
Dynaforms and Dynaviews:
A Declarative Language for User Dialogs in Tcl/Tk

William H. Duquette

Jet Propulsion Laboratory, California Institute of Technology
William.H.Duquette@jpl.nasa.gov

Abstract

A dynaform is a specification of a dynamic data entry form: one whose content and layout can
change based on the input of the user. Consider a GUI for entering rules for filing e-mail
messages into folders: each rule can have many different forms, depending on the desired
criteria. The user must first select the kind of criteria; each criterion has its own set of
parameters, and the user's choices for those parameters might result in a further series of
choices. The dynaform mechanism consists of a little language for specifying such a set of
related inputs, infrastructure for processing that language, and the dynaview widget, which can
display any desired dynaform and accept user input.

1. Background

The Athena Regional Stability Simulation is a model of political actors and the effects of their
actions in a particular region of the world. The region is divided into neighborhoods, in which
reside civilian groups. The actors have a variety of assets, including money, military and police
forces, and means of communication, that they use to achieve their political ends. The extent to
which they succeed depends on the attitudes of the civilians, which change in response to current
events. The Athena user must enter a wide variety of data about many different simulation
entities, and the complexity of the data to be entered has increased with each new version of the
software. The dynaform mechanism is our latest approach to providing complex user-friendly
easily maintainable data entry forms with a minimum of code.

2. The Problem

In the Athena application, an order is a specialized procedure used to handle user input. An
order takes a dictionary of order parameters and values as input, validates them, and either
throws a detailed error or performs the desired task. On success it returns an undo script; the
application's undo/redo stack is in fact a stack of executed orders.

Some orders are simple, with one or two parameters that are always provided by the application;
most are more complicated, and require significant input from the user. As a result, each order
requires an order dialog. At present Athena contains 187 orders, and this number is always

increasing. It is essential that implementation and maintenance of order dialogs be easy and
straightforward.

2.1 Field Widgets

Tk provides a number of widget types useful for entering data, but their APIs often have subtle
differences. Athena defines a standard field widget API, and uses Snit wrappers where necessary
to make standard widget conform. The API was established early in Athena development, and
has been remarkably stable since.

First, every field widget has at least the following options:

-state state
Sets the widget's state to normal or disabled in the usual way.

-changecmd command

Specifies a command prefix that will be called whenever the field's value changes for any
reason (whether programmatically or due to user input). The command is called with one
additional argument, the new value of the field.

Next, it has at least the following subcommands:

field get

Retrieves the field widget's current value.

field set value
Sets the field widget's value, calling the –changecmd.

Configuration is naturally field-type-specific, but once the field widgets are created and
configured they all work just the same from the point of view of the form infrastructure.

2.2 Order Dialogs: The Mark I Solution

Our original solution to the order dialog problem was to associate enough metadata with each
order definition to allow Athena to put together and pop up an order dialog. The first dialogs
were quite simple: two parallel columns, with labels on the left and data entry fields on the right,
implemented in a Tk grid. There were just a few field types, mostly text fields and combo box-
based pull-downs; the metadata specified the list of valid items for the pull-downs.

These order dialogs often required additional code to provide dynamic behavior:

• Enabling or disabling fields based on prior entries in the dialog

• Configuring field widgets based on the state of the application (i.e., setting a pull-down to
contain a list of currently defined simulation entities)

• Configuring field widgets based on the state of prior fields in the dialog.

Dynamic behavior was provided by means of a –refreshcmd callback associated with the
dialog fields. Whenever the content of any field in the dialog changed, whether
programmatically or due to user input, the dialog code called each field's –refreshcmd
callback. The callback could enable or disable the field, or reconfigure it in a variety of ways.
The difficulty was that each field was handled individually, when it was often necessary to
coordinate changes to multiple fields.

