
A 1Ghz digital Oscilloscope in (mostly) Tcl
Ronald Fox

National Superconducting Cyclotron
Laboratory, Michigan State University

640 S Shaw Lane
East Lansing, MI 48824-1321

CAEN Technologies

1140 Bay Street Suite 2C
Staten Island, NY 10305
ron@caentech.com

ABSTRACT

The transition of nuclear and particle physics data
acquisition  systems  to  high  speed  wave  form
digitization  technology  allows  a  great  deal  of
simplification  in  electronics  setups.   There  are
trade-offs  however.  So-called  'digital  data
acquisition  systems'  require  higher  data
transmission bandwidths and can be challenging
to set up for the uninitiated. 

This paper will address a software product that is
being  developed  to  address  the  first  stages  of
setup.   In  this  work  the  large  and  unfamiliar
parameter  space  of  the  waveform  digitizer  is
hidden behind a cognitive model that is familiar
to  most  experimenters,  that  of  a  digital
oscilloscope.

1. INTRODUCTION
  Traditional  nuclear  and  particle  physics  data
acquisition  systems  made  use  of  'feature
digitizers'.  These  devices  perform  an  analog
analysis  of  a  waveform  and  provide  a  single
value to the host/readout software.  For example
a  Wilkinson  ADC  captures  the  height  of  the
waveform peak  and  provides  a  number  that  is
proportional to that height.

  Traditional nuclear and particle data acquisition
systems often require a significant investment in
analog  electronics  to  condition  the  signals
presented to the digitizer.  For example to use a
TDC  (Time  to  Digital  Converter),  an  external
discriminator  is  required  to  convert  both  the
inputs  and  some  reference  signal  to  digital
signals.  

  In recent times, however, improvements in the
performance of high speed flash ADCs (FADCs)
and high capacity field programmable gate arrays

(FPGAs) have  ignited  a  transition  from feature
digitizers  to  the  use  of  waveform  digitizers
coupled  with  FPGAs  in  which  are  embedded
digital signal processing algorithms.  Indeed there
are detector systems such as arrays of segmented
germanium detectors  which cannot  be analyzed
fully in any other way.  

In experimental Nuclear Physics data acquisitions
systems  based  around  these  FADC/FPGA
combinations are called "Digital Data Acquisition
Systems" (DDAS). 

  These  advances  do  not  come without  a  cost,
however.  During at least some part of the system
setup,  and  during  system  diagnostics,  it  is
common to need to transmit raw waveform data
from  the  front  end  electronics  to  the  online
diagnostics  software.   This  requirement
drastically increases the bandwidth requirements
of these systems since typical digitization speeds
may exceed several hundred MHz.

Furthermore,  to  productively  take  data  from
digital  data  from  a  DDAS  a  large  number  of
parameters must be optimized for each channel.
These parameters range from those that allow the
raw signal to be properly digitized to parameters
that affect the digital signal processing performed
by the FPGA firmware associated with each ADC
channel. This can be challenging and frustrating
for users new to the DDAS paradigm.

  This paper will describe a project that provides
researchers  with  a  simplified  familiar  cognitive
model  that  makes  one  set  of  these  parameters
more approachable.  The scope of this project is
limited to helping researchers set up the digitizer
to  properly  accept  waveforms  from  their
detectors.

It  turns  out  that  early stages  of  the  setup  of  a
digitizer  channels  are  analogous  the  process  of



setting up an oscilloscope.  Therefore we provide
users  with  digital  oscilloscope  software  that
operates  by  setting  appropriate  digitizer
parameters.

   This software is largely written in Tcl/Tk.  The
paper will discuss:

 The  cognitive  model  being  provided  to
the user

 The  wrapping  of  the  C  API  with  a  Tcl
command  ensemble,  and  how  digitizer
model differences are handled.

 The considerations behind the choice of a
graphics package and its implications.

 The  application’s  functionality  and  user
interface.

 Issues uncovered and solutions arrived at
in  packaging  the  software  in  Starpack
format. 

 Future work.

2. COGNITIVE MODEL
In past efforts by CAEN to provide support for
visualizing  waveforms,  presented  the  digitizer
parameters  to  he  user  without  interpretation.
These parameters have names like “post-trigger”,
“trigger  level”,  channel  mask,  and  sample
window.  New users were often confused about
the  meaning  of  parameters  and  how  each
parameter  impacted  data  acquisition.   As  such
users  often  had  trouble  getting  meaningful
waveforms to appear in the waveform display.

Acquiring and displaying waveforms is, however
something that most users have done in the past.
Almost all users were knew how to set up and use
a digital oscilloscope to display the signals that
they then were going to digitize with their ADC.  

