

Presented at the 20th Annual Tcl Developer’s Conference (Tcl’2013)
New Orleans, LA

September 23-27, 2013

Sean Deely Woods
Senior Developer
Test and Evaluations Solutions, LLC
400 Holiday Court
Suite 204
Warrenton, VA 20185

TAO/TK

A TclOO Based Toolkit for GUI
Design

Table	 of	 Contents	
Table of Contents2	
Introduction ..2	

Interoperability with TclOO2	
TAO Parser..3	

Operation of the Tao Parser..................3	
Properties ..3	

Inheritance...4	
Property Types4	

Method Ensembles................................5	
Method Ensemble Implementation .5	
Method Ensemble Argument

Handling...6	
Class Methods...6	
The DB Backend7	

Class Regeneration.............................7	
The Variable keyword8	

The Mother of all Classes8	
Default Constructor8	

Constructor Option Syntax...............8	
Option Handling9	

Option Properties9	
Option Substitution............................9	
Option Classes9	
Option Event Processing.................10	

Forwarding and Grafting....................10	
Locks, Signals, and Notifications11	

Locks ..11	
Signals ..11	
Signal_Pipeline12	
Notifications......................................12	

Setup, Cleanup and Renaming12	
[namespace code {}]12	

TAO/TK ..14	
Meta Classes..14	
User Widgets...14	
Dynamic Widgets.................................15	

Property Inferences..........................16	
Building Custom Dynamic Widgets

..16	
Conclusion...17	

Acknowledgements17	
Appendix...17	

TAO Parser Keywords17	
The Mother of all Classes18	

Static Methods18	
Method Ensembles...........................19	
Dynamic Methods............................20	

TAO DB Schema...................................21	

Introduction	
In this paper, I will describe TAO/TK, a

comprehensive architecture for
implementing user interfaces, control
systems, and machine learning. TAO is a
dialect of TclOO. TAO builds on TclOO and
adds its own notations and policies in a way
that allows it to interact with other TclOO
code.

TAO adds features that are required to
make complex systems of related classes
easier. TAO’s main feature is passing data
through inheritance as well as code.
TAO/TK extends TAO into a more familiar
set of widget and megawidgets.

TAO/TK requires Sqlite and Tcl 8.6.

Interoperability	 with	 TclOO	
Behind the scenes, TAO classes are really

TclOO classes. They just have a few extra
methods, and additional introspection via
the TAO internal database. It is perfectly
reasonable to have a TAO object list a
TclOO object as a superclass, and vice versa.
oo::class create foo {
}
::tao::class bar {
 superclass foo
 method someop args {
 return some
 }
}
oo::class create baz {
 superclass bar
}

All of the TclOO introspection tools are
usable on TAO objects and classes:
info class definition bar someop
> args {
> return some
>}

In short, TAO is intended to be an
additive extension to TclOO. It does not
break or otherwise force the user to alter
his/her way of doing things if they are
already familiar with TclOO.

TAO	 Parser	
Some of you may remember my paper

from 2006 on my concept of TAO. TAO,
then, was my answer to problems I had
encountered with [Incr Tcl], and was
essentially Pure-Tcl code, with a syntactic
sugar parser, and held together with Sqlite.

And aside from the name and the fact
that, yet again I seem to have invented a
syntactic sugar parser held together with
Sqlite, there aren’t many similarities
between the two projects.

The code that can be implemented is not
the real code, after all. ;-)

TAO has been reinvented using TclOO at
it’s core. To introduce new keywords and
design patterns all TAO code passes
through the TAO Parser. The TAO Parser
borrows heavily from the TclOO parser.
Several TclOO keywords are intercepted
and their contents logged into an in-
memory sqlite database. Wholly new
keywords string together a series of TclOO
calls and sql queries to produce TAO code.

The TAO parser operates in it’s own
namespace: ::tao. The ::tao::class command
works like a combination of ::oo::class create
and ::oo::define. It will either create a new
class, or modify an existing one.
::tao::class foo {
 # Works just like TclOO class
 # definitions
 method noop args {
 return {}
 }
}
::tao::class bar {
 superclass foo
 method someop args {
 return some
 }
}

Unlike in TclOO, the command tao::class
is not actually an object. It’s a procedure
that implements the parser. If you didn’t
know already, in TclOO the very keyword
used to create a class is itself a class, thus
why you have to give it a method to work
on. (Either create or new.)

Operation	 of	 the	 Tao	 Parser	
The TAO parser operates in 3 main

phases:
Parse the incoming class

Code submitted to the tao::class
command is passed to the ::tao::parser
namespace for digestion. Each keyword is
read, and a picture of the new class is
developed. At the same time, the raw
TclOO form of the new class is being built
using oo::define.
Apply dynamically generated methods.

Once the picture of the new class is
developed, the parser adds dynamically
generated methods. These methods include
the property method and method
ensembles.
Update affected classes

After the class is parsed, built, and the
dynamic methods area applied, the parser
looks to see if the new definition of the class
will affect any already existing decedents of
this class. It then regenerates the dynamic
methods for all of those descendents.

Properties	

::tao::class animal {
 property tkingdom Animalia
 property has_spine 0
}
::tao::class vertebrate {
 superclass animal
 property torder Chordata
 property has_spine 1
}
::tao::class mammal {
 superclass vertebrate
 property tclass Mammalia
 property has_fur 1
}
::tao::class carnivore {
 superclass mammal
 property torder Canivora
}
::tao::class feline {
 superclass carnivore
 property tfamily Felidae
}
::tao::class felis {
 superclass feline
 property tgenus Felis
}

In a complex system where a rule has to
be written to handle a range of different

classes of objects, it is often useful to be able
to refer to some meta-information within
the object. It is also helpful to have that
meta-information inherited along with the
methods.

In this above example, we are creating
the taxonomic classification of the common
housecat. In that classification, we are
seeding some useful traits that will be
passed along to descendents of the class
above.

The idea being that by the time we get
down to putting together the final leaf
classes, the code is simply:
::tao::class housecat {
 superclass felis
 property tspecies domesticus
}

And should a question arise, all objects
of that class can answer based in
information inherited by ancestral classes.
housecat create Thomas
Thomas property torder
> Chordata
Thomas property has_fur
> 1
Thomas property has_backbone
> 1

Inheritance	
The inheritance mechanism for TAO

mimics the behavior of inheritend in TclOO.
Under TclOO, when searching for a method
implementation, the last method defined is
the method that is used. Because the parser
runs outside of TclOO, TAO must recreate
that process for database queries.

The routine essentially calls [info class
superclasses] on the subject of inquiry.
Because [info class ancestors] returns only
the immediate heritage specified by the
superclass keyword, TAO must repeat the
process on every ancestor, and ancestor’s
ancestor.

