retrieval

William H. Duquette
Jet Propulsion Laboratory, California Institute of Technology

William.H.Duquette@jpl.nasa.gov

Abstract

A gofer value is a data value that tells the application how to retrieve a desired piece of data on
demand, according to some rule, and a gofer type is the code that validates gofer values and
retrieves the data on demand. The advantage of using a gofer is that the value returned can
change over the lifetime of the gofer value as state of the application changes. The gofer
infrastructure allows the definition of gofer types consisting of many different rules, with support
for GUI creation and editing of gofer values.

For example, the user may desire that a particular simulation input affect all civilian groups
residing in a particular set of neighborhoods. Instead of listing the groups explicitly, the user
chooses the relevant rule and the neighborhoods of interest; at each time step, the simulation can
determine the groups that currently reside in the chosen neighborhoods.

1. Background

The Athena Regional Stability Simulation is a model of political actors and the effects of their
actions in a particular region of the world. The region is divided into neighborhoods, in which
reside various civilian groups. The actors have a variety of assets, including money, military and
police forces, and means of communication, which they use to achieve their political ends. The
user of Athena models the behavior of the actors in the simulation by defining their strategies,
which consist of a prioritized list of tactics; then, the actor's behavior is determined by the tactics
the actor executes.

2. The Problem

Consider a tactic that performs a particular bit of behavior: for example, paying money to fund
social services for particular groups in the civilian population. The tactic has several parameters,
of which these are the most important:

• The list of groups for which services are to be funded

• The amount of money to spend during the current week

Now, there are any number of ways the user might select the list of groups and the sum of
money. He might want the groups that reside in a particular neighborhood, or the groups that
support the actor who will execute the tactic. He might want the actor to spend a specific
amount of money, or the amount of money required to achieve a particular result, or 40% of the
actor's available cash. From a software point of view, however, we have always required that the
user enter the precise list of groups and the precise sum of money.

Now suppose the user wants to select all civilian groups that support a particular actor. He has to
go through the output data to figure out which groups those are, and enter them in the tactic's
dialog. If there are many of them, this is tedious and error-prone. And worse than that, tactics
are defined before the simulation begins to run, but the list of groups that support an actor can
change as the simulation is running. If he enters a specific list of groups, it may become
incorrect over the course of the run. In short, there is really no way to do what the Athena user
wants to do.

3. The Solution: Rule-based Data Retrieval

The solution is to redefine the tactic parameters. Instead of entering the desired data values, the
user enters rules for retrieving the desired data values. That is, instead of

• The list of groups for which services are to be funded
• The amount of money to spend during the current week

the user enters

• A rule for selecting a list of civilian groups
• A rule for choosing a sum of money

When it is time to execute the tactic, the tactic code evaluates the rules to retrieve the desired
data values.

This solves the problem nicely, but it poses two further challenges. First, we need to be able to
edit these rule descriptions in the GUI in a user-friendly way. Second, there is likely to be a
large number of these data-retrieval rules for any given data type (i.e., "list of civilian groups").
The code related to any particular rule needs to be both concise and maintainable. Athena's
"gofer" concept handles both of these challenges.

A gofer type is a collection of rules for retrieving data of a particular type (e.g., lists of civilian
groups). The rules are referred to as gofer rules. A gofer value, also called a gdict, is a
dictionary that specifies the gofer type, the specific rule, and any additional data required by the
rule (e.g., a list of neighborhoods). Given a gofer value, we evaluate it to retrieve the relevant
data.

The gofer infrastructure provides tools for simply and concisely building gofer types out of rules.
In addition, each gofer type is associated with a dynaform [1] that can be used to create and edit
values of the type within the GUI.

4. Gofer Types

A gofer type is a type-definition object [2] that collects together a set of related gofer rules. That
is, it is an ensemble whose subcommands operate on gofer values that belonging to the type.
Like all type-definition objects it includes a validate method, of which more later; but more
importantly it includes an eval method, which is used to evaluate gofer values and retrieve the
desired data.