Further, there were multiple reasons why a field might be refreshed, and the appropriate response
differed. The callbacks needed to second guess the dialog logic in order to do the right thing. As
a result, dialogs were finicky to get right, and when there was a problem it was hard to fix it
without introducing problems elsewhere. Worse, the underlying dialog logic was convoluted and
hard to follow.

2.3 Order Dialogs: The Mark II Solution

As a result, I rewrote the order dialog code from scratch, separating the main dialog logic from
the form logic. I abstracted the form code out into a new form widget. The layout was still two
parallel columns of labels and fields, but the order dialog code itself no longer needed to concern
itself with the layout. The field-specific –refreshcmd callbacks were replaced by a single –
refreshcmd callback that applied to the entire form. It was called with:

• The name of the order dialog, a Snit widget with a variety of introspection and
configuration subcommands.

• A list of the names of the order parameters whose fields had changed

• A dictionary of the current values of all fields

The callback would then have to figure out the appropriate dialog configuration given the fields
that had changed and the current field values, and update the dialog accordingly. It was now
much easier to coordinate configuration changes to multiple fields, since all of the logic was in
one callback. This scheme was a great improvement over its predecessor, but also proved to be
unmanageable for complex dialogs. The complexity was all in one place—in the –
refreshcmd callback—but refreshing still occurred for multiple reasons, and the callback
code still needed to second guess the dialog logic in order to do the right thing. Writing robust
code that caught all of the corner cases was difficult for any but the simplest patterns.

In the meantime Athena continued to grow, the number of orders continued to increase, and the
individual orders continued to get more complex.

2.4 Lingering Issues

By this time we had a fairly sophisticated, maintainable set of code; but it was still unpleasantly
limited.

• Dynamic behavior was easier to implement than before, but not truly simple.

• Form layout was limited to two parallel columns, and there was no easy way to change it.

3. An Example

As a simple example, the Athena analyst may create a DEPLOY tactic to deploy simulated
troops into a neighborhood. He may choose the number of troops to deploy in two ways: he
may deploy all remaining troops or he may deploy some specific number of troops; and in the
latter case, he may deploy them with or without reinforcement. If he selects all remaining
troops, he is done; but if he chooses to enter a specific number, he must enter the number and the
reinforcement flag.

With the old system, the dialog looked like this:1

When the user chose to deploy all remaining personnel, the "Personnel:" field was disabled.
When the user chose to deploy only some, the "Personnel:" field was enabled again, and the user
could type in a number. Note that it was not possible to make the "Personnel:" field disappear
when it was not wanted: the underlying "form" widget didn't support that.

1 The reinforcement flag field is not shown, because it had not yet been added to the underlying order.

4. The Mark III Solution

The Mark I solution had the order dialog widget layout fields in a Tk grid based on the list of
order parameters and a little metadata. Any relationships between fields were captured purely in
external callbacks.

The Mark II solution made use of a Tk-grid-based form widget, and had the order dialog widget
configure it based on the list of order parameters and a little metadata. The layout remained the
same, and any relationships between fields were captured, again, in external callbacks.

The Mark III solution is radically different: the order dialog uses a new form widget, the
dynaview widget, which can display any dynaform. A dynaform is a description of the form's
fields and layout, including significant relationships between the fields, as captured in a
declarative Tcl-based language. A dynaform specification becomes part of each order's
metadata, but the dynaform language and infrastructure are independent of the order and order
dialog infrastructure. In short, the new infrastructure is useful not only for order dialogs but for
other general purpose dialogs.

The Mark III equivalent of the order dialog show above implemented as follows as a dynaform:

rcc "Owner:" -for owner
text owner -context yes

rcc "Group:" -for g
enum g -listcmd {group ownedby $owner}

rcc "Mode:" -for mode
selector mode {
 case SOME "Deploy some of the group's personnel" {
 rcc "Personnel:" -for personnel
 text personnel

 rcc "Reinforce?" -for reinforce
 yesno reinforce -defvalue 0
 }

 case ALL "Deploy all of the group's remaining personnel" {}
}
. . .