Every class we have scanned is added to
our result, but only the first time it is
encountered. If an ancestor is inherited
through multiple paths, subsequent
references it is ignored.

The result is a list starting from the most
advanced, and stepping back to the most
primitive of every class that has had an
impact on the present class.

The implementation is here:

proc ::tao::class_ancestors {
 class {stackvar {}}
} {
 if { $stackvar ne {} } {
 upvar 1 $stackvar stack
 } else {
 set stack {}
 }
 if { $class in $stack } {
 return {}
 }
 stack push stack $class
 if {![catch {
 ::info class superclasses $class
 } ancestors]} {
 foreach ancestor $ancestors {
 class_ancestors $ancestor stack
 }
 }
 if {![catch {
 ::info class mixins $class
 } ancestors]} {
 foreach ancestor $ancestors {
 class_ancestors $ancestor stack
 }
 }
 return $stack
}

TAO performs a database query on every
property defined for each ancestor, in the
order given by tao::class_ancestors. A new
property is added to a data structure for the
class we are parsing if no such property was
defined before:
proc ::tao::dynamic_methods_property {
 class ancestors
} {
 set info {}
 foreach ancestor $ancestors {
 ::tao::db eval {
SELECT property,type,dict FROM property
WHERE class=:ancestor and defined=:ancestor
} {
 if {
 [dict exists $info $type $property]
 } continue
 dict set info $type $property $dict
 } ; # End of query
 } ; # End of foreach
 # At this point $info contains the complete
 # picture

Property	 Types	
Constant properties, being the most

common, have the simplest notation.
However, constant properties are just one
type that TAO supports. To use one of the
other property types, specify an additional
argument. When the property keyword sees
4 arguments, the third is interpreted as the
type of property.

::tao::class housecat {
 property dob option {
 storage date
 }
 property age eval {my Age}

 method Age {} {
 set dob [date_to_julian [my cget dob]]
 set now [today_julian]
 return [expr {($now-$dob)/365}]
 }
}
Thomas configure –dob 2010/01/01
Assuming we ask on 2013/09/01
Thomas property age
> 3

A complete table of supported types is as
follows:
Type Description
const A property that always returns a

constant
eval A property whose value is generated

by evaluating a command run within
the object’s namespace.

subst A property whose value is generated
by evaluating an expression run
through subst.

variable A property whose value is retrieved
from an internal variable of the same
name.

option A property which is treated as an
option. See Option Handling.

signal A property which is treated as a
signal. See Signals.

Method	 	 Ensembles	
For large projects, it is often useful to be

able to clump similar functions together. At
the same time, it’s nice to be able to pop and
swap chunks of that ensemble to handle the
intricacies of your class system.

TAO has a method ensemble system. If
the parser detects a method with a “::” in
the name, it assumes the portion before the
“::” is the ensemble, and after the “::” is the
submethod. Method ensembles submethods
are inherited by descendents, and
descendents can override or extend the
ensemble with their own submethods.

::tao::class vertebrate {
 superclass animal
 method has::spine {} {
 return 1
 }
}
::tao::class human {
 superclass vertebrate
}
::tao::class politician {
 superclass human
 # ^ Though that may be debatable
 method has::spine {} {
 error {Define ”spine”}
 }
}

Because Method Ensembles are
dynamically generated, a method ensemble
will trump a normal method. Any attempt
to implement “has” as a bare method in a
descendent will simply be ignored:
::tao::class lawyer.honest {
 superclass lawyer
 method has {field value} {
 if { $value eq “spine” } { return 1 }
 …
 }
}
layer.honest create mrsmith
mrsmith has spine
> ERROR: Define “spine”

Method	 Ensemble	 Implementation	
Ensemble submethods are tracked and

catalogued by the TAO database. After the
class is parsed, TAO builds a series of
dynamically generated methods. Method
ensembles are built during this stage.

Structurally, method ensembles are
really a switch statement. Each body of the
switch statement is the version of the
submethod from the most recent ancestor
that defined one.

The default for an ensemble is to throw
an error when given an unknown
submethod. This can be overridden by
providing a default submethod. The
default submethod is guaranteed to be the
last evaluated. The method that was given
on the command line is preserved as the
$method variable.

An example catch-all for the has method
::tao::class moac {
 method has::default {} {
 return [string is true –strict \
 [my property $method]]
 }
}

If we peer inside the has method, we can
see how it works:
info class definition politician has
{method args} {
switch $method {
 <list> { return {spine} }
 spine {
::tao::dynamic_arguments {} {*}$args
 error {Define ”spine”}
 }
 default {
 return [string is true –strict \
 [my property $method]]
 }
}

As you can see, in addition to the
submethods we have defined in the parser
and default, our ensemble includes an
additional submethod <list>. <list>
provides a list of all of the valid
submethods for the ensemble for this
particular class.

Method	 Ensemble	 Argument	 Handling	
From our code listing above, you well

see a call to tao::dynamic_arguments.
tao::dynamic_arguments is a routine that
reads the arguments beyond the method
name given to the ensemble, and converts
them into the local variables. The intent is to
mimic the argument handling behavior of
the proc command. If too many arguments,
or not enough arguments are given,
tao::dynamic_arguments will throw an
error.

If the arglist ends with args, any number
of arguments beyond the mandatory ones
will be added to a list called args. If the
arglist ends with dictargs, any arguments
beyond the mandatory ones are placed into
a key/value list called dictargs. If one
argument is given to dictargs, that argument
is assumed to be a key/value list.

The following example demonstrates the
various ways Method Ensembles will accept
input via dictargs. The ::character::bio
method parrots back the input it is given.

::tao::class show {
 method character::bio {who dictargs} {
 if {[dict exists $dictargs phrase]} {
 set phrase [dict get $dictargs phrase]
 } else {
 set phrase {}
 }
 puts [list $subject says $phrase]
 }
}
Not enough arguments
show create addams
addams character bio
> ERROR: Usage: who ?dictargs?

Arguments given after the mandatory.
addams character bio fester \
 phrase {Light Bulb}
> fester says {Light Bulb}

Arguments packed into a key/value list as
the first args
addams character bio lurch \
 {phrase {Good Evening}}
> lurch says {Good Evening}

And it even does dashes!
adama character bio mortisha \
 -subject {Mon Cher}
> mortisha says {Mon Cher}

Class	 Methods	
The class_method keyword creates a

method which operates only on the class
object itself. It’s like calling oo::objdefine,
and defining an instance method for the
class object. But unlike oo::objdefine,
class_method is passed on to descendents
of the class.

A modified version of the property
method is included with all TAO classes. It
provides the meta-data and constant value
properties of the object version. It doesn’t,
however, supply any of the properties that
require gazing into the state of the object.

