
A State-Driven, Service-Oriented Dynamic Web Development
Framework

Stephen E. Huntley
stephen.huntley@alum.mit.edu

Abstract

I introduce a Tcl-based framework for development of dynamic web sites. It was written
as an attempt to get away from object-oriented web development paradigms which have
largely failed to deliver the advantages that dynamic scripting tools ought to provide. It
leverages some of Tcl's unique features, such as hierarchical namespaces, module-based
package management and extensive call stack introspection; in order to provide a
hierarchy of composable dynamic services in response to a URI, inspired by service-
oriented programming techniques.

1. Introduction

The subject of this paper is a collection of Tcl
packages designed to work together as a
simple, modular web application framework;
specifically it is designed to bring to the task
of authoring and delivering a dynamic web
site the relative ease, flexibility, reliability and
empowerment associated (by those who know
it well) with development of a Tcl software
program.

The last decade has seen a tremendous
increase in complexity of programming
techniques used in the most popular web
application frameworks. These include heavy
reliance on object-oriented programming,
model-view-controller design patterns and
object-relational mapping for database access.
The Ruby on Rails framework is probably the
most high-profile embodiment of these trends,
with packages such as Spring and Hibernate

in Java and Zend and CodeIgniter in PHP
taking similar approaches and reaching
similar levels of adoption and mindshare.

The appeal of such products is the promise of
rapid prototyping and fast delivery of
database-driven web sites achievable by
designers with relatively little experience.

The design approaches and associated hype
typified by these frameworks have become so
widespread and ingrained in programming
culture that I have encountered younger
programmers who have expressed surprise
that other means of designing a dynamic web
site are even conceivable.

The drastic downside of these trends in web
site engineering is that the promise of quick
prototyping and fast early results has been
bought with introduction of intractable
medium-to-long term issues of code

management, stability, security and
scalability. Attempts to fix these issues have
led to increases in the complexity of the
frameworks themselves, often thereby leaving
behind the inexperienced programmers the
frameworks were originally intended to
appeal to. Dynamic web development has
come to resemble the dispiriting slog of
enterprise architecture programming, rather
than the quick and satisfying scripting
experience that programmers turned to the
lighter-weight, non-compiled languages for in
the first place.

As a capper to these struggles, which have
been simmering for some time, in the
beginning of 2013 a series of catastrophic
security flaws were found in the software of
the Ruby on Rails framework1. These bugs
make total takeover of web servers running
the software trivially easy for attackers. The
revealed flaws were so deeply entwined in the
code that they appeared to some expert
observers to herald a whole new class of
bugs; where, even if the immediately known
issues were patched, it might take years to
track down the underlying vulnerabilities, if
they do not in fact turn out to be inherent in
the object-oriented, object-relational
architectural approach (and thus ultimately
ineradicable).

All this is by way of saying that the past ten
years or so of web authoring progress is today
looking like something of an evolutionary
dead end. A total rethink of how to design
small to medium-sized dynamic websites,
which might have seemed like an indulgence
just a year ago, now importunes more like a
matter of urgent importance.

This program is a serendipitous result of
attempts to solve a number of pressing web
design and delivery problems encountered by

me professionally over the past several years.
These problems relate to issues of code
deployment, identity management, role-based
access to resources, workflow and
collaboration. Despite the intensifying
complexity of the mainstream application
frameworks, the state of the art in grappling
with these issues has hardly budged in the
Twenty-first Century.

The code attempts to leverage Tcl's natural
strengths: its hierarchical namespaces, its
strong package management features, its
string-oriented data processing paradigm, its
event loop and its call stack introspection
features, all map exceptionally well to the
problem spaces presented by the HTTP
protocol and its stateless, hierarchically-
indexed, string-based orientation. Thus the
program is able to pursue the goal of mapping
the design of a dynamic web site to the well-
understood task of writing a Tcl program as
encapsulated in a collection of packages.

As a result of its serendipitous creation, the
program is something of a mutant hybrid; I
hope that like some other mutant hybrids, it
will prove fitter for survival in the wild than
other more purebred species.

