
Public Key Infrastructure and the Tool Command Language

Roy S. Keene
Jemimah Ruhala

September 23rd, 2013

Abstract

Public key cryptography, also known as asymmet-
ric cryptography, is a mechanism by which messages
can be transformed (either encrypted or decrypted)
with a private key and then reassembled with a re-
lated, but separate public key. The public key in-
frastructure (PKI) that supports the trust model by
which two parties that have no previous knowledge
of each other can verify each others identity through
trust anchors is implemented using digital signatures
made possible by public key cryptography. Being
able to participate in PKI directly with Tcl scripts
makes many interesting and useful applications pos-
sible. The PKI module in Tcllib implements the var-
ious PKI related standards and algorithms for Tcl
scripts to accomplish this goal including PKCS#1,
X.509, and RSA. This paper aims to explain the high-
level concepts related to PKI, describe the scope of
the various standards and algorithms implemented,
and explore the possibilities of PKI in Tcl.

1 PKI

The purpose of Public Key Infrastructure (PKI) is
to provide a mechanism to establish the authenticity
of an unknown party. Most people assume PKI is a
complex system with a lot of moving parts. However,
this is not the case. A simple PKI implementation is
fairly straight-forward.

PKI establishes authenticity using certificates,
which certify that some external entity has verified
that an unknown party is who it claims to be. This
certificate is presented by the unknown party as a
means of identifying itself to you.

1.1 Public Key Cryptography

Public key cryptography, or asymmetric cryptogra-
phy uses key pairs to perform cryptographic opera-
tions on values. This is in contrast to symmetric cryp-
tography which uses a single key to perform crypto-
graphic operations. In public key cryptography there
are two related, but distinct, keys:

• A public key

• A private key

The relationship between these two keys differs de-
pending on the public key cryptography algorithm,
but in all cases it is impossible1 to derive the private
key from the public key.

Public key cryptography uses mathematical opera-
tions to perform operations on numerical values that
can only be reversed or verified with the opposite key.
That is, if something is encrypted with the private key
it can only be decrypted or verified with the public
key. Conversely, if something is encrypted with the
public key it can only be decrypted or verified with
the private key.

Given that there are two different keys (public and
private) involved with public key encryption, refering
to encryption in a general sense can be ambiguous.
Which key do we use to encrypt something with ?
For reasons that should be made clear later, when we
talk about encryption within the context of public
key cryptography, we are usually talking about en-
crypting a plain text value with the public key. This
results in a cipher text that can only be decoded by
an entity possessing the private key.

In the context of public key cryptography, encrypt-
ing a value with the private key is generally used for
digital signatures. Because messages encrypted with
the private key can only be decrypted (or verified)

1Theoretically infeasable given sufficiently large and cor-
rectly generated keys

with the public key part of the key pair we can as-
sert that if the message is meaningful when decrypted
with the public key then it could have only been en-
crypted by an entity possessing the private key.

1.2 RSA

The most common public key cryptography algo-
rithm in use today is RSA2. RSA is named for Ron
Rivest, Adi Shamir, and Leonard Adleman who made
the algorithm public and are thus widely credited as
the inventors of the algorithm.

1.2.1 Description of RSA Key Pairs

The RSA algorithm defines the following pairs of keys
in the following way:

• RSA Public Key, made up of

– The public exponent (commonly called e),
often just called the exponent

– The public modulus (commonly called n),
often just called the modulus

• RSA Private Key, made up of

– The private exponent (commonly called d),
often just called the private key since it’s
the only part of it

In the remainder of this document whenever RSA is
used a simple 16-bit RSA key pair will be used:

• Public Key

– Public Exponent: 65537

– Public Modulus: 37837

• Private Key

– Private Exponent: 40193

In practice RSA keys are much larger, as of this writ-
ing the recommended minimum size of RSA keys is
2048-bits.