The most immediate example if a class
method I have is in taotk’s user widgets. We
trap the unknown handler, and detect if the
first argument, instead of being create or
new is a tkpath:
Example
taotk::frame .foo

tao::class taotk::frame {
 class_method unknown args {
 set tkpath [lindex $args 0]
 if {[string index $tkpath 0] eq "."} {
 if {[winfo exists $tkpath]} {
 error "Bad path name $tkpath"
 }
 set obj [my new $tkpath \
 {*}[lrange $args 1 end]]
 if {![winfo exists $tkpath]} {
 catch {$obj destroy}
 return {}
 }
 $obj tkalias $tkpath
 return $tkpath
 }
 }
}

This could also work if we did it such:
oo::class create Frame {
}
oo::define Frame method unknown args {
 method unknown args {
 set tkpath [lindex $args 0]
 if {[string index $tkpath 0] eq "."} {
 if {[winfo exists $tkpath]} {
 error "Bad path name $tkpath"
 }
 set obj [my new $tkpath \
 {*}[lrange $args 1 end]]
 if {![winfo exists $tkpath]} {
 catch {$obj destroy}
 return {}
 }
 $obj tkalias $tkpath
 return $tkpath
 }
 }
}

The idea being that with either case, the
class behaves like a Tk command:
taotk::frame .foo
Frame .bar

The difference comes in when we
assume this behavior is inherited by
descendents:
tao::class create taotk::customFrame {
 superclass ::taotk::frame
}
oo::class create CustomFrame {
 superclass Frame
}

taotk::customframe .baz
CustomFrame .bang
> ERROR. Uknown command .baz.
> Valid: create new

Like properties and method ensembles,
Class Methods are tracked in the database
and applied with the other dynamically
generated methods.

The	 DB	 Backend	
TAO uses an in-memory database to

index classes and track classes, methods
and properties. The database uses sqlite,
and can be accessed directly via the ::tao::db
command. A complete schema is available
in Appendix, under TAO DB Schema.

If we combine class properties with
database backend, we can do some useful
searches throughout our library of classes.
Example, find all animals that are
carnivores
set result {}
tao::db eval {select name from class} {
 if {
 [$name property torder]
 eq “Canivora”
 } {
 lappend result $name
 }
}

You may be asking, “Why didn’t you just
pull the property from the database
directly?” Ok:
Select class from property where
property=’torder’ and dict=’Carnivora’;
> carnivore
-- We only get back the one class where the
-- property was defined
select property,dict from property where
class=’carnivore’;
> torder|Carnovora
-- We only defined the one property for
-- that class

Now, if we ask the property method:
carnivore property const dict
> tkingdom Animalia torder Chordata
> has_spine 1 tclass Mammalia has_fur 1
> torder Carnivora

We see that the property method’s
picture includes the most recent ancestor’s
copy of every property that has been
inherited.

Class	 Regeneration	
Every ancestor of every class is indexed

in the ancestry table, along with which
order. That index makes looking up all of
the descendents of a class quite simple.

Included with the class table is a simple
flag regenerate. When the flag is true, the
class needs to be regenerated. In the
example above, at the conclusion of the
tao::class command, every class that listed
carnivore as an ancestors was marked

regenerate=1. After the affected classes are
marked, a search is run, and the regenerate
flag is rippled out to all descendents of
descendents, and so on. When that is
complete, the parser re-creates all of the
dynamic methods for all classes with the
regenerate flag. And the process of
regenerating the dynamic methods marks
each class as regenerate=0 once more.

Modifications to a class are seemingly
instant as far as the Tcl environment is
concerned. If we add a property of has_teeth
to carnivores:
tao::class carnivore {
property has_teeth 1
}
carnivore property const dict
> tkingdom Animalia torder Chordata
> has_spine 1 tclass Mammalia has_fur 1
> torder Carnivora has_teeth 1

Thomas, our housecat several examples,
now has teeth:
Thomas property has_teeth
> 1

If we had asked that before we defined
has_teeth, the property method would have
returned a null.

The	 Variable	 keyword	

TAO also provides a keyword variable
that works differently than the variable
keyword in TclOO. In TclOO, variable
allows a variable to magically appear in
every method of that class (but not
descendents.) In TAO variable declares a
variable and sets it’s default. That
declaration and default will carry through
to descendents. To access that variable, one
still needs to use the my variable command
in methods.
tao::class animal {
 variable hungry 0
 method is::hungry {} {
 my variable hungry
 return $hungry
 }
}
Thomas is hungry
> 0

The	 Mother	 of	 all	 Classes	
All TAO objects descend from a single

class: moac, the Mother of All Classes. The
moac provides methods which enforce TAO
policies and design patterns. This next
section is intended as an overview of the
key features. A complete reference is
located in the Appendix.

Default	 Constructor	
The Default constructor for the moac is

as follows:
constructor args {
 my InitializePublic
 my configurelist \
 [::tao::args_to_options {*}$args]
 my initialize
}

The InitializePublic method initializes
all of the variables declared in the class
definition as well as provides default values
for all options. The next step is to run
configurelist on the options fed in through
args. Finally, the initialize method is called.
initialize is intended to be a place for
developers to be able to insert their code
and know that all of the variables have been
initialized and the object has been
configured, and configurations applied
without having to recreate all of the steps in
their own constructor or figure out the right
incantations of [next] to call an ancestral
constructor.

Constructor	 Option	 Syntax	
The ::tao::args_to_options procedure

uses the following rules to allow it to work
with this range of inputs:
1. Arguments, beyond the mandatory

arguments, are considered options.
2. All options must be given in the form of

key/value pairs
3. If a single argument for args is given,

that argument is assumed to be a
key/value list of options.