4.1 Evaluating Gofer Values

For example, suppose the user wants to select all civilian groups resident in neighborhoods N1
and N2. This is an application of the gofer::CIVGROUPS gofer type, which returns lists of
civilian groups. The corresponding gdict looks like this:

% set gdict {_type CIVGROUPS _rule RESIDENT_IN nlist {N1 N2}}

Every gdict has a _type key and a _rule key, along with keys for any rule-specific
parameters. In this case, the nlist parameter is a list of neighborhoods. Evaluating this value
will return a list of the names of groups resident in the two neighborhoods:

% gofer::CIVGROUPS eval $gdict
G1 G2 G3 G4
%

4.2 Validating Gofer Values

The gofer type's validate method takes a gdict and validates it, throwing an error with error
code INVALID if any problem is found and returning the gdict in canonical form otherwise.

Gofer values derive from user input, and Athena tends to be forgiving of user input. Group
names, for example, are canonically in upper case, but Athena allows group names to be entered
in lower case as well. Thus, a validate method is responsible not only for finding errors, but for
putting values into the form the application expects.

In the case of a gdict, the _type and _rule keys are canonically the first two keys, and their
values are canonically in upper case. The canonical form of other keys is naturally rule-
dependent.

For example:

% set gdict {_type civgroups _rule resident_in nlist {n1 n2}}
% gofer::CIVGROUPS validate $gdict
_type CIVGROUPS _rule RESIDENT_IN nlist {N1 N2}

4.3 Generating Narrative Strings

It is often desirable to display a gofer value in the GUI, but the standard gdict isn't terribly
readable for the average user. The gofer type's narrative method takes a gdict and produces
a human-readable narrative string, suitable for embedding in a longer sentence. For example,

% set gdict {_type CIVGROUPS _rule RESIDENT_IN nlist {N1 N2}}
% gofer::CIVGROUPS narrative $gdict
all civilian groups resident in neighborhoods N1 and N2

4.4 Representing Raw Inputs

Of course, sometimes one will want to choose the list of groups by hand, in the old-fashioned
way. Consequently, every gofer type has a BY_VALUE rule with one parameter, raw_value,
that is used to represent a value chosen by hand. For example,

% set gdict {_type CIVGROUPS _rule BY_VALUE raw_value {G1 G4}}

This gdict simply evaluates to its raw value:

% gofer::CIVGROUPS eval $gdict
G1 G4

4.5 Auto-Translation of Raw Inputs

To ease the integration of gofers and the import of older Athena scenarios after gofers have been
added, we allow for the following special case. On validation, if a gofer value does not begin
with the _type key we assume that it is simply a raw value, and translate it into a gdict with the
BY_VALUE rule. For example,

% gofer::CIVGROUPS validate {G1 G2 G3}
_type CIVGROUPS _rule BY_VALUE raw_value {G1 G2 G3}

Of course, the raw_value must also be a valid value for the gofer type's BY_VALUE rule.

5. Defining a Gofer Type

At base, a gofer type is simply an ensemble command with the right subcommands and
semantics; it could be implemented as a namespace ensemble, or as a Snit type ensemble [3], and
we started with the latter. It developed that distinct gofer types have a great deal of mechanism
in common, and so the type ensembles evolved into instances of a Snit type called goferType.
Even then, there was a boilerplate code that needed to be written over and over for each type.

Consequently, gofer types are created using the gofer define command, which creates the
instance of goferType and also performs a number of other housekeeping chores. Then, once the
type object exists, rules are added to it.

5.1 Creating the Gofer Type

For example, the gofer::CIVGROUPS type is created as follows:

gofer define CIVGROUPS {
 rc "" -width 3in -span 3
 label {
 Enter a rule for selecting a set of civilian groups:
 }
 rc

 rc
 selector _rule {
 case BY_VALUE "By name" {
 rc "Select groups from the following list:"
 rc
 enumlist raw_value -dictcmd {::civgroup names} \
 -width 30 -height 10
 }
 . . .
 }
}

First, this command creates an instance of goferType called ::gofer::CIVGROUPS, and
registers it with the gofer command.