We therefore decided to try to model the software
after the controls in a digital oscilloscope.  The
detailed  digitizer  parameters  and  their  internal
names could then be hidden from the user behind
more familiar controls such as trigger threshold,
channel select, trigger delay.

We  were  also  tempted  to  add  a  setup  wizard,
however wizards can be frustrating to users who
already know how to use these devices.  What we
did instead was provide a guide at the bottom of
the oscilloscope user interface led inexperienced
users  through  the  process  of  setting  up  the
digitizer while allowing experts to bypass steps in
the process, or the entire process.  At each step, a
subset of the 'scope' controls are enabled, while in
the 'expert' mode all controls are enabled.

3. THE API ITS WRAPPER AND MORE
CAEN provides a layered set of libraries[1] that
hides  most  of  the  model-to-model  differences
from the programmer.  This allows digitizers to
be  programmed at  a  basic  level  without  caring
which digitizer the application is using.

The first step of producing the scope application
was to  produce  a  Tcl  wrapping of  the digitizer
libraries.  The libraries include data types that are
not suitable to a swig wrapping, so this wrapping
was done by hand.  The wrapper is built on top of
both  the  digitizer  library and the  Tcl++ library
that was described elsewhere [2].  

The  wrapper  library  appears  to  the  Tcl
programmer  as  a  command  ensemble  in  the
::CAEN:: name space with  the  base command
digitizer.  Sub  commands each  wrap  a  specific
digitizer library function.  The parameters of each
function  have,  where  necessary  been  made  Tcl
friendly,  for  example  enumerated  types  are
converted  back  and  forth  between  string
representations  (e.g.  a  value  like
CAEN_DGTZ_XX724_FAMILY_CODE  which
is  a  value in  the digitizer  family enumerator  is
mapped in Tcl to the string “xx724".

3.1 Module capabilities

While the CAEN digitizer libarary does a good
job  of  insulating  the  programmer  from  most
model  specific  issues,  some  model-to-model
differences  are  not,  however,  transparent  to  the
programmer.   These include but are not limited
to:



 Connection  between  the  host  and  the
digitizer.

 Sampling frequency of the digitizer

 Buffer organization of the digitizer.

 Number of channels.

 Input voltage ranges

The API does provide a mechanism to query the
digitizer  model  family  and  model  version  (a
model  version  is  a  particular  digitizer  model
within a family).  With the exception of the input
voltage  range,  the  model  family  and  model
version are sufficient to select the properties of a
module.

3.2 Representing module capabilities

Module  capabilities  are  stored  in  an  SQLite
database.  A package in the software can convert
database  information  for  a  module  to  a  dict.
Child  records  of  a  module's  master  record  are
represented within the dict  as lists  of values or
sub-dicts  depending on whether or not the sub-
record  has  multiple  fields  that  need  to  be
represented.  

A small Tk application has also been written to
maintain the module database.  This application
allows the database to be maintained by device
designers.

3.3 So you want to take data too?

The  digitizer  modules  have  multi-event
memories.   While  some  connection  types  (e.g.
CONET  and  CONET  connected  VME  bus
interfaces)  support  interrupts,  others  (USB
Connected  VME  bus  interfaces  and  desktop
digitizers with USB interfaces) do not and must
be polled.

Furthermore  the  API  presents  interrupts  to  the
user as events which must be polled.  Thus the
intent  is  for  the  API  to  be  polled  by  the
application for events which then are read out of
the digitizers.

This  model  provides  three  implementation
alternatives within a Tcl/Tk application driven by
an event loop:

1. Drive the poll from a self-resetting  after
timer,  or  the  libTcl  API  equivalent
(Tcl_CreateTimerHandler).

2. Create a new event source for the Tcl/Tk
event loop.

3. Run the polling in a thread and post and
event to the main application thread when
data are ready.  This can be done either at
the C level or via the tcl thread package.

The alternative chosen was to use the Tcl thread
package to implement option 3.  Since the CAEN
digitizer library is thread safe this option does not
pose too much difficulty, except for the edge case
of application exit with the trigger loop active.

The trigger thread is therefore structured as a one
shot.  When the application is able to respond to a
trigger, It tells the trigger thread to begin polling.
The polling thread then polls  for data available
and posts and event back to the main thread when
data is available.  The main thread processes the
event and then signals the poll thread to resume
trigger polling.

When the process exit is requested, if data taking
is  enabled,  a  software  trigger  is  generated  to
ensure the  polling thread sees  data.   Once that
trigger  is  posted  back  to  the  main  thread,  the
handles open on the digitizer can be closed and
the exit operation completed.