4. Leading dashes (-) are stripped from
keys

Option	 Handling	
Options are tracked as a special kind of

property. The “value” for Options are
specified in Dict format, because we need to
track a lot more than a constant value. For
convenience, the option keyword was
added to the TAO parser as a shortcut.
::tao::class housecat {
 superclass felis
 property gender option {
 widget select storage string default {}
 values {{} male female}
 }
 option weight {
 widget scale units kg range {0 10}
 }
}

With the modification above, we can
specify the animal’s weight and gender at
creation time:
housecat create Thomasina \
 -gender female –weight 8

And we can modify an existing object via
the configure command:
housecat configure Thomas \
 –gender male –weight 10

Because in large systems one may need
to perform a dump of information from a
database or some other source, TAO is
pretty flexible about the format of options.
housecat create Thomas {
 gender male weight 10
}
housecat create Thomasina \
 gender female weight 8
After a year of snacking
Thomas configure weight 11
Showing off
db eval {select * from animals where
species=’cat’} {
 housecat create ::cat#$uuid [db eval {
 select key,value from attributes where
 uuid=:uuid
 }]
}

Option	 Properties	
The TAO parser specifies the following

rules for elements given within an option-
dict:

Option Description
class Reference to another option or option

class to clone
default The default value for the option
default-script A script to use to generate the default

value. If both default and default-

script are present, default-script is
used. See: Option Substitution.

description A human readable comment.
get-command Script to retrieve the value in lieu of

storing the value internally: See:
Option Substitution.

set-command Script to set the value externally in
lieu of storing the value internally.
See: Option Substitution.

storage Storage type for C, sql, etc.
validate-command Script used to validate incoming

values before they are incorporated
into the state of the object.

values Specifies a finite list of possible values
for the option.

values-command Specified a command to generate the
list of finite values. If both values and
values-command are specified,
values-command is used. See:
Option Substitution.

widget Widget to use when generating an
automated GUI. See Dynamic
Widgets

Option	 Substitution	
In Tk what information is sent along

with a –command option is often widget
specific. Many handlers for options need to
work over a range of options. Some need to
specify an elaborate path that includes the
name of the field, the object, and/or the
new value. Rather than force the developer
to follow a template, TAO allows the
developer to specify how information is
sent to scripts in the option dict. It works in
a mechanism similar to the substitution
used by the Tk bind command:

Field Substitution
%self% The object’s name
%field% The field that triggered the script
%value% The value being input (when appropriate)

::tao::class housecat {
 option favorite_food {
 set-command {
 puts {%self%’s favorite %field% is %value%}
 }
 }
}
Thomas configure favorite_food tuna
> ::Thomas’s favorite food is tuna

Option	 Classes	
Developers often find that options follow

a certain template. TAO provides for option
templates with the class property of
options. class can specify the name of
another option. To create an option which is
simply a prototype, use the option_class
keyword.

::tao::class animal {
 option_class variable {
 default {}
 set-command {
 my variable %field% ; set %field% %value%
 puts “%field% is now %value%”
 }
 get-command {
 my variable %field% ;return [set %field%]
 }
 }
}
tao::class housecat {
 option color {
 class variable default black
 }
 method color {} {
 my variable color ; return $color
 }
}
Thomas configure color orange
> color is now orange
Thomas color
> orange

Option	 Event	 Processing	
To keep the outcome of events tied to

modifying an option consistent, TAO
enforces the following order of operations:
1. validate-command is run for all
incoming values with the property
specified. If an error is thrown, the process
is aborted without modifying the object. If
the problem is encountered in the
constructor, the object is destroyed and an
error thrown.
2. The set-command is run for all incoming
values with the property specified. No local
value for the option is kept.
3. For values for which the set-command
property is null, the new value is saved as a
dict element in a local variable config.

For calls to the configure command, but
not during the constructor, the Option_set
ensemble is called for all incoming values.

If we want an event to fire off after we
set the weight for instance:
::tao::class housecat {
 method Option_set::weight newvalue {
 if {$newvalue > 10 } {
 puts “This cat is fat!”
 }
 }
}
Thomas configure –weight 12
> This cat is fat!

By default, normal descendents of moac
will accept unknown options. Descendents
of ::taotk::meta::widget will throw an error
on unknown options. The developer can

control the behavior of their class with the
options_strict property.
::tao::class housecat {
 property options_strict 1
}
Thomas configure unknownoption 10
> Error unknown option –unknownoption.
Valid: gender weight color favorite_food
::tao::class housecat {
 property options_strict 0
}
Thomas configure unknownoption 10
No error, and we can retrieve the value
Thomas cget unknownoption
> 10

	 	 	 Forwarding	 and	 Grafting	
The moac also provides a set of functions

to manage forwarding methods. The
simplest is forward. Forward is just a
simple call to ::oo::objectdefine forward.
Thomas forward puts ::puts
Thomas puts “Hello World”
> Hello World

Often times, though, we need to recall
what it is we are forwarding to. While
TclOO will tell you that a method is a
forward vs. any other type of method, it
won’t tell you where the call is going.

TAO provides the graft method, which
forwards a command while at the same
time recording where it’s going. The
destination can be retrieved later via the
organ method.
tao::class supertextbox {
 constructor {tkpath} {
 toplevel $tkpath
 my graft toplevel $tkpath
 text $tkpath.text
 my graft text $tkpath.text
 }
 method title newtitle {
 set tl [my organ toplevel]
 wm $tl title $newtitle
 }
 method replacetext {newtext} {
 my <text> delete 0.0 end
 my <text> insert end $newtext
 }
}

In the above example, we graft both the
toplevel window and the text widget. In the
newtitle method, we need to pass the path
to the window to wm. we use the organ
method to retrieve the value for toplevel. In
replacetext we need to manipulate the text
widget. We use the grafted name to address

the text widget as though it were one of our
own methods.

The replacetext method could also have
been written:
tao::class supertextbox {
 method replacetext {newtext} {
 my text delete 0.0 end
 my text insert end $newtext
 }
}

Graft creates two forwarded methods,
the original name, and the <original name>.
I find marking which methods are going out
to a forward somewhat useful. However,
we also need the plaintext version because
TclOO will not allow a method to be
accessed from the public interface if it does
not start with a lower case letter.

Locks,	 Signals,	 and	 Notifications	
The moac defines several methods, and

parser keywords to manage locks, signals,
and notifications.

Locks	
Locks were designed as a guard against

an object recursively calling pipeline
routines. lock create can behave like the
classic “up” operator in a semaphore. When
you call the lock the first time, the operation
returns false. If the lock was already
present, it returns true.
::tao::class foo {
 method lock_demo {} {
 # Lock create only returns 1 if the
 # lock is already engaged
 if {[my lock create [self method]]} {
 # I must already be running
 return
 }
 … (Some elaborate action)
 my lock remove [self method]
 }
}

Because lock is a public method, other
objects and system calls can lock and unlock
an object.

After the last lock is removed, the object
looks to see if it was passed any signals.

Internally, locks are simply a list stored
in a variable ActiveLocks. The lock create
method ensures that only one copy of a lock
is present in the list at any given time.

Signals	
Signals break a menagerie of tasks into

discrete pieces that can be received
piecemeal and assembled together into a
single pipeline of operations.