Next, it specifies a dynaform to use for editing values of the gofer type. The first field in the
dynaform script must be a selector field called _rule, with one case for each of the type's
rules. The case names must match the rule names.

Every gofer value includes a _type key, and yet no _type field appears in the script. This is
because _type has to appear at the beginning of every gofer type's dynaform script as an
invisible context field, and so gofer define adds it in automatically.

5.2 Adding a Rule to a Gofer Type

Initially, the new type will have no rules associated with it; they must be implemented
individually. Each rule is represented in the code as a type-definition object for the rule's own
parameters in the gdict. Again, this rule object could be implemented as a namespace ensemble
or a Snit type ensemble; but as before we discovered that distinct rule objects had a certain
amount of boilerplate code in common. For convenience, then, rule objects are defined using the
gofer rule command, which takes a partial Snit type definition script, adds boilerplate, and
registers the rule with its gofer type object.

For example, here is the definition of the BY_VALUE rule:

gofer rule CIVGROUPS BY_VALUE {raw_value} {
 typemethod validate {gdict} {
 dict with gdict {}
 dict create raw_value \
 [listval "groups" {civgroup validate} $raw_value]
 }

 typemethod narrative {gdict {opt ""}} {
 dict with gdict {}
 return [listnar "group" "these groups" $raw_value $opt]
 }

 typemethod eval {gdict} {
 dict get $gdict raw_value
 }
}

The gofer rule command takes four arguments:

• The type name, e.g., CIVGROUPS
• The rule name, e.g., BY_VALUE
• A list of the names of the rule's parameters, e.g., {raw_value}
• A Snit type body with type methods for the essential rule operations: validate,

narrative, and eval.

It creates a rule object, a Snit type ensemble, called ::gofer::CIVGROUPS::BY_VALUE,
and registers it with the CIVGROUPS type.

5.3 Semantics of Gofer Rule Operations

The rule operations differ slightly from the similarly named gofer operations.

• The validate operation takes a gdict and validates only the keys that are associated
with this particular rule. Any other keys are ignored. It returns a dictionary containing
only keys associated with this particular rule, with the values in canonical form.

• The narrative operation returns a narrative string given a valid gdict for this rule. As
with validate, it ignores any keys but those associated with this rule, e.g., it ignores
the _type and _rule keys.

• The eval operation evaluates the gdict; again, it ignores any keys but those associated
with this rule.

5.4 Helper Commands

One of the goals of the gofer system is that rule definitions should be as concise as possible;
consequently, shared code has been ruthlessly abstracted. For example, the validate and
narrative methods shown above for the BY_VALUE rule make use of the helper routines
listval and listnar. The precise semantics of these commands doesn't matter for the
purposes of this discussion; the main point is that they perform part of the job in a standard way.

To make adding helpers easier, the gofer rule command adds a namespace path containing
::gofer and ::gofer::typename to the rule object's namespace. Thus, the ::gofer
module can provide helpers for use by any rule, and a given gofer type can provide helpers for
use by its own rules, simply by defining procs within their namespaces.

5.5 Sharing Rules

It is not uncommon for a rule to be used by more than one gofer type. For example, Athena has
three kinds of group, and so in addition to gofer::CIVGROUPS we have also defined
gofer::GROUPS, which returns a list of any kind of group. But a list of civilian groups is also
simply a list of groups, and so almost all of the rules in gofer::CIVGROUPS can shared with
gofer::GROUPS. This is done using the gofer rulefrom command.

For example, the following command is part of the definition of gofer::GROUPS:

gofer rulefrom GROUPS CIV_RESIDENT_IN \
 ::gofer::CIVGROUPS::RESIDENT_IN

The gofer::GROUPS' CIV_RESIDENT_IN rule is simply mapped to the given rule object.