The text, enum, selector, and yesno commands each create a field, giving it a name and
any required configuration options. The rcc commands add labels and layout hints. We'll take
them in turn.

4.1 Field Specifications

All field creation commands have the following signature:

 fieldtype name ?option value...?

There are a number of standard field options, and each field type may have its own specific set of
options.

The owner field names the actor to whose strategy the new tactic will be added. It is defined as
follows:

 text owner -context yes

It is a text entry field; the –context option indicates that it is a "context" field: one whose value is
set by the application to provide context to those that follow. The value of a context field cannot
be edited by the user. Tactics are always created from a browser widget that shows the strategy
of one actor at a time, and so the owner field is field in by the browser when the dialog is popped
up.

The g field is used to enter the name of the force group to be deployed. It is defined as follows:

 enum g -listcmd {group ownedby $owner}

The enum command creates an enumeration field, which is rendered as a combo box containing
a list of force groups to deploy. Each actor has his own set of force groups, so the content of the
list has to be limited to those belonging to the owner. In the Mark II code, this would have been
done in a clumsy way by the –refreshcmd, which when called would have had to figure out
which fields needed to be updated and how. Here, instead, we simply define a –listcmd,
which returns the desired list. It is called whenever the infrastructure determines that any prior
field's value has changed.

Note that the –listcmd references the variable $owner. Rather than being called in the
global namespace, as callbacks usually are, all field configuration callback commands are called
in a context in which the form's field values are available as variables. This makes it trivially
easy to make a field's configuration depend on a prior field in the same dialog. In this case, the
command simply returns all of the groups owned by the tactic's owner.

The reinforce field is a Boolean field created using the yesno field type. This is an
example of a custom field type; it simply wraps the enum field type with the required
configuration options to display "Yes" and "No" and map them to the integers 1 and 0. It was
defined by the Athena application itself to streamline this common case.

4.2 Selector Fields

Next we come to the mode field, which specifies how the number of personnel to deploy is to be
determined. It is defined as follows:

selector mode {
 case SOME "Deploy some of the group's personnel" {
 rcc "Personnel:" -for personnel
 text personnel

 rcc "Reinforce?" -for reinforce
 yesno reinforce -defvalue 0
 }

 case ALL "Deploy all of the group's remaining personnel" {}
}

The selector field type controls the form's displayed content in a special way. After any
options, it takes a body script which contains case commands; each case command takes a
body script which can contain arbitrary dynaform commands.

The mode field will be displayed as a combo box with one item for each of the cases in the
selector body. The field's value will be SOME or ALL, and the combo box will display the
associated text, e.g., "Deploy some of the group's personnel". When the user selects a case, the
fields defined in that case's body will be displayed. For this dynaform, the dialog will display the
personnel and reinforce fields only when the mode is SOME.

For example, the dialog looks like this when the mode is ALL:

but like this when the mode is SOME:

Selector fields can be nested arbitrarily deeply.

4.3 Dynamic Behavior

The Mark I and Mark II versions of the order dialog infrastructure allowed for three kinds of
dynamic behavior in response to changes in the content of the fields:

• Changing the configuration of a field, e.g., setting the list of valid items for a pull-down
field.

• Loading record data into the dialog when a key field's value changes.

• Changing the layout in some way

Dynaforms support these same behaviors, but in a significantly different way. In the Mark I and
Mark II code it was necessary to write –refreshcmd callbacks; these callbacks had to contain
significant logic to determine what just happened and the current state of the dialog, and make
the required changes. This required second-guessing the underlying dialog code, and unless the

programmer had a pretty good notion of how that code worked, it was hopeless. Even if the
callbacks did mostly what was wanted it was hard to catch all of the corner cases.

With dynaforms, each of the three behaviors listed above is handled in an appropriate way.