The signal keyword in a class declares a
signal. Like options, signals have a
descriptor key/value list. Signals are also
inherited just like properties and options.
Signals have the following properties:
Option Description
apply_action Action to perform reflexively when

the signal is passed to the object
action Command to be performed during

this stage in the pipeline.
aliases List of names that this signal will

respond to
description Human readable comment.
excludes List of signals that this signal

prevents from running in the current
pipeline.

preceeds List of signals that this signal must
preceed in the pipeline

follows List of signals that this signal must
come after in the pipeline

triggers List of signals that this signal triggers

For a simple example, let’s have an object
either fish or cut bait.
::tao::class fisherman {
 signal fish {
 follows cut_bait
 triggers cut_bait
 action {my action fish}
 }
 signal cut_bait {
 action {my action cut_bait}
 }
 variable has_bait 0
 }

As we can see, the fisherman can either
be fishing, or he/she can be cutting bait. To
fish, the cut_bait signal must be satisfied.

To see our cunning plan in action:
::tao::class fisherman {
 variable has_bait 0
 method action::fish {
 my variable has_bait
 if { $has_bait == 0 } {
 error “I have no bait”
 }
 puts “Fishing”
 # Do the fishing
 set has_bait 0
 }
 method action::cut_bait {} {
 my variable has_bait
 set has_bait 1
 puts “Cutting Bait”
 }
}

fisherman gordan
gordan action fish
> error: I have no bait
gordan signal fish
gordan lock remove_all
Cutting Bait
Fishing

Signal_Pipeline	
When the last lock is removed from an

object, it automatically schedules a call to a
method called Signal_Pipeline.
Signal_Pipeline figures out which signals
have been called, which signals need to be
triggered or suppressed as a result, as well
as the order in which they need to be
executed. It then executes that plan before
returning.

Notifications	
Notifications are a message passing

system for objects. They are akin to Tk
bindings. Objects can both emit and receive
notifications.

In the case of emitting an event, it simply
passes the message to the TAO message
handler. The TAO core then looks through
subscriptions to find what objects would be
interested in receiving a message of that
type from the sender object. With list in
hand, TAO goes about calling the notify
ensemble for each recipient with the sender,
type, and content of the message.

If we extend our fisherman example,
about, lets add a notification to the
fisherman that a fish is on the line.
::tao::class fisherman {
 notify::fish_on {snd dictargs} {
 set caught [dict get $dictargs caught_by]
 if { $caught ne [self] } continue
 set fish [dict get $dictargs fish]
 my action catch_fish $fish
 }
}

For the fisherman, we need to set up a
handler for fish_on messages. Because
messages are broadcast, we embed the
caught_by field in the message. Thus, if we
overhear another fisherman’s fish_on we
don’t do something a rude and uncouth as
to harvest it.

Let us assume we have a pond object
that is responsible for pairing fish with
baited hooks.

::tao::class pond {
 method time_step {} {
 foreach fisherman [my list_fishermen] {
 if {![my catch_criterial $fisherman]} {
 # No fish caught
 continue
 }
 # Generate the fish
 set species [my random_species]
 set fish [$species –size random]
 # Hook it on the line
 my event_publish fish_on $fisherman
 set msg {}
 dict set msg fish $fish
 dict set msg species $species
 dict set msg size [$fich cget size]
 dict set msg caught_by $fisherman
 my event generate fish_on $msg
 }
 }
}

The pond sets up a publication with an
intended target of the fisherman. It then
assembles the outbound message as a dict.
And finally it broadcasts the message.

Setup,	 Cleanup	 and	 Renaming	
Object names are tracked by the TAO

message handling system. As such, the
system needs to be notified if an object is
destroyed or renamed.

To facilitate this, the TAO parser secretly
adds a line to the top of every classes
destructor which calls the
::tao::object_destroy procedure. This
procedure scrubs the notification system of
all subscriptions, publications, and
bindings.

When an object is renamed, developers
are encouraged to use the
::tao::object_rename procedure. This
prodedure updates the references in the
notification table to the new name.

[namespace	 code	 {}]	
TAO developers need to take care when

binding objects for events. Objects can, and
do, change names.

 Let’s suppose we are binding a
command to a button. In pure Tcl, this is
easy, we tell the system to call back at a
given command name:
button .foo –command some_command

With namespaces, we need to be a little
more elaborate.

namespace eval ::foo {
 button .foo –command ::foo::some_command
}

Inside of a class method, if the object
wants to exercises one of its own methods,
it needs to provide a path. The technique
that immediately comes to mind for most
developers is the [self] command.
oo::class define myobject {
 method makebutton {} {
 button .foo –command \
 [list [self] some_command]
 }
}

I am here to tell you there is a better way.
Many of you may not be familiar with the
namespace code command. namespace
code captures the environment in which it
was called, and provides a globalized return
path.
oo::class define myobject {
 method makebutton {} {
 button .foo –command \
 [namespace code {my some_command}]
 }
}

While an object can change names, it will
never change namespaces. (Besides, this is
TAO, and the name that can be stored isn’t
the real name anyway ;-)

Here is a rigged demo of the
phenomenon. We have a silly class that can
delay calling one of its methods through the
Tcl event loop. We will use two different
approaches to mapping the global path
back to our intended call.
• The delayed_nspace method takes in a

method as an argument and schedules a
callback to that method using
namespace code.

• The delayed_self method takes in a
method as an argument and schedules a
callback to that method using self.

They both also advertise which method
sent the event via the [self method]
mechanism, so we can track what is going
on.

tao::class silly {
 method gratification {{how {}}} {
 return “[self] Ahhh $how”
 }

 method delayed_nspace m {
 after idle \
 [namespace code [list my $m [self method]]]
 }

 method delayed_self m {
 after idle \
 [list [self] $m [self method]]]
 }
}

For normal purposes, both techniques
work the same way.
silly create whosit
whosit gratification
> ::whosit Ahhhh
whosit delayed_nspace gratification ; update
> ::whosit Ahhhh delayed_nspace
whosit delayed_self gratification ; update
> ::whosit Ahhhhh delayed_self

Now we will trigger the events, but
change the name before we give the event
loop a chance to respond.
whosit delayed_nspace gratification
whosit delayed_self gratification
rename whosit whatsit
update
> ::whatsit Ahhhh delayed_nspace
> BGERROR: Invalid command “whosit”

namespace code has other advantages.
Unlike calls to [self], the event can call
private methods.
tao::class silly {
 method Gratification {{how {}}} {
 return “[self] AHHH $how”
 }
}

whatsit delayed_nspace Gratification
update
> ::whatsit Ahhhh delayed_nspace
whatsit delayed_self Gratification
update
> BGERROR: unknown method Gratification must
be…

TAO/TK	
TAO/TK is a GUI extension to TAO,

geared toward the creation and operation of
graphical user interfaces in Tk. TAO classes
come in three distinct forms:

1. Meta Classes, intended to be the
building blocks for other classes.
2. User Widgets, classes intended to be
called directly by the end user and
behave like a Tk widget.
3. Dynamic Widgets, a special class of
widgets designed for data entry screens.