2. Design Approaches: Service-
orientation and Hierarchical Indexing

The code relies on a simple central design
axiom: the URI of a request from an external
client to a web server can be used internally
by the server as a master index to control
access to the range of heterogeneous
information sources a web framework is
today expected to access and coordinate to
fulfill the external request.

The simplest example is mapping of a HTTP
query's URI to a Tcl procedure, which is

programmed to return the desired dynamic
response. In this instance comparison may be
made to Tclhttpd's “application direct URL”
feature2. This feature allows the developer to
register URIs as keys and procedure names as
values in a global array. On receipt of a query
with a matching URI, the correspondingly
mapped procedure is called. Tclhttpd
additionally decodes the query's named values
and calls the procedure with the values
mapped to the appropriate arguments.

This is a handy feature, but the mappings of
URI to code are arbitrary, and no structure is
provided for organization or marshaling of the
procedure code within the project.

The new code does a similar mapping of
URIs to procedures, but does so without the
need for maintenance of any key-value arrays;
there is in fact no need for any metadata
superstructure at all -- it instead simply
leverages Tcl's hierarchical namespace feature
and maps the nodes of the URI to a
namespace path, which is presumed to exist
or be loadable from a package module. Like
Tclhttpd, it also decodes query strings (and
REST-format values as well) and goes on to
do a smart best-fit mapping of the lot to
procedure arguments.

The program takes a few additional steps in
management of the mapping of URI to
procedure. In order to prevent inadvertent
unintended access to code, at startup it
requires specification of a namespace path
prefix which defines the space of allowable
procedure mappings. It requires exporting of
specific procedures (via the [namespace
export] command) as a prerequisite for being
called as a means of declaring them “public.”
It also carries forward the concept of
hierarchically-indexed access to services by
looking for and loading Tcl package modules

in the module filesystem path space if a
procedure suitable for mapping is not already
loaded in the interpreter.

This behavior illustrates how as an alternative
to the dominant but flawed object-oriented
design paradigm, this project looks for
inspiration to concepts associated with the
approach known as “service-oriented
programming.” Service-oriented
programming is typically used by large
enterprises in pursuit of “service-oriented
architecture,” which aims to coordinate a
large number of disparate heterogeneous
networked computer resources by strictly
segregating them and letting them interact via
a simplified, structured API schema.

To quote Wikipedia3: “In SOP [service-
oriented programming]... software modules
are strictly encapsulated through well-defined
service interfaces that can be externalized on-
demand as web service operations.” In
addition: “a service can be composed of other
nested services in a hierarchical manner.”

While making no attempt to conform to any
official definitions or protocols, the code
attempts to follow the service-oriented
approach by casting Tcl package modules in
the role of the aforementioned “software
modules,” with namespaced and exported
procedures stored in the modules as the “well-
defined service interfaces.”

If generalized away from its enterprise
programming origins, service-oriented
programming might be seen as an abstraction
of the “Unix way;”4 that is, a means of
fulfilling programming goals by using small
code units each of which performs simple
tasks well and interacts with the others via
simple text-based interfaces. This project
tries to iterate that abstraction by recognizing

that a web server's function has evolved into
that of a coordinator and collator of a variety
of resources and information nodes, and thus
the service-oriented approach is applicable
reflexively both to the server's external role as
a fulfiller of information requests on a
hierarchized global network, and to the web
framework's internal data marshaling
challenges.

Now the beginnings of a hierarchy of services
within the web framework can be envisioned,
all leveraging the tools naturally available and
used by the Tcl programmer in assembling a
sophisticated software installation. The
request URI maps to a procedure well-
encapsulated in a hierarchical namespace.
The namespaced procedure exists in a
package which is stored in a Tcl package
module file whose name by convention
reflects the namespace path. The package
module is stored in a filesystem directory path
that mirrors the module name.

The program code transparently manages all
these levels in search of the appropriate
service mapping that will fulfill the web
client's request. Thus the process of
designing a dynamic web site boils down to
tasks that feel quite natural to the experienced
Tcl programmer: creating namespaced
packages containing publicly-declared
interfaces of exported procedures. The
developer need only write such a package and
drop the package file into the defined module
library path space in order to instantiate a new
web service API. The program takes care of
all the rest: determining package availability,
loading package modules, mapping
procedures and arguments to inborne URIs,
executing the procedures and returning
results.