2According to RSA

1.2.2 RSA Algorithm

The RSA algorithm is a relatively easy to demon-
strate public key cryptography algorithm. A simple
definition of applying RSA is ”modular exponentia-
tion”. Modular arithmetic (denoted by the “Z” sym-
bol and a modulo value) is applied to values that have
had the the exponentiation operator applied to them.
A simple example of modular exponentiation is:

34(Z5) = 1

which is 3 raised to the power of 4 all modulo 5.
Since 34 = 81 and 81(Z5) = 1 (modulus is the re-
mainder of a division operation and 81

5 results in 16
even divisions and 1 remainder), the result is 1.

Another way to think of modular arithmetic is to
think of it in the same way we think of numeric bases
(such as binary, octal, decimal, hexadecimal) and us-
ing only the least significant digit of that base. The
value 81 in base 5 is 311, the least significant digit of
which is 1 and therefore 81(Z5) = 1.

1.2.3 RSA Encryption

RSA encryption is a form of public key encryption
and therefore uses the public key. The RSA encryp-
tion function is defined as:

plainpublicExponent(ZpublicModulus) = cipher

For example:

2672965537(Z37837) = 36784

is modular exponentiation of the plain text 26729
raised the power of 65537, which is the public expo-
nent, all modulo the public modulus of 37837, which
results in the cipher text 36784. The above example is
also an example of encrypting the value 26729 (which
is 0x6869 in hexadecimal, or ”hi” in ASCII) with an
RSA key whose public exponent is 65537 and whose
public modulus is 37837 resulting in the encrypted
value of 36784.

This can only be reversed using the private key as
the exponent instead of the public exponent. That
is:

cipherprivateExponent(ZpublicModulus) = plain

For example:

3678440193(Z37837) = 26729

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/popular-techniques-in-cryptography.htm

1.2.4 RSA Digital Signatures

Looking closer at the RSA encryption example of
modular exponentiation, we can see some of the pub-
lic key cryptography properties that we need starting
to emerge. Specifically we cannot take the cipher text
value and convert it back to the plain text with just
the public information. We must know the private ex-
ponent (or be able to derive it by factoring the public
modulus, but given a complex and correctly gener-
ated key pair this should be impossible) to reverse
the operation.

However RSA encryption is not very useful for dig-
ital signatures because it requires the private key to
do anything meaningful. With a digital signature, we
want to perform an operation on some plain text us-
ing our private exponent that can be verified using
only the public key. Fortunately RSA allows us to do
that by simply swapping the values around. That is:

plainprivateExponent(ZpublicModulus) = cipher

For example:

1234540193(Z37837) = 3293

which CAN be reversed using only public informa-
tion, as in:

cipherpublicExponent(ZpublicModulus) = plain

For example:

329365537(Z37837) = 12345

RSA guarantees that the chance of there being an-
other private key which generates the same cipher
text for a given plain text is extremely low relative to
the size of the key. Therefore we can assume that if
a given cipher text can be decrypted to a plain text
using a given public key then it must have been en-
crypted with the secretly held private key and thus as
long as the private key is protected as a secret, only
the holder could have generated this message.

1.3 Digital Signatures

Directly encrypting a message with a private key is a
workable solution for short messages but not in the
general case. RSA and most other public key cryptog-
raphy systems cannot encrypt (with either the public
key or the private key) messages larger than the size
of the key. That is, if the key is 16 bits then the

plain text message can be no larger than 16 bits. For
RSA the specific limit is that the value can be no
larger than the public modulus due to the fact that
all operations are modulo the public modulus.

Instead of directly encrypting the plain text a cryp-
tographically secure message digest algorithm such
as MD53, SHA14, or SHA2565 is used to compute a
cryptographically secure digest of the message which
is typically much smaller than the message itself.
This digest is then encrypted with the private key
and verified with the public key. In this way, arbi-
trarily long messages can be digitally signed.

1.4 Encryption

The same limitation that exists for message length
with respect to digital signatures also applies to en-
cryption. The message encrypted with RSA must be
no larger than the public key. Again, for RSA this is
due the fact that the public modulo is applied to all
operations.