Meta	 Classes	
In UI design, there is often the

need/desire/lazy tendency to lump similar
functions together. Very often though, this
code re-use is only helpful on a high-level.
Meta classes are method and properties that
are inherited by other classes, but which
don’t make a complete product in their own
right.

For coding consistency, TAO/TK meta
classes are located in the taotk::meta
namespace.

User	 Widgets	
User Widgets are designed to be readily

useable as a Tk-Like command. Borrowing
from the tradition started by tile, TAO/TK
widgets are located in their won
namespace, ::taotk. They operate just like
any other widget:
::taotk::browser .html –title {About:Blank}

To make TAO/TK widgets behave like
the Tk commands developers are familiar
with, we use the unknown handler built
into TclOO.

 class_method unknown args {
 set tkpath [lindex $args 0]
 if {[string index $tkpath 0] eq "."} {
 if {[winfo exists $tkpath]} {
 error "Bad path name $tkpath"
 }
 set obj [my new $tkpath \
 {*}[lrange $args 1 end]]
 if {![winfo exists $tkpath]} {
 catch {$obj destroy}
 return {}
 }
 $obj tkalias $tkpath
 return $tkpath
 }
 next {*}$args
 }

The tkalias method renames the Tk
object to something in the object’s
namespace, and then renames the object to
take the Tk object’s place. When the object is
destroyed, the native Tk object will be
destroyed along with it. Even though the Tk
object’s command has been renamed, it still
behaves within TK as if it had never been
moved.
 method tkalias tkname {
 set oldname $tkname
 my variable tkalias
 set tkalias $tkname
 set self [self]
 set nativewidget [::info object \
 namespace $self]::tkwidget
 my graft nativewidget $nativewidget
 rename ::$tkalias $nativewidget
 ::tao::object_rename [self] ::$tkalias
 my bind_widget $tkalias
 return $nativewidget
 }

The bind_widget method ensures that
when Tk destroys the widget, the object’s
destructor is called.
 method bind_widget window {
 my graft topframe $window
 my graft toplevel \
 [winfo toplevel $window]
 bind $window <Destroy> \
 [namespace code {my EventDestroy %W}]
 }

The EventDestroy method is a sanity
check. When <Destroy> goes off, it is
possible for a parent to see the <Destroy>
event for it’s children. Also, there are times
where the only notification that goes out to
a child window is that the toplevel window
to was destroyef. It took a bit of trial and
error to get this part right.

 method EventDestroy window {
 if { [string match "${window}*" $w] } {
 my destroy
 }
 }

Conversely, our destructor needs to
destroy the Tk object when called. But
because the developer may have his/her
own destructor logic, the smarts for this
process have been packed into a private
method. It is the destructor’s job to call that
private method at some point.

Before we destroy the native Tk widget,
we use the unbind_widget method to
remove our bindings to prevent the
<Destroy> binding for the Tk object from
calling the destructor yet again.
 destructor {
 my Widget_destructor
 }

 method unbind_widget window {
 my variable tkalias
 if {[winfo exists $window]} {
 bind $window <Destroy> {}
 }
 set tkalias {}
 }

 method Widget_destructor {} {
 my variable tkalias
 set alias $tkalias
 if {$alias ne {}} {
 my unbind_widget $alias
 }
 catch {my action destroy}
 # Destroy an alias we may have created
 if { $alias ne {} && \
 [winfo exists $alias] } {
 catch {
 rename [namespace current]::tkwidget {}
 }
 } else {
 catch {
 ::destroy [my organ nativewidget]}
 }
 }
 }

Dynamic	 Widgets	

Dynamic Widgets are designed for
producing automated data entry screens.
They are designed to obey a limited set of
commands, and fit into a relatively rigid
template
1. Every element to be tracked is an field

in a global array
2. For every element, a key/value list of

metadata is provided to the constructor.

3. The path specified will become a frame
containing the tk objects that implement
the UI representation of the element.

The syntax boils down to:
taotk::dynamic_widget tkpath fieldname \
 arrayname properties

Let’s see an example:
toplevel .foo
array set ::record {
 message {Have nice day}
}
taotk::dynamic_widget .foo.bar \
 message ::record {}
grid .foo.bar

And we get back and entry box (the
default if we have no other data):

If we just alter the description, we get

different behavior.
set ::record(weather) sunny

taotk::dynamic_widget .foo.baz weather \
 ::record {
widget select
values {cloudy sunny rainy foggy snowy}
}
grid .foo.baz

We now see a combobox:

And if you hang around me, soon

enough you’ll be generating screens that
look like this:

On the project I work with, we have
hundreds of “specs” that can be used to
describe a piece of equipment, a room on a
ship, a doorway, even crew members. We
also have dozens of controls that we present
to the user to drive the simulator. And even
50 or so visual preferences.

Needless to say, figuring out which
properties go on a given screen is hard
enough without having to generate the GUI.

Property	 Inferences	
The first step to making a Dynamic

Widget is to read through the description.
In the absence of any other information, the
dynamic system will assume the field is a
text string, represented by an entry box.

If the user has specified a “widget”
property, that is which widget will be used.
Otherwise, the widget has to be inferred.
With no widget property, it tries to guess by
the presence of a “values” field. If “values”
is present, the widget is then assumed to be
a selection. With no “widget” or “values”
property, the inferencer then looks for a
field name “type” or “storage”.

Here are the basic dynamic widgets
implemented by TAO/TK:
boolean A checkbox to handle the simple cases of

1 and 0
checkbutton A checkbutton with stylized properties

for controlling on/off values
color Presents the user with a label

previewing the current value and a
button to activate the Tk color chooser

entry An entry box. If the “read-only”
property is set to true, reverts to a label.

filename Presents the user with an entry field for
a value as well as a button to launch the
Tk file chooser

font Presents the user with a label
previewing the current value and a
button to activate the Tk font chooser

label A label
real An entrybox, but intended for numerical

values
scale Presents the user with an entry box

coupled with a scale slider.
script A button that, when pressed, presents

the user with a popup window with a
text widget.

vector Breaks the entry into pieces and presents
an entry box for each component.

Building	 Custom	 Dynamic	 Widgets	

To register a new class of dynamic

widget, place it in the ::taotk::dynamic
namespace. The name you give it in that

namespace is the name you reference in the
widget property of the object description.

The constructor for dynamic widgets is
as follows:
constructor {
 window fieldname arrayname args
} {
 my InitializePublic
 my configurelist \
 [::tao::args_to_options {*}$args]
 my variable field arrayvar
 set field $fieldname
 set arrayvar $arrayname

 my graft mainframe $window
 my graft nativewidget $window
 my BuildDynamicMethods
 my Build_topframe $window
 my build_widget $window
 my bind_widget $window
}

The BuildDynamicMethods method
adds hooks to TAO/TK’s style sheet
handler. The build_topframe method
builds the frame at window. The
build_widget method builds the UI for this
element. The bind_widget ensures the
destruction of the Tk path calls the
destructor for the object.