Fields that require dynamic configuration do so by a callback that returns the required
configuration information given the values of the prior fields in the dialog and the state of the
application. The enum field, for example, has a –listcmd option; the command must return
the current list of valid items, which is passed directly to the underlying field widget. The
dynaform infrastructure ensures that the callback will be called whenever needed; and the
callback need not concern itself with the dialog or second-guess its behavior or state. The
command usually can just do a simple data retrieval, without any complex logic.

Key fields are handled by a –loadcmd callback; this is an option that can be used with any field
type. The callback is called whenever the field's content changes in any way; and its job is to
return a dictionary of field names and values to load into the dialog. Again, the command
usually just does a simply data retrieval. All of the logic is handled by the infrastructure.

Finally, it is no longer necessary to write custom logic to control the dynamic layout of the
dialog. Instead, such dynamic behavior is stated declaratively in the dynaform specification
script. No callbacks are involved.

In short, dynaforms get the encapsulation layer in the right place. There are a few things a form
might need to know, and callback options are provided so that the dynaform can ask for them;
but the application programmer need only provide information. The dynaform's logic is internal,
where it belongs.

4.4 Layout Hints and Layout Engines

The remaining commands in the dynaform language create label text and provide layout hints;
the rcc command does both. For example, the label for the personnel field is created as
follows:

 rcc "Personnel:" -for personnel

This command assumes that a table layout is being used. It creates a new row and column,
places the label "Personnel:" in that column, and then creates a new column for any subsequent
content. The –for option relates it explicitly to the personnel field; when the field's value is
invalid, the label will be drawn in red.

The rcc command is referred to as a layout "hint" because the dynaform language doesn't
presuppose any particular mechanism of laying out the fields; rather, it is aimed at defining the

fields and linking them to each other and to the required application data. The hints are there for
the use of the GUI when it displays the dynaform, which it is free to do in any way it likes. In
particular, the dynaform language does not itself assume the use of Tk; it could in principle be
used with Gtk or (on the server side) with HTML or JavaScript displayed in a browser.

4.5 The Item Tree

Consider the following dynaform.

label "A:" –for a
text a

label "B:" –for b
selector b {
 case B1 "B1:" {
 label "C:" –for c
 text c
 }

 case B2 "B2:" {
 label "D:" –for d
 text d
 }

 case B3 "B3:" {
 label "C:" –for c
 text c

 label "D:" –for d
 text d
 }
}

First there is field a, which is always displayed. Next, there is selector b, which is always
displayed. The selector has three cases; the first displays field c, the second field d, and the third
both. Each field has an associated label. Each command in the form defines an item, and these
items form a tree, as shown in the following diagram.

If this were a real form, it would be associated with an order with fields a, b, c, and d, and the
processing of fields c and d would depend on the value of field b. Note that there are fields
named c and d on several different branches. This is perfectly OK. Laying out the dynaform
involves walking this tree, and picking the branches corresponding to the selector values. A field

name can appear on any number of branches, just so long as it does not appear twice on the path
from the root to any leaf node.

The path from the root to a leaf given the current selector values is called the current path.

4.6 Creating a Dynaform

Dynaforms are created using the dynaform define command:

dynaform define MYFORM {
 # form specification commands
}

Most dynaforms in Athena are associated with orders; the form specification is entered as part of
the order's metadata and dynaform define is called automatically.

5. The Dynaview Widget

Dynaforms are displayed by the dynaview widget; the dynaform to display is determined by
the –formtype option, which names any defined dynaform. The manner in which the form is
displayed is determined by the selected layout algorithm. Given the algorithm, the widget

follows the current path from the root to a leaf, using or ignoring hints and laying out labels and
fields. How the hints are used depends on entirely on the chosen layout algorithm.

5.1 Layout Algorithms

At present, the dynaview widget supports three different layout algorithms: ribbon, 2column,
and ncolumn. The default is ncolumn, but a form can select a different algorithm using the
layout command, e.g.,

 layout ribbon

The ribbon algorithm lays out labels and fields in one row, horizontally, ignoring other layout
hints.