4. REAL-TIME GRAPHICS.

The  scope  program  is  a  graphically  intensive
program.   For  each  trigger,  the  program  must
draw  as  many  as  8  traces  of  typically  several
thousand  points  each.   At  high  rates,  it  is  not
necessary that  the software capture every trace,
however the updates appear smooth and the user
interface must be responsive.

The following packages were considered for trace
plotting:

1. BLT 



2. Refactored BLT Components (RBC).
3. Plotchart
4. Roll-your-own canvas graphics.
5. The remainder of this section will briefly

describe each of these packages, the pros
and  cons  of  using  them  within  this
application.   A  concluding sub-section
will  describe  the  choice  and  what  was
needed to get the choice to work.
4.1 BLT

BLT is a Tcl/Tk extension written and maintained
by George Howlett [3].  It is a complied 
extension that features a wide variety of 
sophisticated graphical components.

Pros:
1. As a compiled extension its performance

is very good.
2. Its  design  lends  itself  easily  to  time

varying  graphics.   Each  trace  could  be
represented as a vector and updating the
plot would simply be a matter of updating
the points in the vector.

3. Support  for  expansion,  coordinate
transformation and feature picking is very
good.

4. The author  has used BLT in other  work
and was familiar with it.

Cons:
1. BLT is  not  stubs  enabled  and the  intent

from  the  beginning  was  to  embed  this
application in a starpack.  Note however
that TclKits that contain BLT do exist.

2. BLT  has not kept up with Tcl/Tk.   While
patches exist  to make it work on Tcl/Tk
8.5,  and while the repository shows that
work  is  being  done  on  the  project  (last
update at  the time this  paper  was going
through first draft was April 30, 2013), it
is not clear that the software author is able
to  commit  the  resources  needed  to
continue to evolve the software.

3. BLT has  a  few  dirty  hooks  into  Tcl/Tk
which would make ‘self-maintenance’ of
the software difficult  in  case the project
were abandoned.

4. As a compiled extension (I know I called
this an advantage earlier), embedding the
software  in  a  Starkit/Starpack  results  in
some challenges (see section 6).

4.2 Refactored BLT Components
The Re-factored BLT Components project (RBC)
[4] is a project that is run by Bob Techentin.  It is
a  fork  of  the  BLT project.   The  intent  of  the
project was to remedy the short-comings of BLT
by producing a  stubs  compatible  BLT that  was
decoupled  from the  internals  dependencies  that
the original BLT suffers from.

Pros:

1. RBC does work with Tcl 8.5 (this author
has no experience attempting to use RBC
with  8.6  releases  although  the  project
pages says that it has been used with 8.6
beta releases).

2. The author has used parts of RBC with a
project  that  used  BLT  and  needed  to
migrate to Tcl 8.5 with success.

3. RBC is  highly  compatible  with  BLT so
the author’s knowledge of BLT could be
used directly with RBC.

Cons

1. Bob classifies the software as “ready for
an  alpha  release”  which  indicates  there
may  be  some  pitfalls  if  used  in  a
demanding environment.

2. RBC still has linkages to Tcl/Tk internals.
3. RBC  has  not  yet  been  tested  with

Starkit/Starpacks.
4. The most recent set of releases dates back

to  late  2009 and  the  most  recent  set  of
commits were documentation commits in
2011.   Unfortunately  this  project  seems
likely to be dead.

4.3 Plotchart
Plotchart  [5]  is  a  pure  Tcl  scientific  plotting
package written by Arjen Markus.   Plotchart  is
distributed as  part of the Tklib.

Pros



1. Arjen  is  very  responsive  to  questions
about Plotchart and very willing to make
changes and bug-fixes on request.

2. Since  Plotchart  is  pure  Tcl/Tk,  self-
maintenance of the package in the event
Arjen is not able to continue his work on
it is easier.

3. Since Plotchart is a pure Tcl/Tk package,
including  it  in  a  Startkit/Starpack  is
trivial.

4. Plotchart  provides  primitives  for
coordinate transforms that,  together with
event  handling  can  add  the  ability  to
interact with the plot.

Cons

1. Plotchart’s pure Tcl nature (I know I said
this  was  an  advantage  too)  leads  to
concerns about performance.

2. Plotchart’s focus is on static graphics.  As
such it is not clear it can be easily adapted
to Scope’s need for dynamically changing
graphics (See section 4.5 below).

3. This  author  was  not  familiar  with
Plotchart and therefore there would be a
learning curve to using it effectively.

4.4 Roll Your Own Canvas Graphics
This  option  means  creating  my  own  graphics
package designed for and adapted to the needs of
the scope program.  