For every dynamic widget developed
thus far, I’ve only had to modify the
build_widget method.

Implementing an entry box is simplicity
itself:
tao::class taotk::dynamic::entry {
 superclass taotk::dynamic
 option width {default 0}

 method build_widget window {
 set readonly [my cget readonly]
 set varname [my GlobalVariableName]
 set opts [list \
 -textvariable ${varname} \
 -width [my cget width] \
 -style [my Style label] \
]
 if { $readonly } {
 ::ttk::label $window.native {*}$opts \
 -takefocus 1
 } else {
 ::ttk::entry $window.native {*}$opts
 }
 my graft nativewidget $window.native
 grid $window.native -sticky news
 }
}

Conclusion	
I’ve gone over quite a bit of material in

this paper. In fact, there is quite a bit more
on the cutting room floor, including sample
projects, and demonstrations. That material
as well as the complete sources for
TAO/TK and all of its supporting libraries
and documentation will be copied to the
USB sticks that will be distributed by the
conference. I will also be publishing the
material online at:

http://www.etoyoc.com/tao2.0

Acknowledgements	
This paper would not be possible if it

weren’t for the work of Donal Fellows to
bring TclOO to life, convince the
community to use it, and explain its inner
workings to me patiently over several years.

I would also like to thank my employer,
T&E Solutions, for allowing me to share this
research with the community, plus the time
to prepare this material and present it at the
conference.

I would like to thank my wife, Ginger,
for being a code-widow for the past few
weeks while I put this paper together.

I would also like to thank Victoria
Andrews for proofreading early drafts of
this paper.

The random squiggles that I may or may
not have completely eliminated from this
manuscript are early works of my son,
Xavier. Never too early to start them
coding, I guess. I just wish he wouldn’t
have picked Tcl instead of Perl for his first
project.

The graphic on the front cover was taken
from Mallory Pearce’s “Ready-To-Use
Celtic Designs” published by Dover Clip
Art.

Appendix	
TAO	 Parser	 Keywords	

Keyword:	 option	

Syntax:
 option fieldname keyvaluelist

The option keyword defines an option
that will be conferred to all object of this
class, and passed on to descendents of this
class. It is equivilent to:
property fieldname option keyvaluelist

Keyword:	 option_class	

Syntax:
 option_class fieldname keyvaluelist

The option_class keyword defines a set
of attributes that can be inherited by other
options.

This statement is equivalent to:
property fieldname option_class \
 keyvaluelist

Keyword:	 property	

Syntax:
 property fieldname ?type? description

The property keyword defines a
property that will be conferred to all objects
of this class, and passed on to descendents
of this class.

Keyword:	 variable	

Syntax:
 variable fieldname defaultvalue

The variable keyword defines an
variable that will be conferred to all object
of this class, and passed on to descendents
of this class. The difference between the
TAO form of the keyword and the standard
TclOO usage is that TAO guarantees the
variable will be initialized with the default
value within the InitializePublic method,
which is normally called by the constructor.

 This statement is equivilent to:
property fieldname variable default

Keyword:	 class_method	

Syntax:
 class_method name arglist body

The class_method keyword defines a
method for the class itself. If no method of
the same name is defined of the class, the
implementation will be copied to the objects
of the class.

class_method is equivalent to declaring a
local method for the class object via:
oo::objdefine class method arglist body

A method defined by class_method will
be inherited by descendents of a class,
whereas the above example would not.

The	 Mother	 of	 all	 Classes	

Static	 Methods	
The static methods of the moac are

methods declared in tao/moac.tcl file, using
the conventional manner. They can be
superseded and/or replaced by
descendents.

Method:	 cget	 	

Syntax:
 OBJ cget field ?default?

Returns the current value for option field.
If “default” is given as the second
argument, return the default value for
option field.

Method:	 configure	

Syntax:
 OBJ configure field
OBJ configure field value ?field value…?

If one value given, return the current
value for field. If two or more arguments
given, write new values to options.

Method:	 configurelist	

Syntax:
 OBJ configurelist {field value …}

Write new values to options.

Method:	 event	 cancel	

Syntax:
 OBJ event cancel handle

Cancel any timer events created by event
schedule. handle can be of any form
acceptable to [string match].

Method:	 event	 generate	

Syntax:
 OBJ event generate event args…

Generates an event to be published to
other objects. Args are intended to be a
key/value list describing the event.

Method:	 event	 publish	 	

Syntax:
 OBJ event publish who event

Add a notification subscription for
events matching event to recipients
matching who. Both event and who can be
of any form acceptable to [string match].

Method:	 event	 schedule	

Syntax:
 OBJ event schedule handle interval script

Schedule for the Tcl event loop to run
script on the object’s behalf after interval.
Any input valid for [after] is acceptable for
interval.

Method:	 event	 subscribe	 	

Syntax:
 OBJ event subscribe who event

Add a notification subscription for
events matching event to senders matching
who. Both event and who can be of any
form acceptable to [string match].

Method:	 event	 unpublish	 	

Syntax:
 OBJ event unpublish ?event?

Remove all subscribers for this object’s
notifications matching pattern event. event
can be of any form acceptable to [string
match]. If no event is given, all publications
for this object are removed.

Method:	 event	 unsubscribe	 	

Syntax:
 OBJ event unsubscribe ?event?

Remove all subscriptions for this object
to notifications matching pattern event.
event can be of any form acceptable to
[string match]. If no event is given, all
subscriptions for this object are removed.
(NOTE: It is still possible for the object to
still receive notifications if the object
matches another object’s publication.)

Method:	 graft	

Syntax:
 OBJ graft stub object

Create a link to another object as a
forwarded method. Two methods are
created: $stub and <$stub>.

Method:	 InitializePublic	

Syntax:
 my InitializePublic

Designed to be the first method called by
the constructor. This method reads the
properties of the object an ensures the
default value is loaded for all declared
variables and options.

Method:	 initialize	

Syntax:
 OBJ initialize

Designed to be called by the constructor
after the object has initialized all of its
variables. The default implementation is
empty, it is reserved for developers to
perform any higher level initialization that
an object may require within the
constructor.

Method:	 morph	

Syntax:
 OBJ morph newclass

Convert this object to be of class newclass.

Method:	 organ	

Syntax:
 OBJ organ all
 OBJ organ stub

If the argument all is given, return a
key/value list of all stubs for this object and
what objects they point to. Otherwise,
return the object directed to by stub.