Thus for the general case of encryption of an ar-
bitrarily long message using a public key cryptog-
raphy system two different cryptographic algorithms
are typically used:

• A public key (asymmetric) cryptography key

• A symmetric key

Instead of directly encrypting the plain text a sym-
metric cipher such as AES6, ARCFOUR/RC4, or
3DES7 is used with a secure randomly generated sym-
metric cipher’s key. This symmetric key is then en-
crypted with the asymmetric cipher’s public key. The
plain text is then encrypted with the selected sym-
metric cipher and the generated symmetric cipher’s
key.

1.5 Certificates

As previously mentioned in section 1, certificates are
used to certify that one entity (the issuer of the cer-
tificate) says that another entity (the subject of the
certificate) is a given identity under certain condi-
tions.

So what makes up a certificate ? Certificates are
specified by the ITU-T standard X.509 and contain
the following information:

3MD5 is defined in RFC 1321
4SHA1 is defined in RFC 3174
5SHA256 is defined in RFC 4634
6AES is defined in FIPS PUB 197
73DES is defined in FIPS PUB 46-3

http://www.itu.int/rec/T-REC-X.509-200811-I/en
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc3174.txt
http://www.ietf.org/rfc/rfc4634.txt
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

• X.509 Standard version number (optional) which
identifies the revision of X.509 that this certifi-
cate complies with

• Issuer, which is the ”distinguished name” of the
entity who issued (that is, signed) the certificate

• Serial Number, which is a unique number per
issuer to uniquely identify this certificate from
the issuer

• Subject, which is the ”distinguished name”of the
entity who is being certified (and also who holds
the private key)

• Issue date and expiration date, which define the
time frame in which the certificate is valid

• The public key, including the algorithm and
algorithm-specific public key data – for RSA this
is the public modulus and public-exponent

• If this is X.509 version number 3 then X.509 ex-
tensions may be specified which restrict the uses
of this certificate

• The digital signature of all of the previous data
encoded in ASN.1 Distinguished Encoding Rules
(DER) as specified by ITU-T standard X.690,
which for RSA is the cryptographic message di-
gest of the previous data, which is then padded
(per PKCS#1), and finally encrypted with the
private key of the issuer

So now we have a system where an unknown and un-
trusted party can assert to you a fully-qualified (also
known as ”distinguished”) name and also provide a
reference to who is certifying that this assertion is
true within the parameters specified in the certificate.

What is to stop someone from taking a certificate
from an existing entity, which must be publicly ac-
cessible otherwise there would be no way to identify
the entity, and using it? Once again, public key cryp-
tography is the answer here. A certificate only proves
that the Issuer signed a request for the Subject. A
certificate does not prove that you you are talking to
is legitimately the subject specified in the certificate
but it does provide a mechanism to do that. The
public key being certified is in the certificate so all
that is needed is for you to issue some sort of chal-
lenge for the party presenting the certificate to prove
that it has the private key that corresponds with the
certified public key. How this challenge is done de-
pends on the protocol and is outside the scope of this
document.

1.6 Finally... PKI

At this point we have described all of the vital com-
ponents to a simple PKI system:

• A method to identify an entity

• A method for one entity to assert the identity of
another entity

With these simple tools we can construct a system
where we trust few entities to act as authoritative
sources of identity information for unknown entities.
Entities which act as authoritative sources of trust
are known as Certificate Authorities and are identi-
fied by certificates with the X.509v3 extension known
as “Basic Constraints” set to the value of “true”. Cer-
tificate authority certificates may be signed by other
certificate authorities or they may be self-signed. A
self-signed certificate authority certificate is known as
a“root certificate authority certificate”while a certifi-
cate authority certificate signed by another certificate
authority is known as an “intermediate certificate au-
thority certificate”.

The result of such a system is a hierarchy of certifi-
cate authorities which can issue certificates. If trust is
given to one of the certificate authorities then any cer-
tificates issued by that certificate authority (directly,
or indirectly through a chain of subordinate or inter-
mediate certificate authorities) can also be trusted as
having met the requirements of that certificate au-
thority.