5.6 Gofer Rules and Dynaform Cases

As noted in Section 5.1, a gofer type has a dynaform that has a selector case for each of the
type's rules. It might seem like each rule's case script could be defined by the rule object, and the
full dynaform built up from the pieces. The difficulty is that the descriptive text in the dynaform
case often needs to be slightly different for each use of the rule, depending on the type with

which it is associated. Rather than imposing an unpleasant consistency across the GUI for all
types that use a rule, we chose to leave the dynaform script in one piece.

5.7 Invoking a Gofer Operation

The gofer type and its rule objects work together to implement the three primary gofer
operations: validate, narrative, and eval. When the operation is passed a gdict, the
gofer type determines the rule from the _rule key, and passes the gdict along to the rule object,
returning the result.

Only the validate operation involves any additional complexity. The rule object's
validate method only validates and canonicalizes the rule-specific parameters. The gofer
type's validate method appends the result to a stub containing the _type and _rule keys, and
returns that.

5.8 Sanity Checking

A gofer type is built out of many small pieces, all of which need to hook together just right. In
particular, each of a gofer type's rules has to have a case in the type's dynaform (and vice versa),
and the case has to contain a field for each of the rule's parameters.

One could wait for the user to discover any mismatches; instead, we wrote a routine, the gofer
check command, which does a complete sweep of all defined gofer types and throws an error if
any problems are found. This routine is called by the application's test suite, ensuring that all
potential problems are found as part of the build process.

6. The gofer Convenience Command and the _type Key

As noted frequently above, each valid gdict begins with the _type key, which names the
specific gofer type. One might think that since gofer types are distinct in use—if you need a list
of civilian groups, you don't use a gofer type that retrieves quantities of money—that this piece
of information is extraneous. And in fact, our initial implementation omitted it.

However, Athena is scriptable; and since there are user commands for creating tactics, we also
need user commands for constructing and evaluating gofer values. For convenience, then, we
added the _type key to support gofer subcommands that operate on gdicts of arbitrary type.

For example,

% set gdict [gofer construct civgroups resident_in {n1 n2}]
_type CIVGROUPS _rule RESIDENT_IN nlist {N1 N2}
% gofer narrative $gdict
all civilian groups resident in neighborhoods N1 and N2
% gofer eval $gdict
G1 G2 G3 G4
%

7. Status and Future Work

Gofers are a new feature in Athena. At present, we have defined four gopher types, for lists of
actors, lists of civilian groups, lists of force groups, and lists of groups in general. The total
number of rule objects is currently around 40, with gofer::GROUPS defining a number of
rules of its own and reusing most of the gofer::CIVGROUPS and gofer::FRCGROUPS
rules. These gofers are currently used by only two of Athena's eighteen tactics.

Clearly there is much work left to be done. We need to update the existing tactics to use gofer
parameters as appropriate. As we do so, we will discover additional gofers that we need to
define. And then, the sets of rules included in the four existing gofers are only preliminary; as
the users become more familiar with gofers and what they can do, they will have their own ideas
as to what would be useful. It's early days yet.

Nevertheless, the gofer architecture appears to be up to the job. New gofer types can be added
without disturbing existing gofer types, and new rules can be added to any existing gofer type
without disturbing other rules, or breaking any existing scenario data that uses the existing rules.
In that sense, the gofer system is complete; it now simply remains to exploit it ruthlessly.

8. References

[1] Duquette, William H., "Dynaforms and Dynaviews", 20th Tcl/Tk Conference,
Proceedings.

[2] Duquette, William H., "Type-Definition Objects", 12th Tcl/Tk Conference, http://trs-
new.jpl.nasa.gov/dspace/bitstream/2014/37573/1/05-2409.pdf.

[3] Duquette, William, Snit Object Framework, found in Tcllib,
http://tcllib.sourceforge.net/doc/snit.html.

9. Acknowledgements

This research was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration, during

the development of the Athena Stability & Recovery Operations Simulation (Athena) for the
TRADOC G2 Intelligence Support Activity (TRISA) at Fort Leavenworth, Kansas.

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