Pros:

1. The resulting package will be well suited
to my needs.

2. The resulting package will be something I
can easily understand and be maintainable
by me.

Cons

1. Time  spent  creating  and  debugging
this package would detract from time
that  could  be  spent  on  the  main
application.

4.5 Decision and Consequences

None  of  these  choices  is  ideal.  The  most
attractive of all of them, however was Plotchart.
Some performance testing was done by plotting a
randomly  phase  shifted  sine  wave  and  a
randomly  phase  shifted  saw-tooth  to  see  how
quickly Plotchart could update the plot.

Plotchart’s performance was deemed acceptable,
although a couple of emails back and forth with
Arjen were needed to fix  some issues with the
package that popped up as a result of this test. 

As stated in  section  4.3,  Plotchart  is  not  really
designed for the dynamic graphics that would be
produced by the scope application.  For example,
Scale  changes  that,  in  BLT  are  performed  by
simply  changing  options  in  the  plot  widget,
require a complete regeneration of the plot.

As  development  progressed,  it  was  useful  to
encapsulate the plots used by Scope in a SNIT [6]
container  that  would  transparently  recreate  the
plot as needed, as well as provide other services
required by the scope application such as markers
and a key of  markers.   At  the  end of  the  day,
however I think Plotchart was a good choice.

5. Functionality and User Interface
This section will describe the user interface of the
scope program in some detail.

When  starting  the  program,  the  first  thing  that
must  be  provided  is  information  about  the
connection to the digitizer.  This is currently done
via a dialog shown in Figure 1 below.  The drop
down menu on the left allows the user to select
between the communications interfaces available
and  provide  parameters  that  allow  the  specific
digitizer  module  to  be  selected  from  the  set
attached to that interface.  

 Once  connection  has  been  established  with  a
digitizer, the software reads its model family and
model instance and looks up its characteristics in
an SQLite database.  The database is part of the
Starpack’s VFS, however it is copied into a temp
directory  based  on  where  the  operating  system
likes  to  put  such  things.   See  future  work
however.



Figure 1: Connection parameter prompt

Unfortunately,  the  input  voltage  range  of  the
digitizer is an option that cannot be determined.
For each model family and model instance, there
are  a  set  of  possible  input  ranges  the  user
specifies when ordering the module.  

The  model  family,  model  instance  and  serial
number uniquely identify a module.  The serial
number is also read from the device.  These are
used to attempt to locate the module in another
SQLite data base that is stored in the user’s home
directory  tree  (again  the  exact  location  of  this
database depends on the operating system).  If the
module has been used before, its database record
provides a voltage range as a low and high limit
pair.

If the module has never been seen before, the set
of possible voltage ranges are presented and the
user must select the correct voltage range for the
module.  This information is stored in the user’s
database and the same user will never again be
prompted for this information. 

Figure 2 below shows the full user interface.  In
this section I will describe in turn:

• The channel and trigger selection panes,
• The Scope controls pane
• The Guide pane
• The ways in which the user can interact

with the plot itself.
• The menu commands.

5.1 Channel and trigger selection
The number of channels is one of the properties
of  the  module  family/module  instance.   The
database  lookup  of  this  information  is  used  to
generate the grid of channel selection and trigger

selection  checkboxes  and  trigger  selection.
While the digitizer is continuously sampling, an
external trigger and channel triggers are used to
determine when to store a trace for readout by the
host  computer.   The  external  trigger  is  exactly
that, a logic input whose falling edge is used to
indicate  a  waveform  should  be  stored.   The
channel  triggers  are  driven  by  the  FPGA
firmware  associated  with  each  channel.   These
provide a leading edge discriminator which can
be set to fire when the rising or falling edge of a
channel  crosses  a  threshold  value.   The  scope
controls  section  (5.2)  will  provide  more
information about how the trigger parameters are
set.

Triggers can only come from checked channels in
the  trigger  selection  pane.   Note  that  this  is  a
hardware/firmware trigger enable, not a software
filter  from  amongst  a  more  inclusive  set  of
triggers.  The module trigger is the logical or of
all contributions to the trigger.

When  the  scope  is  triggered,  only  the  checked
channels are plotted.  Where possible, the module
is  programmed  to  disable  the  transfer  of
unchecked  channels  to  optimize  data  transfer
performance.

In addition to the external and channel hardware
triggers, the software can force a trigger at any
time.    While  this  feature  seems  useless,  its
purpose and usefulness will become clear in the
subsequent sections.



5.2 Scope controls
This section looks at the scope controls.   For the
most part, scope controls are laid out from left to
right in the order in which they will be used.  The
procedure guide pane (see section 5.3) can further
disable the set of controls that are not relevant to
the operation being performed.