1.7 More Complete PKI

While a simple PKI system is straight-forward to de-
scribe, a more complete (and secure) PKI system is
more complex due to things such as revocation lists
(CRLs) and the many X.509v3 extensions which can
be used to limit the utility of X.509 certificates. This
document will not cover those items due to their com-
plexity and scope.

2 PKI with Tcl

Tcl version 8.5 and newer transparently support
arithmetic on arbitrarily big integers which enables
us to write a pure Tcl implementation of RSA using
the [expr] command. Versions prior to 8.5 could use
the bigmath package within TCLLIB at a consider-
able cost for speed.

https://www.itu.int/rec/T-REC-X.690-200811-I/en

2.1 The pki Package

The pki package is a module within TCLLIB, a col-
lection of popular TCL-based packages. It requires
Tcl version 8.5 for its big integer support.

The pki package provides an interface for most
things related to PKI. It originally started as just an
RSA package but as additional needs for interoper-
ability arose more and more PKI support was added.

Currently it only supports the RSA public key
cryptography system but is extensible to support ad-
ditional algorithms (and indeed this is how PKCS#11
support is implemented).

The rest of this section briefly describes the inter-
face to the pki package.

2.1.1 pki::encrypt

The [pki::encrypt] command encrypts a message with
a key from a public key cryptography algorithm, such
as RSA. Either the public key or the private key
may be used to encrypt the message. It is worth
noting that not every public key cryptography algo-
rithm supports encryption and decryption. Notable
the Digital Signature Algorithm8 (DSA) only sup-
ports creating and verifying signatures.

The encrypted message is returned on success and
an error is raised upon failure. In general, assuming a
valid key has been supplied, the most common error
returned is that the message is larger than the key
and the algorithm does not support that.

The [pki::encrypt], [pki::decrypt], [pki::sign], and
[pki::verify] commands each examine the key to de-
termine what backend to call to handle the specific
operation. The RSA backend is always registered as
it is a part of the “pki” package. Additional backends
may be registered at run-time.

2.1.2 pki::decrypt

The [pki::decrypt] command decrypts a previously
encrypted message with a key from a public key cryp-
tography algorithm, such as RSA. Either the public
key or the private key may be used to decrypt the
encrypted message.

The decrypted message is returned on success and
an error is raised upon failure. It is worth noting that
the decrypted message returned may be invalid if the
key is not valid, however this is usually caught due to
RSA PKCS#1 v1.5 padding on encrypted messages.

8DSA is specified in FIPS 186-4

2.1.3 pki::sign

The [pki::sign] command creates the digital signature
of a message with a key from a public key cryptog-
raphy algorithm, such as RSA. This will require the
key supplied to include the private key.

The signature is returned on success and an error
is raised upon failure.

2.1.4 pki::verify

The [pki::verify] command verifies that a digital sig-
nature is valid for a given message, signature, and
key.

If the message can successfully be verified then
“true” is returned otherwise “false” is returned.

2.1.5 pki::pkcs::parse key

The [pki::pkcs::parse key] command loads the sup-
plied PKCS#1 key pair (or just the public key, if
requested) into a key structure used internally by the
“pki”package. If the key is encrypted a password may
be supplied to decrypt it. If the key is encrypted and
no password is supplied an error is raised.

The key is returned on success and an error is raised
upon failure.

2.1.6 pki::pkcs::create csr

The [pki::pkcs::create csr] command creates the sup-
plied PKCS#1 certificate signing request (CSR) with
a specified key and the request subject given. A cer-
tificate signing request is the standardized message
format handled by certificate authorities to create a
certificate. It includes the public key, the requested
name, and a signature of the entire request.

2.1.7 pki::pkcs::parse csr

The [pki::pkcs::parse csr] command reads the sup-
plied PKCS#1 certificate signing request (CSR) and
returns the public key information as well as the re-
quested name as a single key object.