The 2column algorithm lays out labels and fields in two parallel columns, like the Mark I and
Mark II order dialog code.

The ncolumn algorithm allows labels and fields to be laid out in table cells, as with a Tk grid or
HTML table. The layout hints indicate row and column breaks.

The real point to allowing multiple layout algorithms is "future-proofing". The current layout
scheme is working for us, but the architecture allows us to define additional schemes for
particular purposes without changing any existing dynaforms.

The underlying geometry manager in each case is a Tkhtml3 widget; thus, the layout algorithm is
generally producing HTML text. Tkhtml3 has a number of advantages over a Tk grid; it is easy
to include rich text in the form, and lines of label text and field widgets wrap more attractively.
However, the dependence of the API on Tkhtml3 is minimal, and future layout algorithms could
use a different underlying widget.

5.2 Widget API

The dynaview widget has the following options:

-formtype name
Sets the name of the dynaform to display.

-state state

Sets the widget's state to normal or disabled in the usual way.

-changecmd command
Specifies a command prefix that will be called whenever the form's value changes for any
reason (whether programmatically or due to user input). The command is called with one
additional argument, the new value of the form.

-currentcmd command
Specifies a command prefix that will be called whenever the one of the form's fields receives
the focus. The command is called with one additional argument, the name of the field that
received the focus.

Next, it has the following subcommands (among others):

form get

Retrieves the form's current value: a dictionary of field names and values.

form set dict
Sets the values of the form's field widgets given the field names and values in the dict, and
calls the –changecmd.

form current
Returns the name of the field that has the input focus (or the first field, if no field has the
input focus).

form invalid fields...
Marks the named fields invalid. The effect is determined by the layout algorithm; for
ncolumn, for example, the associated fields are colored red.

form clear
Clears all non-context fields, and fills in default values.

form refresh
Refreshes all fields from first to last; all fields will now be configured in accordance with the
current state of the application.

Note that the dynaview widget adheres to the field widget API described in section 2.1. This
is often useful when a field's value isn't a simple scalar value. Instead, a custom field type can be
defined based on the dynaview widget and an appropriate dynaform.

5.3 The dynabox Command

The dynabox command pops up a modal dialog containing a dynaform, with "OK" and "Cancel"
buttons. On "OK" it returns the value of the dynaform (i.e., [$form get]); on "Cancel" it
returns the empty string. It is roughly similar to the standard tk_messageBox command, but
displays an arbitrary dynaform. Thus, dynaforms can be used for general data entry, not simply
for order dialogs. This is another advantage of dynaforms over the Mark I and Mark II solutions.

6. Dynaform Language

This section gives a rough overview of the dynaform language. We divide the commands in the
language into two sets: content and layout.

6.1 Content Commands

The content commands are as follows:

fieldType name ?option value...?
Adds a field of the given type with the given name to the form. There are a number of
predefined field types, including text and enum, as described above, and the application
programmer can add more. The options are used to configure the field. The following
options can be used with any field type.

-context flag

If flag is true, the field is a read-only "context" field. It provides context to the user, and
its value might be used by field configuration callbacks.

-defvalue value
Specifies a default value for the field; the value is placed in the field when the form is
cleared.

-invisible flag
If flag is true, the field is invisible, i.e., is not displayed in the dialog. This allows the
application to provide context data for use by field configuration callbacks without
making it visible to the user.

-loadcmd command
This command is called when the field's value changes; its purpose is to load data into the
dialog when a key field's value changes. It is given the field's current value and other
configuration data, and returns a dictionary containing field names and values. Any field
whose name matches a dictionary key is updated with the value from the dictionary.