The  left  most  control  is  a  channel  selection
control.   Most controls operate on a per-channel
basis.  Those that do not are labeled as common
on  the  user  interface.   The  selected  channel
determines which channel is selected for control.

5.2.1 DC Offset control
The left most box of controls is used to inject a
DC offset on the signal.  This is analogous to the
vertical position knob on an analog/digital scope.
By adjusting this value the signal can be raised or
lowered within the voltage acceptance region of
the  digitizer.   Note  that  each  channel  has  an
independent DC offset adjust.

Often when first plugging a signal into the scope,
the  user  does  not  have  a  good  idea  where  the
baseline  is  in  the  window.   This  is  due  to  DC
offsets  on the  signal  itself.   The  Beam Finder
button attempts to automatically set the channel
DC offset so that the signal baseline is located in
the center of the acceptance window.

The beam finder operates by performing several
software  triggers.   The  idea  is  that  these  are
asynchronous  with  the  actual  signal  and  are
therefore  likely to  result  in  one  or  more  traces
that are largely baseline.   The average value of
several representative points is computed and, if
there  are  significant  outliers  from this  average
they are discarded and the average repeated with
the  reduced  data  set.   This  average  is  again
averaged over all  software triggers and the DC
offset required to  center  a trace point  with that
value is computed and programmed.

In practice this simplistic beam finder algorithm
works quite well.

Figure 2



5.2.2 Trigger edge and level

To  the  right  of  the  DC offset  controls  are  the
trigger controls.   These control the direction and
threshold for the leading edge discriminator.

Each channel  has  a  leading edge discriminator.
This  discriminator  is  what  determines  when  a
channel  triggers  the  digitizer  to  store  a  trace.
The edge direction (rising or falling) determines
whether  the  trigger  occurs  when  the  waveform
goes  below  (falling  edge)  the  trigger  value  or
above  (rising  edge).   The  edge  direction,  as
shown is common for all channels.  The external
trigger  is  a  logic  input  and  therefore  has  no
threshold associated with it.    
 
In keeping with the guide philosophy, the trigger
controls are only enabled if the selected channel
is enabled to contribute to the trigger.

Markers  to  the  left  of  the  Y axis  display  the
trigger threshold for each channel that contributes
to the trigger.  A key at the top left links the color
of each marker to the channel it  controls.   The
marker  color  also  matches  the  color  of  the
corresponding channel's  trace  if  that  channel  is
enabled  for  display  (it  is  legal  to  trigger  on  a
channel without looking at it).

5.2.3 Record Length Controls
To right of the trigger level and edge adjustment
is  the  record  length  control.   This  control  is
common across all channels of the digitizer.

Each  digitizer  module  has  a  large  memory
dedicated to on-board event storage.  The buffer
organization  of  that  memory  is  programmable.
One can trade off the number of samples acquired
per trace with the number of events the module
can  buffer  before  it  is  not  able  to  respond  to
triggers.

On an oscilloscope adjusting the per event buffer
size (record length) corresponds to adjusting the
full scale time of the scope display. 

As  with  a  digital  scope,  since  increasing  the
record  size  does  not  change  the  sampling
frequency  one  does  not  change  the  signal
resolution when adjusting this parameter.

5.2.4 Pretrigger
The digitizer modules are continuously digitizing
into  a  ring  buffer.   A trigger  simply  tells  the
digitizer  firmware  to  continue  digitizing  in  a
different ring buffer until the next trigger occurs.

The actual 'closing' of an event's buffer can occur
at a programmable time after the trigger.    This is
useful because normally the trigger indicates the
beginning of an event of interest rather than the
end of an event of interest.  The pretrigger adjust
(common to all channels), corresponds to a delay
after  trigger  adjustment  on  a  digital  or  analog
scope.

Adjusting this can position the part of the trace of
interest anywhere in time within the time window
captured by the trace.  The ability to look back in
time  also  provides  the  ability  to  see  the  signal
prior to the actual trigger condition.  This can be
useful  for  signals  with  a  slow  rise-time  that
contain useful information on the leading edge of
the signal.

One common use of this in nuclear physics is the
use  of  fast/slow scintillator  pairs  to  do  particle
identification.   In  that  case  one  has  a  single
photomultiplier on the back of a pair of detector
crystals  that  react  to  ionizing  radiation  by
emitting  light.   One  crystal's  properties  may
create a prompt signal while the other may create
a  much  slower  signal.   Normally  the  slower
signal  provides  something like  the  total  energy
while  the  prompt  signal  provides  good  timing
(for the end of a time of flight leg for example).
One can then use the discriminator to provide a
low energy cut off but nonetheless look back to
capture the timing of the prompt signal from the
faster part of the detector.