2.1.8 pki::x509::parse cert

The [pki::pkcs::parse cert] command reads the sup-
plied X.509 certificate and returns the public key in-
formation as well as the other information in the cer-
tificate in a single certificate object, which may also
be used as a public key object. At this point is worth
nothing that the key object used internally by the

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

“pki” package is just a Tcl dictionary (dict) and may
freely be accessed as such.

2.1.9 pki::x509::verify cert

The [pki::x509::verify cert] command verifies that a
certificate is properly signed by a trusted certificate
authority, which may either be a root certificate au-
thority or an intermediate certificate authority. It is
worth noting that this does not verify that the certifi-
cate may be used for any particular purpose or even
that it may be used at this time, but only that it was
legitimately issued by a trusted certificate authority.

If the certificate can be verified to have been is-
sued by a trusted certificate authority then “true” is
returned otherwise “false” is returned.

2.1.10 pki::x509::validate cert

The [pki::x509::validate cert] command verifies that
a certificate may be used for some purpose, such as
SSL/TLS, being a certificate authority responsible
for signing a subject. It checks the parameters of
the X.509v3 certificate such as validity period (issue
date and expiration date), the subject distinguished
name, the “Basic Constraints” extension, and other
attributes based on how it is invoked.

If the certificate can be determined to be valid for
the specified purpose then “true” is returned other-
wise “false” is returned.

2.1.11 pki::x509::create cert

The [pki::x509::create cert] command creates an
X.509 certificate from a certificate signing request us-
ing a specified certificate authority key to sign it, a
specified serial number, and with the given additional
X.509 parameters. The process of creating a certifi-
cate is sometimes called “signing a certificate” which
is a misnomer since there is no such thing as an un-
signed certificate9 in X.509.

The parameters to [pki::x509::create cert] are
rather unwieldy at this point due to the number of
required parameters and newer versions will likely re-
place the positional parameters with named parame-
ters.

Upon success the certificate is returned in either
PEM or DER format which are suitable for exchange
with other PKI systems. It must be parsed with
[pki::x509::parse cert] before it can be used internally
with the “pki” package.

9Indeed, an unsigned certificate would certify nothing

2.1.12 pki::rsa::generate

The [pki::x509::generate] command generates an RSA
key of a given size. You can also optionally specify the
public key exponent to use rather than the default of
65537, but it is not advisable to actually do so since
it may decrease the security of the generated key.

2.2 The “pki::pkcs11” Package

The “pki::pkcs11” package uses and extends the “pki”
package with support for RSA PKCS#11 hardware
security modules (HSMs) such as cryptographic ac-
celerators or smart-cards. Unlike the “pki” module it
is not written in Tcl, but is written in C. This is due
to the fact that the RSA PKCS#11 standard specifies
a C API for “cryptoki modules”.

The “pki::pkcs11” module has a relatively simple
interface thanks to re-using most of the “pki” package
for operations and supporting only the most basic
RSA PKCS#11 functionality.

2.2.1 pki::pkcs11::loadmodule

The [pki::pkcs11::loadmodule] command loads a
“cryptoki module”, which is an RSA PKCS#11 com-
pliant library (DLL or shared object, for example)
that will be used for accessing a specific hardware
device.

If the specified module can be successly loaded an
opaque handle is returned otherwise an error is raised.

2.2.2 pki::pkcs11::unloadmodule

The [pki::pkcs11::unloadmodule] command unloads
and frees allocated structures for an RSA PKCS#11
cryptoki module specified by the opaque handle. Af-
ter the specified module is unloaded the opaque han-
dle may no longer be used.

Upon success “true” is returned otherwise “false” is
returned.

2.2.3 pki::pkcs11::listslots

The [pki::pkcs11::listslots] command lists the slots
that are available for a given opaque cryptoki mod-
ule handle. In RSA PKCS#11 a slots contain at most
one token which can contain objects such as certifi-
cates, public keys, private keys, etc.

