Optimizing Tcl
Bytecode

Donal Fellows

University of Manchester / Tcl Core Team
donal.k.fellows@manchester.ac.uk

Outline

1. Arefresher on Tcl Bytecode

2. Improving compilation Coverage

3. Improving bytecode Generation

4. A script-readable bytecode Disassembler

5. Towards a true bytecode Optimizer
6. Measured effects on Performance

/. Some future Directions

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

A refresher on Tcl

Bytecode

Tcl Evaluation Strategy

* Code stored as script (strinQ)

* When required, bytecode interpretation added
* Stored in Tcl_Obj internal representation

* Bytecode evaluated in stack-based engine
* Example: set c [expr {$a + $b}]

loadScalarl %vO # var "a"
loadScalarl %vl # var "b"
add

storeScalarl %va # var "c"

pop

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

Looking at Bytecode

* tel::unsupported::disassemble
* Introduced in Tcl 8.5

* Same functionality as was achieved in earlier versions
by setting tel_traceCompile global

* Compiles what it is told, if necessary

* Disassembles the bytecode
* But not if done by TDK compiler
* Returns a human-readable representation

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

Disassembly Example

% tel::unsupported::disassemble script {puts "a-$b-c")
ByteCode 0x0x4e210, refCt 1, epoch 3, interp Ox0x31c10 (epoch 3)
Source "puts \"a $b c\""
Cmds 1, src 13, inst 14, litObjs-4, aux O, stkDepth 4, code/src 0.00
Commands 1:
1: pc O-12, src 0-12
Command 1: "puts \"a $b c\""
(O)pushl O # "puts"
(2)pushl1l #"a-"
(4)pushl2 #"b"
(6) loadScalarStk
(7Yypushl3d # "-c"
(9) concatl 3
(11) invokeStk1 2
(13) done

(/ 25-27 Sept. 2013 Tcl 2013, New Orleans

What's Wrong with Bytecode®e

* Variable length instructions
* Many common opcodes come in multiple sizes

* Funky encoding for various lengths
* Command metadata might as well be read-only!

* Very hard to improve overall
* Can extend with new opcodes
* Can compile individual commands better
* Global optimizations much more challenging

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

«
O

Improving
compilat

Coverage

Improving Coverage

* Tcl assembler showed potential
¥ tcl::unsupported::assemble

* In theory, bytecode compiled commands are easier
to optimize

* Can prove safety theorems about them
* Uncompiled commands are hard
* Just push arguments and invokeStk; no semantics

* Fully-bytecoded procedures can support more
analysis

* To get benefit, needed to increase fraction of
compiled commands

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

Which to tackle?¢

1. Prioritize by requirement for code we want to
go fast

* As little overhead in inner loops as possible

2. Prioritize by how common
* Little benefit to tackling very rare commands

3. Filter by how possible
* Command compilers are non-trivial

4. Filter by how fixed Iin function
* Bytecode locks in implementation strategy

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

10

Methodology

* ldentify which commands used in key inner loops

* Study samples from various performance
discussions

* comp.lang.tcl, Wiki, tcl-core, private emails

* |dentify which commands used to generate
literals

* Not just expr and subst!

* Official return -level O was known, but non-
obvious

* lappend x [if {$y} {set y} else {return -level O "no"}]

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

Methodology

* ldentity commands with subcommands
(“ensembles”)

* Collect list of all literal subcommands used in
packages in ActiveTlcl Teapot repository

* Ignore subcommand names from a variable
* Collate/sort by frequency
* Manually filter for actual subcommands