Method:	 private	

Syntax:
 OBJ private method args…

Exercise a private method.

Method:	 signal	

Syntax:
 OBJ signal signal ?signal…?

Register a signal to be executed during
the next Signal_pipeline. An “idle” signal
will trigger an [after idle] call to
Signal_pipeline if not locks are active.

Method:	 Signal_pipeline	

Syntax:
 my Signal_pipeline

Develop and execute a pipeline based on
all signal received since the last call to
Signal_pipeline.

Method	 Ensembles	

Ensemble:	 action	 actionname	 ?args…?	

Every submethod is a response to an
“event”. Actions are expected to be

immediate. Developers can feel free to
define their own events.

Method:	 action::pipeline_busy	

Syntax:
 OBJ action pipeline_busy

Commands to run at the start of
Signal_pipeline, but before the pipeline
begins.

Method	 action::pipeline_idle	

Syntax:
 OBJ action pipeline_idle

Commands to run at completion (or
failure) of Signal_pipeline.

Ensemble:	 lock	

The lock ensemble manages object locks.

Method:	 lock::active	

Syntax:
 OBJ lock active

Return a list of all locks currently active
on this object.

Method:	 lock::create	

Syntax:
 OBJ lock create lock ?lock…?

Create one or more locks on the object.
Returns zero if the all of the locks specified
are new. Returns 1 if one or more of the
locks was already active.

Method	 lock::peek	

Syntax:
 OBJ lock peek lock ?lock…?

Returns 1 if one or more of the locks
specified is active. Returns 0 otherwise.

Method:	 lock::remove	 	

Syntax:
 OBJ lock remove lock ?lock…?

Remove one or more locks on the object.
Returns zero if other locks are still present
on the object. Returns 1, and calls lock
remove_all if there are no more locks on the
object.

Method:	 lock::remove_all	

Syntax:
 OBJ lock remove_all

Remove all locks on the object and call
the Signal_pipeline method.

Ensemble:	 notify	 event	 dictargs	

This ensemble is present to allow object
to respond to notifications. The only
defined notification is default, which quietly
ignores any event that wasn’t already
processed.

Ensemble:	 Option_set	 option	 newvalue	

Each submethod is the name of an
option. The default handler mirrors any
option set with an existing internal variable.

Ensemble:	 SubObject	 stub	

Return the name of an object to create for
a particular stub. The default hander
returns:
[namespace current]::Subobject_generic_$stub

Dynamic	 Methods	
Dynamic methods are generated by the

TAO parser. They are custom produced for
each class, and replaced with the next call to
tao::class.

Method:	 property	

Syntax:
 OBJ property property
 OBJ property type property
 OBJ property type <list>
 OBJ property type <dict>

This method has several functions
depending on the content and number of
arguments. A modified form is also created
for the class itself, with a subset of all
properties that do not depend on the state
of an object instance.
Usage: OBJ property property

Returns the value of property field. If
multiple types for field are given, the line of
succession is as follows: signal, option,
variable, subst, eval, const.

i.e. if a class has a signal named foo and a
constant named foo the data returned from

property will be the description for the
signal.
Usage: OBJ property type property

Return the value of property property of
type type.
Usage: OBJ property type <list>

Return a list of all properties of type type.
Usage: OBJ property type <dict>

Return a dict of all properties of type
type.

TAO	 DB	 Schema	

Table:	 ancestry	

TAO has to independently track the
chain of heredity for classes. It does this by
replicating the rules TclOO uses, and then
recording the results as a sequence of
ancestors from the most advanced, to the
most primitive.

Table:	 class	

Each class that has been processed by the
TAO parser has an entry in this table. The
name field is the name of the class. The
package field is for future expansion. The
regen field is set to true when an ancestor of
the class is modified. See Class
Regeneration.

Table:	 class_alias	

As projects grow and evolve, the names
of classes can change over time. The
class_alias table is consulted in cases where
a new class tries to refer to an ancestor
whose name has changed.

Table:	 ensemble	

TAO captures information about method
ensembles in the ensemble table.

create table ancestry (
 class string references class,
 ancorder integer,
 parent string references class,
 primary key (class,ancorder)
);

create table class (
 name string primary key,
 package string,
 regen integer default 0
);

create table class_alias (
 cname string references class,
 alias string references class
);

create table ensemble (
 class string references class,
 method string,
 submethod string,
 arglist string,
 defined string references class,
 body text,
 primary key (class,method,submethod)
 on conflict replace);

	

Table:	 method	

TAO captures information about
methods in the method table.

Table:	 object	

Each object that has been spawned by a
tao class has an entry. name is the name of
the class. package is for future expansion.
regen is set to true when the class is
modified, and the dynamic methods for the
object need to be regenerated.

Table:	 object_alias	

Objects can occasionally change names
throughout the course of the program. This
table has an entry for all former names an
object may have possessed.

Table:	 object_bind	

TAO has an independent event handling
system, The object_bind table is where an
object designates which script to call when
an event is triggered.

Table:	 object_schedule	

TAO has an independent event handling
system, The object_schedule table is where
an object can schedule an event to occur in
the future.

Table:	 object_subscribers	

TAO has an independent event handling
system, The object_subscribers table is
where an object can subscribe which events
from which objects it wishes to respond to.
Note: sender, receiver and event are
matched using the same rules as [string
match].

To make the “example” object listen to

all events from “appmain”:

Table:	 property	

TAO stores the input given by the
parser’s option, property, and signal
keywords as records in the property table.

Table:	 typemethod	

TAO captures information about class
method classes in the typemethod table.

create table method (
 class string references class,
 method string,
 arglist string,
 body text,
 defined string references class,
 primary key (class,method)
 on conflict replace);

create table object (
 name string primary key,
 package string,
 regen integer default 0
);

create table object_alias (
 cname string references class,
 alias string references class
);

create table object_bind (
 object string references object,
 event string,
 script blob,
 primary key (object,event) on conflict
replace
);

create table object_schedule (
 object string references object,
 event string,
 time integer,
 eventorder integer default 0,
 script string,
 primary key (object,event) on conflict
replace
);

create table object_subscribers (
 sender string references object,
 receiver string references object,
 event string,
 primary key (sender,receiver,event) on
conflict ignore
);

insert into object_subscribers (
sender,receiver,event
) VALUES (
‘appmain’,’example’,’*’
);

create table property (
 class string references class,
 property string,
 defined string references class,
 type string,
 dict keyvaluelist,
 primary key (class,property,type) on
conflict replace
);

create table typemethod (
 class string references class,
 method string,
 arglist string,
 body text,
 defined string references class,
 primary key (class,method) on conflict
replace
);