Upon successful operation a list is returned. The
returned list contains one element per slot. Each item
of the returned list is itself a sub-list containing the
following items:

http://rkeene.org/projects/info/wiki/tclpkcs11

1. The slot identification number for the slot

2. The label of the slot

3. Flags set for the slot

If there is an error in processing the request then an
error is raised. If there are no slots available then an
empty list is returned.

2.2.4 pki::pkcs11::listcerts

The [pki::pkcs11::listcerts] command lists the certifi-
cate objects available for a given handle and slot iden-
tification number.

Upon successful operation a list is returned. Each
item of the returned list contains a certificate/key ob-
ject (as would be returned by [pki::x509::parse cert]).
If there is an error in processing the request then an
error is raised. If there are no certificate objects for
a given slot identification number associated with a
given opaque handle then an empty list is returned.

2.2.5 pki::pkcs11::encrypt

The [pki::pkcs11::encrypt] command is not intended
to be called directly by end-user applications. It
calls the C Encrypt() function within the loaded
RSA PKCS#11 cryptoki module. Instead of calling
this command end-user applications should call the
[pki::encrypt], [pki::decrypt], or [pki::sign] command
which will invoke this command if the key supplied
indicates it is a PKCS#11 module.

Because RSA PKCS#11 cryptoki modules expose
functions to perform public key cryptography they do
not need to export the private key in order for appli-
cations to perform cryptographic operations that use
the private key. For example a user using a smart-
card can prove that he has access to his private key
and thus legitimately is associated with the certifi-
cates presented without being able read to the pri-
vate key at all. Instead the smart-card performs the
cryptographic operation and returns a cryptographic
result. This means that there is no way for an ad-
versary to acquire the private key for a smart-card10

user since the user themselves cannot read the private
key.

2.2.6 pki::pkcs11::decrypt

The [pki::pkcs11::decrypt] command, like the
[pki::pkcs11::decrypt] command, is not intended to

10Except for the possibility of physically acquiring the device

be called directly by end-user applications.

2.2.7 pki::pkcs11::login

The [pki::pkcs11::login] command logs into a device
by calling the RSA PKCS#11 cryptoki module’s
C Login() function. Because cryptographic modules
perform cryptographic operations using the private
key they will often be require the user to verify to
the hardware security module or smart-card that they
legitimately should be able to perform that opera-
tion by supplying a password. If a login is required
to use a particular hardware token then the LO-
GIN REQUIRED flag will be set in the result from
[pki::pkcs11::listslots] for the slot that the token is in.

If the password successfully logs into the device
then “true” is returned. If the password is incorrect
then “false” is returned. If some other error condition
is asserted then an error is raised.

2.2.8 pki::pkcs11::logout

The [pki::pkcs11::logout] command logs out of a de-
vice by calling the RSA PKCS#11 crytptoki mod-
ule’s C Logout() function. Once you are logged out,
token attempts to perform cryptographic operations
will probably fail.

2.3 Doing Something Useful

2.3.1 Establishing a Simple Certificate Au-
thority

The very first thing we need to be concerned with
when establishing a public key infrastructure system
is the establishment of an authority to certify identi-
ties. This is our certificate authority. All we need for
a minimal certificate authority is certificate author-
ity certificate and some way to ensure that we do not
issue certificates with duplicate serial numbers. We
can do this from within Tcl using the “pki” module
easily.

First we must load the “pki” package,
which can be obtained from TCLLIB or from
http://rkeene.org/devel/pki/.