* find $TEAPOTDIR -type f -printO | xargs -0 cat
| grep --binary-files=text -w $CMD
| sed "s/.*$CMD *\\([a-z]*\\).*/\\1/"

| sort | uniq -¢ | sort -n

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

12

33
34
145
147
248
424

45

898

1100
R129
5971

Subcommand-Frequencies

string

string totitle

string replace
string trimleft
string trimright

string repeat

string toupper

string trim

string tolower

string is

string last
string index
string map
string first
string match
string range
string length
string equal

string compare

25-27 Sept. 2013

Q0

(0 BN CNRrAVIN

18

28
34
97
347

Tcl 2013, New Orleans

dict

dict keys
dict values

dict with
dict unset
dict lappend
dict for

dict merge
dict incr
dict create
dict append
dict exists
dict get

dict set

3

6

7

17
5]0)
77
130
153
R69
787
_681

132

R_RT7:

namespace

namespace forget
namespace inscope
namespace parent
namespace children
namespace exists
namespace delete
namespace import
namespace origin
namespace ensemble
namespace export
namespace eval

array

37 array size
479 array get
1085 array names

array exists
array unset
array set

namespace qualifier
namespace which
namespace code
namespace upvar
namespace tail
namespace current

Commands with.New Compilers

* array * info object isa object

* array exists * info object namespace

* array set
* array unset * namespace

* namespace code
* dict * namespace current
* dict create * namespace qualifiers
* dict merge * namespace tail
* namespace which
* format
* Simple cases only * regsub
* Simple cases only
* info
* info commands *(selt
* info coroutine * self namespace
* info level * self object
* info object class

// 25-27 Sept. 2013 Tcl 2013, New Orleans

*

string
* string first
* string last
* string map
* Simple cases only
* string range
tailcall
yield

14

Future Compiled-Commandse

* Minor

X low impact
* low difficulty
concat

eval
namespace origin
string frim
string frimleft
string trimright
string tolower
string toupper

¥ ¥ K K ¥ ¥ ¥ %

// 25-27 Sept. 2013 Tcl 2013, New Orleans

* Major

S I R

% high impact

% high difficulty
array get

array names
namespace eval
next

string is

uplevel

yieldto

15

Improving
bytecode

Generation

Improving Generation:
“list concat’” via expansion

* Making list { *}$foo {*}$bar efficient
* Now a sort of “lconcat” (for all combinations of arguments)

* Compare old and new versions

Old New
(0) expandStart (0) loadScalarl %vo # var "foo"
(1) pushl © # "list" (2) loadScalarl %vl # var "bar"
(3) 1loadScalarl %vo0 # var "foo" (4) listConcat

(5) expandStkTop 2
(10) loadScalarl %vl # var_"bar"
(12) expandStkTop 3
(17) invokeExpanded

(/ 25-27 Sept. 2013 Tcl 2013, New Orleans 17

Improving Generation:
Ensembles

* Bind core ensembles to their
implementations

* Apply basic syntax checks
* Number of arguments

* Replace ensemble call with
direct call to correct
implementation command
if possible

* Otherwise, use specidl
ensemble dispatch

* Half the mechanism...

* Noft for user-defined
ensembles

* Would be very bad for Snit!

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

% disassemble script {info body foo}
[...]
(0) pushl O # "::tcl::info::body"
() pushl 1 # "foo"
(4) invokeStkl 2
(6) done

% disassemble script {string is space x}
[4-]
(0O) pushl O # "string"
() pushl 1 # "is"
(4) pushl 2 # "space"
(6) pushl 3 #"x"
(8) pushl 4 # "::tcl::string::is"
(10) invokeReplace 4 2
(16) done

18

Improving Generation

* Expanding the set of cases for which existing
compilers generate “good” code

* Avoid doing complex (expensivel) exception
processing when no exceptions are present

* Especially the try...finally compiler
* Alsodict with with an empty body

* Generatfing jumps for break and continue

* Even when inside expansion inside nested
evaluation inside...

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

19

A script-readable
bytecode

Dlsassembler

Improving Inspection

* tcl::unsupported::getbytecode

* Currently on a development branch,
dkf-improved-disassembler

* Returns a script-readable version of the disassembly
* Dictionary of various things

* Lots of interesting things inside

* Opcodes, variables, exception handlers, literals,
commands, ...

* Can easily build useful tools on top
* Example next slide...