5.2.5 Data Acquisition Control
The  final  control  (rightmost)  controls  data
acquisition.   This  section  of  the  controls  panel
attempts to address several competing needs:

1. When first setting up it is normal to not
really know what the trigger level should
be  or  where  the  signal  baseline  will
actually wind up (especially if you don't
do a beam find.

2. Sometimes, when the trigger fails its good
to  see  something  even  if  it's  not  a
meaningful signal.

3. When  the  trigger  is  set  up  properly  it
should be the only reason traces are saved
by the module and read from the module.

4. There  are  times  when you  want  to  take
exactly one trigger  and then stop taking
more  data  so  that  the  trace  that  was
acquired can be inspected closely.

These  needs  are  addressed  by the  radio  button
pair  and  three  buttons  in  the  data  acquisition
control pane.
The push button just below the radio button pairs
is  labeled  Start when  data  taking  is  in  active,
clicking  it  begins  data  taking  and  changes  the
label and function of that button to  Stop.   The
radio button pair determines exactly how data is
taken.  In  Auto mode, if a trigger has not been
processed within a timeout, a software trigger is
generated and the resulting trace is displayed.  If
there  is  an  accidental  coincidence  with  a  trace
that is not making the trigger condition that can
be used to determine the correct trigger position.
Otherwise  a  baseline  trace  will  be  displayed.
When the  Normal radio button is  selected,  the
automatic software trigger described above is not
performed,  and  only  the  trigger  conditions
describe by the GUI will result in a trace.

If  Single  Trigger  is  clicked,  data  taking  halts
when  the  next  trigger  occurs.  Clicking  Single
Trigger again accepts exactly one more trigger. If
Force  is  clicked  a  single  software  trigger  is
performed.

If  data  taking is  halted  (by clicking  Stop),  the
most recent traces remain displayed.

5.3 The Procedure Guide
The  set  of  radio  buttons  at  the  bottom  of  the
window describes the normal flow of setting up
the  digitizer.   When a  radio  button  is  selected,
only  the  controls  relevant  to  that  step  of  the
process are enabled.  This provides a wizard like
interface for setting up the digitizer but in a way
where all steps are visible at all times, steps can
easily  be  skipped  if  appropriate  and  arbitrary
backtracking is possible.  If the user believes they
know what they are doing the can,  at  any time
select  the  Expert radio  button  and all  controls
will be enabled.

This  set  of  guide  modes   is  a  compromise
between the need to help novice users set up a
digitizer  and  the  impatience  a  full  wizard
interface  would  create  in  more  expert  or
experienced users.   Furthermore,  laying out the
full process to the user provides a quick reference
guide for users who  think they know what they
are doing but get stuck doing it.

5.4 Interacting with the plot
The scope program provides support for several
simple  but  useful  interactions  with  the  trace.
These interactions can be performed either when
data taking is active or when data taking is halted
(e.g. after a single trigger or when data taking is
halted).   Less  frequently  used  operations  are
menu commands while operations that we believe
will  be  frequently  performed  are  implemented
using a select : operate model.

The  position  of  the  cursor  is  continuously
displayed.  This allows the cursor to be used to
extract simple information about the trace such as
the time and height of trace features.

If the cursor is dragged over the trace (MB1 with
motion), a rectangular region of interest is created
and displayed.  The region is stacked below the
trace so that the trace is always visible.    As the
region  of  interest  is  changed  its  extent  in  both
time  and  signal  height  are  continuously



displayed.  When MB1 is released a pop up menu
is displayed near the cursor.

 Doing  nothing  and  eventually  clicking
Cancel provides a simple way to measure
plot  features.   Most  digital  and  analog
scopes  provide  support  for  measuring
voltage  and  time  differences.    This
feature  provides  for  simultaneous
measurement  of  voltage  and  time
differences.

 Clicking Expand expands the plot around
the region of interest.  Since Plotchart is
allowed to choose the 'best' range and tick
interval  for  a  specified  range  of
coordinate values, the actual expansion, in
general  will  not  be  exactly  the  selected
region of interest.

 Clicking Info provides the minimum and
maximum values of the traces within the
region of interest.

It is worth spending a bit more time describing
the  region  of  interest  expansion.   Multiple
expansions are treated as a stack.  Each expand
operation pushes the previous plot limits to this
expansion stack.   The concept of an expansion
stack was shamelessly stolen from BLT.