-tip text
Specifies tool-tip text for the field. This option is a layout hint, and how the text is used
depends on the layout algorithm.

label text ?-for field?
Adds the text to the form; it can contain rich text in the form of HTML markup. If the –for
option is included then the text is a label for the named field, and may be highlighted (i.e.,
colored red) when the field's content is in error.

selector name ?options...? selscript
The selector command adds a special pull-down field that controls the content of the dialog.
It has the given name and takes all of the standard field options. The selscript contains one
or more case commands; the user selects the case from the pull-down.

case case label script
This command can only appear in a selector field's selscript, where it adds another case
to the selector. The case is a symbolic constant used as the selector field's value when the
case is selected, and the label is corresponding text that appears in the pull-down. The script
contains any arbitrary dynaform commands (fields, labels, and layout hints); the form items
in the script are displayed when the case is selected by the user.

when expr tscript ?else fscript?
This command is like a selector case in that it controls the items that will be displayed;
however, it is not a field. Instead, expr is a Boolean expression that may reference upstream
fields by name (as well as arbitrary commands). If the expression is true, then the items in
the tscript will be laid out; otherwise those in the fscript (if any) will be laid out.

6.2 Layout Commands

layout algorithm ?options...?
Specifies the layout algorithm to use. Currently, the choices are ncolumn (the default),
2column, and ribbon. The choice of algorithm determines how the layout hints are used.
Most existing hint commands are used only by the ncolumn algorithm.

br
Adds a line break to the form.

c ?label? ?options...?
For ncolumn layouts, starts a new column. If label is given, a label is added as the first item
in the column.

-for field

Relates the label to a field, as for the label command.

-span n

The new column will span n table columns; defaults to 1.

-width width

The desired column width, in HTML length units, e.g., "3in" or "100pxi".

cc label ?options...?
For ncolumn layouts, starts a new column, places the label text in it, and starts a second
column. The options are the same as for the c command.

para

Adds a paragraph break to the form.

rc ?label? ?options...?
For ncolumn layouts, starts a new row and column. The arguments are as for the c
command.

rcc label ?options...?

For ncolumn layouts, starts a new row and column, places the label text in it, and starts a
second column. The options are the same as for the cc command.

7. Examples

This section gives a number of additional examples of dynaforms and the resulting dialogs.

7.1 Dynaform with Help Text

The following dynaform is designed to contain help text so as to be immediately understandable
to the user. It is used to enter inputs for a Boolean condition called "DURING":

The form specification is as follows; condcc is a custom field type.

rcc "Tactic/Goal ID:" -for cc_id
condcc cc_id

rcc "" -width 3in
label {
 This condition is met when the current simulation time
 is between
}

rcc "Start Week:" -for t1
text t1
label "and"

rcc "End Week:" -for t2
text t2
label ", inclusive."

7.2 Dynaform with "When" Conditions

The following dynaform grows depending on the user input. It is used to enter some number of
casualties to a group in the simulation.

First the user must select a group. If it's a civilian group, then Athena wants to know what force
group is responsible for the casualities (if any). A "Responsible Group" field appears.

For historical reasons, Athena allows there to be up to two responsible force groups. If a name is
chosen for the first, a second "Responsible Group" field appears.

The dynaform specification is as follows; nbhood and frcgroup are custom field types.

rcc "Neighborhood:" -for n
nbhood n

rcc "Group:" -for f
enum f -listcmd {::aam GroupsInN $n}

rcc "Casualties:" -for casualties
text casualties -defvalue 1

when {$f in [::civgroup names]} {
 rcc "Responsible Group:" -for g1
 frcgroup g1

 when {$g1 ne ""} {
 rcc "Responsible Group 2:" -for g2
 enum g2 -listcmd {::aam AllButG1 $g1}
 }
}

8. References

[1] Duquette, William, Snit Object Framework, found in Tcllib,
http://tcllib.sourceforge.net/doc/snit.html.

9. Acknowledgements

This research was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration, during
the development of the Athena Stability & Recovery Operations Simulation (Athena) for the
TRADOC G2 Intelligence Support Activity (TRISA) at Fort Leavenworth, Kansas.

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