3. Additional Facilities

The code is formatted as a collection of
packages. The project files are laid out so that
they may be delivered as a Starkit, as a single
package with sub-packages included in an
internal library directory and loaded as
needed, or as a traditional application with a
bin subdirectory containing an rc file and a
configuration file.

Included is the pure-Tcl web server Wibble,
and may be started as a stand-alone web
server. Or, it can be accessed via gateway
protocols such as CGI or SCGI from a third-
party web server.

3.1 Package: tserver

As stated, the program is a collection of
packages, and its operation may be best
explained in more detail by closer
examination of the individual packages:

The package named tserver coordinates and
controls the other packages. In addition, it
manages startup and configuration tasks. By
design tserver server code listening on a port
plays nicely with other event-generating code
that may be running in the interpreter. Unlike
Tclhttpd, which keeps its configuration values
in global variables and has a complex
interrupt protocol if the developer wants to
make use of event programming independent
of the web server's function, tserver keeps its
configuration state in the namespace in which
it was started; and all event-level state is kept
within the event's call stack.

Thus the framework can run multiple listener
ports with the same configuration in the same
namespace, or it can run listeners with
completely different configurations in
separate namespaces.

The tserver package manages event-level state
by providing “getter” and “setter” procedures
which are call stack-aware. The getter
procedure can access server-level state from
the controlling namespace. The setter uses
the [info frame] command to introspect which
call stack it occupies in the event-loop
structure, and sets arbitrary desired values in a
place restricted to the call stack's scope. Once
a call stack-level value has been set, the getter
will always retrieve that value, even if there is
a server-level value with the same name.
Thus code executed in response to a query
can customize the call stack's state; a variety
of independent services can contribute to
construction of a response, and a coordinating
procedure can finally collate the information
contained in the event-level state into a
response.

3.2 Package: Wibble

The tserver package makes use of the pure-
Tcl web server package Wibble5, written by
Andy Goth. The version used is customized
to eliminate use of coroutines in order to
allow pre-Tcl version 8.6 use and for
performance, and other optimizations.

Thus the program can be used as a stand-
alone web server, or can be configured to
accept straight redirects from another server
or reverse proxy without additional
processing. Since the flow of code in Wibble
is well-encapsulated via use of dictionaries, it
is fairly easy to write new front ends for the
Wibble code which accept different input
protocols, simply by constructing a custom
request state dictionary and injecting it into
the Wibble code flow. For example, an SCGI
front end has been written.

Wibble uses its own controller/dispatcher for
matching query URIs to procedures. It

utilizes a table of “zone handlers,” where a
zone is a URI prefix and the handler is a
procedure, with optional custom state
variables added to the request dictionary
before dispatch. The framework own
dispatcher function is constructed as a Wibble
zone handler, so calls to it can be restricted to
the domain of one or more specified URI
prefixes.

The zone handler table is one of Wibble's
most innovative and useful features. It is
superficially like Tclhttpd's application direct
URL feature (mentioned above); but instead
of an array of keys and values, with one
match opportunity, Wibble's dispatcher runs
down the whole table and calls every
procedure whose associated URI prefix
matches the incoming query. Thus
configuration of the table offers creative
opportunities for multiple pre- and post-
processing phases, and pipelining of response
structures through multiple procedures. How
this facility interacts felicitously with the
framework service-handling architecture will
be elaborated on further below.

3.3 Package: pkgTree

The package named pkgTree provides the
controller and dispatcher procedures sketched
above in section 2, as well as utilities for
managing the package modules which contain
the service code.

The package is so named because of the way
the Tcl package module feature provides an
alternate way of storing code packages: in a
tree-structured filesystem directory location.
(N.B. The “package module” feature is
distinct from the classic package storage and
discovery method; i.e., putting packages and
their pkgIndex.tcl files in subdirectories of a
directory which is listed in the global

auto_path variable.)