Whenver  the  scope  display  is  expanded  two
buttons  are  displayed  to  the  right  of  the  guide
pane.   These  buttons  are  labeled  Restore and
Previous.  Clicking Previous pops the top of the
zoom stack effectively going back one expansion
level.   Clicking  Restore returns  to  the
unexpanded display.  Whenever the zoom stack is
empty,  these two buttons are removed from the
user interface.

5.5 Menu commands
Less frequently used commands are relegated to
the  menu.   The  View  menu  provides  the
following functions: 

 Grid toggles the visibility of a coordinate
grid. 

 Real  Coords Toggles  between  axes
labeled in ADC units (sample number and
adc  value)  and  physically  meaningful
coordinates (nanoseconds and millivolts).

 Stab.  Trigger  toggles  on  or  off
computations  that  stabilize  the  trigger
position.

A few words about Stab. Trigger.   There are two
clocks in each module that run asynchronously.
The sample clock is used to time the digitization
of samples.  The logic clock is used to clock the
FPGA  and  other  digital  logic  in  the  module.
Triggers  come  a  times  that  are  related  to  the
sampling  clock  but  are  determined  by  fpga
firmware  which  is  clocked  by the  logic  clock.
This  means  that  left  to  itself,  two  completely
identical signals may appear at different times in
the  traces.   This  can  be  distracting.    Trigger
stabilization  is  a  software  computation  that
locates the first trigger threshold crossing on the
waveforms and shifts that to position it at exactly
where it should be according to the value selected
for the pretrigger.  This stabilizes the position of
the trigger in displayed time at the cost of moving
the jitter to the points at the beginning and end of
the waveform, which are normally uninteresting.

Turning on trigger stabilization while attempting
to  locate  the  baseline  of  the  signal  causes
problems  because  traces  acquired  at  that  time
may  not  have  a  discriminator  crossing.
Furthermore  if  the  external  trigger  is  used  no
meaningful  shift  can  be  computed  because  the
discriminator may have had nothing to do with
the trigger.

6. Packaging Concerns
From the very beginning, the goal was to package
the software into a Starkit and bind that Starkit to
platform  dependent  TclKits  to  form  a  set  of
Starpacks[7].   This would allow the application
to  be  bound together  with  the  CAEN Digitizer
libraries  providing  for  a  nearly  single  file
installation  of  the  software  on  all  supported



platforms (currently 32 and 64 bit Linux and 32
and 64 bit Windows operating systems).

Fully  single  file  installation  is  not  possible
because operating system device drivers for the
USB and CONET interfaces are required.  These
not only have to be installed but, in the case of
Linux loaded into the kernel and, in the case of
Windows placed where  the  hotplug system can
locate and dynamically install them when devices
are detected.

Getting  cross-platform  StarPacks  to  work  with
compiled  extensions  that  have  dependencies
loaded  in  the  virtual  filesystem  is  tricky  and,
without  a  number  of  searches  of
http://wiki.tcl.tk this  would have taken quite  a
bit  longer  to  get  working.   The  wiki  provided
quite a few hints about what the pkgIndex.tcl file
might need to look like but was somewhat vague
on how to get dependent libraries loaded from the
StarPack itself.

The original idea was to provide a thin wrapper
around  Tcl_FSLoadFile  that  could  load  the
Digitizer libraries and its dependencies as part of
the  process  of  loading  the  digitizer  wrapper
package.   This  posed  no  problems  under
Windows.   Under  Linux,  however  even though
the documentation of that function states that if
the object cannot be loaded from the virtual file
system...” Tcl will attempt to copy the file to a
temporary  directory  and  load  that  temporary
file”...the load consistently failed. 

This was eventually traced to the fact that while
the  file  may  have  been  copied,  evidently
Tcl_FSLoadFile  did  not  supply  sufficient
information about the location of the temporary
copy to allow the dynamic loader to find it, so the
dynamic  loader  fell  back  to  searching  for  the
shared object in its standard set of directories.

The eventual work-around for this problem was
to wrap the StarPack in a modified shell archive.
The  modifications  unpacked  the  Starpack  into

~/.caenscope,  creating  the  directory  if  needed,
defined  the  environment  variable
LD_LIBRARY_PATH  to  include  ~/.caenscope
and executed the StarPack. 

The  pkgIndex.tcl  script,  detecting  a  Linux
platform copies the appropriate shared libraries to
that  directory  and  explicitly  loads  them  from
there.    Experimentally it  appeared  that  simply
specifying  the  full  path  to  the  copied  shared
libraries  was  still  insufficient  to  load  them
without the LD_LIBRARY_PATH definition.