% package r e q u i r e pki 0 . 3

Then we need to generate our private key. Since
RSA is the only public key cryptography algorithm
currently implemented we should use that:

% s e t ca key [pki : : r sa : : generate 2048]

http://rkeene.org/devel/pki/

Next we need to “sign our key” which will necessar-
ily be stored as a certificate (a key that was simply
signed would not include any identifying information
and would be generally useless). Since this key will
be our first certificate authority certificate it must be
signed by its own key and is therefore self-signed and
also therefore a root certificate authority. The “pki”
package does not provide a nice way to handle cer-
tificate authorities. To accomplish that we just add
a “subject” key to the “ca key” dictionary:

% s e t ca key sub j e c t \
”CN=Example Root CA”

% d i c t s e t ca key s u b j e c t \
$ca key sub j e c t

After we have updated this object we can use sign
it using the [pki::x509::create cert] command:

% s e t i s s u e d a t e [c l o ck seconds]
% s e t e x p i r e d a t e [c l o ck add \

$ i s s u e d a t e 1 year]
% s e t c a c e r t

[pki : : x509 : : c r e a t e c e r t \
$ca key $ca key 1 $ i s s u e d a t e \
$exp i r e da t e 1 [l i s t] 1]

At this point we have successfully established our
certificate authority by creating a private key and
a signed certificate which identifies us. We should
save our private key, which is stored in the dictionary
named “ca key”, and our certificate which is repre-
sented by the value stored in the variable “ca cert”
somewhere to prevent losing them and also in such a
way that others may not access them.

2.3.2 Provisioning User Certificates

Now that we have a certificate authority, our users
may start using it. The first thing they will want to
do is obtain a copy of our certificate authority certifi-
cate through a secure and trusted channel in order to
establish trust with it. After that they will also want
to generate their own RSA private key:

% package r e q u i r e pki 0 . 3
% s e t user key [pki : : r sa : : generate 2048]

Next the user should generate a certificate sign-
ing request (CSR) so that the certificate authority
will know the public key as well as what identity
the user is claiming to be. This is done with the
[pki::pkcs::create csr] command:

% s e t u s e r c s r [pki : : pkcs : : c r e a t e c s r \
$user key [l i s t ”CN” ”Joe User ”] 1]

Then the user can distribute the CSR to the cer-
tificate authority over a trusted channel (although all
of the information in the CSR is public if the channel
is compromised, a malicious man-in-the-middle could
alter the request so that his or her public key be used
instead) and the certificate authority can generate a
certificate:

(On C e r t i f i c a t e Authority)
% s e t u s e r c s r {//From User //}
% s e t u s e r c s r l i s t \

[pki : : pkcs : : p a r s e c s r $ u s e r c s r]
% s e t i s s u e d a t e [c l o ck seconds]
% s e t e x p i r e d a t e [c l o ck add \

$ i s s u e d a t e 1 year]
% s e t u s e r c e r t \

[pki : : x509 : : c r e a t e c e r t \
$ u s e r c s r l i s t $ca key 2 \
$ i s s u e d a t e $exp i r e da t e 0 [l i s t] \
1]

The certificate authority can then give the user his
or her certificate over any channel since it’s public.

2.3.3 Securely Exchanging Messages

Once several users have certificates issued by our cer-
tificate authority they can use the trust they have
established with the certificate authority and the cer-
tificate authority certificate to validate messages be-
tween them, creating a secure and trusted channel
between two users who may have never previously
communicated.

This can be done by creating a simple ad-hoc pro-
tocol for the users to communicate where users:

1. Initially exchange certificates with the peer

2. Each side performs some action to verify that the
Subject of the certificate is who they are talking
to

3. Each side validates that the certificate is valid
using [pki::x509::validate cert]

4. Each side securely generates a 128-bit key for
AES using the “aes” package (from TCLLIB)

5. Each side encrypts the 128-bit key as well as the
initialization vector (IV) with the peer’s public
key, which can only be successfully decrypted by
the peer

6. Each side decrypts the received 128-bit key and
IV using his or her private key

7. Each side initializes an AES chain block cipher
mode stream for sending encrypted blocks to its
peer and another AES chain block cipher mode
stream for receiving encrypted blocks

3 Legal Information

Since the pki package implements RSA, which is
strong cryptography, it must be registered with the
United States Department of Commerce. Currently
the pki module is registered with Export Registration
Number (ERN) R103416 and is authorized for export
and re-export from the United States. No effort has
been made to ensure that it can be imported to- or
exported from other countries.