Thus for example the module file for package
textutil::string version 0.7.1, instead of being
stored in a package library directory along
with a pkgIndex.tcl file to control how it is
sourced, is stored in a subdirectory of a
module directory determined by the package
name; i.e., <tm>/textutil/string-0.7.1.tm

The new(ish) package module feature
provides a convenient and visually
meaningful way to organize web server API
code, since the pkgTree dispatcher assumes
that the directory layout of the specified
module path location mirrors the valid URIs
of the server's API.

Thus, for example, if the dispatcher is
initialized with the package prefix “API” and
receives a query of the form:

http://example.com/document/statistics/wordc
ount?doc=tutorial.txt

then it will use the [namespace which]
command to see if the procedure:

::API::document::statistics::wordcount

exists. If it does not, the dispatcher looks for
the package:

API::document::statistics

and loads it. The dispatcher checks again if
the procedure “wordcount” exists in the
package, and additionally checks if the
procedure is exported. If so, and the
procedure has an argument named “doc”, then
the procedure is called with the argument
appropriately set.

The combination of checking for the prefix
(“API”), and for exported procedures only,

ensures that only procedures the developer
intends to be available are called.

Since REST-type calls are supported
transparently, if the URL had been of the
form:

http://example.com/document/statistics/wordc
ount/tutorial.txt

the dispatch process would have proceeded in
the same way.

These facilities all come together when the
developer comes to want to expand the API;
for example to support the call:

http://example.com/document/transforms/tran
slate?doc=tutorial.txt&lang=german

then the developer would simple create a
package module called:

API::document::transforms

containing the exported procedure “translate”
and drop the module file in the location
<tm>/API/document/transforms-0.1.tm. Once
that module exists the new API call is live,
and the dispatcher takes care of loading and
executing it, no server restarts or reloads
necessary.

In line with the concept of using the URI as
an index into different services, the pkgTree
package also contains the procedure
“resource”. The resource directory allows an
API procedure to retrieve static files from the
filesystem without having to specify an
explicit pathname.

The resource procedure is initialized with the
location of a directory laid out as a mirror
image of the API package module directory;
that is, with sub-directories corresponding to

URIs supported by the API. If the resource
procedure is called within an API procedure,
it uses introspection to discover the
namespace and procedure name of its caller,
and retrieves the contents of the static file
located in the resource directory
corresponding to the URI path. If the
retrieved file contains template code, the code
will be executed and the final result returned.

Thus if a query of the form:

 http://example.com/account/statement.html

were received, the procedure:

 ::API::account::statement.html

would be called. If this procedure were
simply to contain a call to the procedure
::pkgTree::resource, then the file
<resource>/account/statement.html would be
retrieved. This file could contain template
code for returning customized information to
the caller, which the resource procedure
would see to executing.

4. Using Framework Features to Drive
a State Machine

An advantage of mapping URIs to
namespaces is that the pkgTree package's
dispatcher can use the [namespace path] and
[namespace which] commands to determine
quickly which procedures are visible and
executable. This approach contributes
significantly to the performance, security and
logical clarity of the code.

For the sake of security, the pkgTree
dispatcher was designed with the requirement
that it be initialized with a call to the
[namespace path] command in the
dispatcher's namespace to set a namespace

value which acts as a prefix. The value set by
the [namespace path] command is analogous
to the PATH environment variable in a UNIX
operating system, it determines the visibility
of procedures as the PATH value determines
the visibility of executable files. Thus no
procedure that doesn't share the [namespace
path] prefix will be callable by the dispatcher,
so it is impossible for malicious hackers to
construct a URL that would result in
execution of code that was not intended to be
part of the web server API.

Although not a design goal, the potential for a
useful hack quickly became evident. There is
no reason the namespace prefix set at startup
time has to stay at the same value -- the
[namespace path] command can be called at
any time to set the visibility of code
dynamically, and so the range of reachable
procedures can be customized on a per-
connection basis.

Given this capacity, it's not hard to envision
the desirability of sometimes restricting a
visitor's access to the API to a limited subset,
depending on privileges or role. It's not hard
to take the imaginings further to an API
design that's segregated into logical
groupings, even placed into entirely separate
package module paths meant to satisfy
different usages.