7. Future work 
The  functionality  of  the  scope  application  is
sufficient to support setup of the CAEN family of
digitizer modules.  Future work is planned both
to extend the functionality of the software and to
clean up some loose ends:

 1. Support  will  be  added  to  export  traces
from the display to both text and binary
files.  A simple XML or JSON format will
probably be used for the text format and
SQLite  is  being  considered  as  a  binary
format  that  would  support  the  random
access  retrieval  of  an  event  from  a
collection of events.

 2. The  architecture  of  the  software  mostly
follows  the  Model  View  Controller
(MVC)  software  pattern.  The  breaks  in
that pattern must be removed as there is
discussion that the Model and Controller
components  should  be  able  to  run  as  a
headless server with well  defined socket
based  communications  providing  the
capability  of  using  either  the  CAEN
provided View or  a  custom user  written
view that might drive the digitizers in a
real data acquisition system.

 3. The need to  copy the  read  only SQLite
module capabilities database out into the
file  system can  be  removed  using  work
done  by  Anton  Kovalenko  [8] that  I
became aware of after  implementing the
database copy out code.  Since the module

http://wiki.tcl.tk/


capability  database  is  read  only,  this
should be safe.

 4. While I  think the implementation of the
device capabilities database as an SQLite
database was a good choice, it leaves begs
the question of how to maintain deployed
versions of the scope program as CAEN
expands  our  digitizer  product  line.
Specific issues are:
 a) How  to  update  the  capabilities

database.
 b) How  to  provide  updates  to  the

CAENDigitizer  libraries  when  new
hardware and even digitizer firmware
updates require it.

8. Conclusions
With the  increased use of  high frequency,  high
resolution  flash  ADC  based  digitization  cards,
tools are required to support both inexperienced
and experienced users of these devices.  Tcl and
StarPacks  provide  a  development  environment
that  is  a  good  balance  between  quick
development and, simple deployment.

This  papers  has  described  CAEN Technologies
work to provide a tool for the initial setup of its
own product  line  of  digitizers.  The software  is
moving  towards  its  first  initial  public  releases.
For the most part development has been smooth
and trouble free.

9. References

[1] CAEN Digitizer Library is a freely available 
support library for the CAEN family of digitizers 
available at: 
http://www.caen.it/csite/CaenProd.jsp?
idmod=717&parent=38 

[2] Tcl++ is a C++ encapsulation of the major 
features of libtcl.  It has been recently 
encapsulated as a .deb package and is briefly 
descdribed in 
http://www.tcl.tk/community/tcl2004/Papers/Ron
Fox/fox.pdf 

[3] G. Howlett Building Applications with BLT 
http://www.ing.iac.es/~docs/external/tcl/BLT/han
douts.pdf 

[4] B. Techentin et al. 
http://rbctoolkit.sourceforge.net/ 

[5] Plotchart was written by Arjen Markus and is 
part of Tklib one manpage source is: 
http://docs.activestate.com/activetcl/8.5/tklib/plot
chart/plotchart.html 

[6] SNIT is W. Duquette's pure Tcl object 
oriented extension to Tcl/Tk.  SNIT is part of 
TclLib and is described e.g. at 
http://www.wjduquette.com/snit/snit.html 

[7] S. Landers Beyond TclKit - Starkits, 
Starpacks and other stuff  Presented Tcl 2002 
Vancouver BC Sep. 16-20, 2002  Paper available 
online at 
http://www.tcl.tk/community/tcl2002/archive/T
cl2002papers/landers-tclkit/tclkit.pdf 

[8] A. Kovalenko Tcl VFS integration for Sqlite3
 http://www.siftsoft.com/tclsqlitevfs.html

http://www.siftsoft.com/tclsqlitevfs.html
http://www.tcl.tk/community/tcl2002/archive/Tcl2002papers/landers-tclkit/tclkit.pdf
http://www.tcl.tk/community/tcl2002/archive/Tcl2002papers/landers-tclkit/tclkit.pdf
http://www.wjduquette.com/snit/snit.html
http://docs.activestate.com/activetcl/8.5/tklib/plotchart/plotchart.html
http://docs.activestate.com/activetcl/8.5/tklib/plotchart/plotchart.html
http://rbctoolkit.sourceforge.net/
http://www.ing.iac.es/~docs/external/tcl/BLT/handouts.pdf
http://www.ing.iac.es/~docs/external/tcl/BLT/handouts.pdf
http://www.tcl.tk/community/tcl2004/Papers/RonFox/fox.pdf
http://www.tcl.tk/community/tcl2004/Papers/RonFox/fox.pdf
http://www.caen.it/csite/CaenProd.jsp?idmod=717&parent=38
http://www.caen.it/csite/CaenProd.jsp?idmod=717&parent=38