All that's needed to complete this scenario is
an easy way to set the namespace path for an
incoming connection, in a way that is clear
and straightforward and thus not prone to
confusion which would jeopardize security.

I have found, serendipitously, that the Wibble
zone handler feature is the perfect tool for
setting per-connection server state. It both
allows creative configuration options and
ensures the transparency necessary for high

confidence in correctness of configuration.
As stated above, the zone handler table can
contain multiple entries that match a single
URI, and each matching handler procedure is
called in succession unless and until a
procedure specifically calls an interrupt
routine that terminates processing.

There is of course no necessity for any single
handler procedure's code to address the
contents of the server response, any desired
task can be performed. Thus it is near
trivially simple to segregate identity-
validating, state-setting, and response-
compiling operations in separate zone
handlers.

And thereby an order of execution can be set
up: an initial zone handler can validate
identity by checking cookie values, session ID
number or any other standard means. The
handler can use the tserver package's per-
connection state setting features to set an
identity variable. A second zone handler can
map an identity to a namespace path or set of
paths, thus restricting the visibility of API
procedures by the pkgTree package to a
desired subset. Thus the different packages of
the web framework leverage one another to
restrict access to server resources using well-
understood Tcl features. Finally, another zone
handler can actually call the pkgTree
dispatcher, which will only execute the
requested API procedure if the dispatcher can
detect its presence via the [namespace which]
command.

Given the ability to specify such an order of
execution, a namespace path can be utilized
as more than a token of role-based access, its
utility can be taken further to represent a
session state that persists across visits. For
example, a client interaction that requires
sequential filling out of three separate forms

can be controlled by using a pre-processing
zone handler to restrict the visitor's access to
the correct form at each point, and a post-
processing handler that monitors if the form
was completed successfully and storing in the
session state the permitted namespace path of
the next visit by the client. This would make
problems like backtracking and double form
submitting impossible.

In this way, a server built around this
framework can be cast in the role of a state
machine, with the API namespace defining
the total state space, and zone handlers
controlling state transitions, driving visitors
through a custom state sub-space on a per-
session basis.

A state machine framework promises to make
it easy to attain some web programming goals
that have been difficult or impossible with
other frameworks, such as workflow
programming, sophisticated collaboration
scenarios, and programmable virtual servers
mediated within the framework.

4.1 Additional State Configuration
Options

The above section presents one detailed
scenario for controlling access to server
resources. But access to virtually every other
information source can be similarly
programmed.

As stated, the tserver package allows
configuration of server state on a per-
connection basis. This includes for example
the value of the “docroot,” the default
location for static files. Instead of such
complex and error-prone tools as htaccess
files, the docroot can be given a default value
of a directory containing only publicly
accessible files, and only reset to a directory

of more sensitive files after identity
validation. There is thus no chance of
misconfiguration causing leakage of access to
restricted files, because the restricted files are
simply invisible to the server until the
validation step.

The custom version of the Wibble server
package also includes a feature allowing the
ability to reload the entire zone handler table
and restart processing of handlers. Thus
whole categories of function or complex
workflows can be modularized and segregated
in their own handler tables, and loaded as
needed.

5. Conclusion

The aim of this paper is two-fold. First, to
introduce this new framework and its
architecture. Second, to communicate the
observation that the experience of designing
this program made it clear anew to me that
Tcl's feature set makes it particularly well-
suited to interfacing with the World Wide
Web and serving the demands of the HTTP
protocol. The failure of object-oriented
design practices to deliver reliable solutions
leaves a gaping need on the part of computer
professionals who need to operate reliably
and securely on the Internet. Tcl deserves to
be seen as newly relevant in this space, not
just as a good general-purpose scripting tool
with potential for application to the WWW,
but as the language and environment best
suited to delivering on the usage goals of
dynamic web development frameworks.

References:

[1] http://www.kalzumeus.com/2013/01/31/what-the-rails-security-issue-means-for-your-startup/

[2] http://tcl.activestate.com/software/tclhttpd/#advanced

[3] http://en.wikipedia.org/wiki/Service-oriented_programming

[4] http://c2.com/cgi/wiki?UnixWay

[5] http://wiki.tcl.tk/23626