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

Example: foreach loop

::tel::unsupported::controlflow 1 da {{}
foreach foo $bar {
puts [list {*}$foo {*}$bar]
break ‘

}
} :tel}

ﬂ—27 Sept. 2013

2/5/—27 Sept. 2013

INnside the

literals
* List of literal values

variables

* List of variable descriptors (hame,
temporary, other flags)

exception

* List of exception ranges (definitions of
where to go when an opcode throws
an error, a break or a continue)

instructions

* Dictionary of instructions and
arguments, indexed by address

auxiliary

* List of extra information required by
some instructions (foreach, etc.)

Tcl 2013, New Orleans

Disassembly

BlE

commands

* List of information about commands
iIn the bytecode (source range,
bytecode range)

script
* Literal script that was compiled

namespace

* Name of the namespace to which
the sbytecode is bound

stackdepth

* Maximum depth of execution stack
required

exceptdepth

* Maximum depth of nested
exceptions required

23

Towards a true
bytecode

Optimizer

Opftimization

* Tcl now has a formal bytecode optimizer

* Initial aim: fewer peephole optimizations in
bytecode engine

* Very early days!
* Part of 8.6.]1

*k Depends on very efficient handling of
multi-“nop” sequences in bytecode engine

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

25

Current Optimizations

* Strip “startCommand” where possible
* Inside ::tcl, and

* With fully-bytecoded procedures that do not create
variable aliases

* Converts zero-effect operations to “nop"s
* “push anyliteral; pop”
*x “push emptyliteral; concat”

* Tidies up chains of jumps
* Avoid jumping to another jump if possible

* Strips some entirely unreachable operations

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

26

Much stillFfo do

* A number of fundamental optimizations needed
* Control flow analysis
* “pop” hoisting to clean up if branches
* Reordering of instructions
* Full dead code elimination

* Optimize Tcl using Tcl
* Close the assembler gap
* Care required!
* Opftimizing the optimizer could be hard to debug...

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

27

Measured
effects on

Performance

S

/ 25-27 Sept. 2013

Methodology

All timings done with same
build and execution
environment

Measure time to execute a
small script

* Careful to avoid most
performance problems

Invert to get calls/sec
 “Performance”

Normalize

Tcl 2013, New Orleans

proc Fibonacci {n} {
set a 0
set b1
for {set i 2} {$i <= $n} {incr i} {
set b [expr {$a + [set a $b]}]
}

return $b

}

proc benchmark {title script} {
eval $script
for {set i @} {$i < 20} {incr i} {
lappend t [lindex [
time $script 100000
] e]
}
puts [format "%s: %4f" $title \
[tcl::mathfunc::min {*}$t]]
}

benchmark ”Fibonacci" {Fibonacci 10}

29

Raw Performance (time/iter)

Program 859 8515 86bl 8.6b2 8.46.0 8.6.1

listConcat | 1.1609 0.4097 1.5622 0.5405 0.5433 0.4737 | New concat
m 15906 1.2710 1.8087 1.4340 1.4620 1.4114

M 3.3059 30234 3.5981 21105 2.1232 2.1599 General

ey Operation
ProcCall | 1.1510 0.8695 1.4590 1.3083 1.3039 1.2996

1.6978 1.0508 1.8496 1.4095 1.4581 1.5382

m 1.6907 1.0425 20192 1.3988 14293 0.9404

EnsDispatch2 | 1.0189 0.4875 1.4117 0.9670 0.3406 0.3763

meeERee Ensembles

1.9381 0.5133 1.5687 1.2390 1.2585 1.1909
EnsDispotcha | 09240 04369 12799 07928 07925 0167
3.7534 2.5671 4.1987 1.9461 1.2926].3514 dict with
1

/ 25-27 Sept. 2013 Tcl 2013, New Orleans 30

try

Raw Speed

100

Execution Time (us/iteration)
@) — L
— — o
—
6 ﬁ
e
O | ——

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

m3.5.9
m3.5.15
= 8.6b1
= 8.6b2
~8.6.0
=8.6.1

Performance

7 e
5
- = 3
.
¥ 2.5
O
(7]
A
Q
@ 15 -
©
5
Q
= 05- r
O' T | p— I| I|I'I
S 0 020 AR QOO XS o A
(\QO CJO d\ C}O QO \(}\ \C\J(\ \C\J(\ \C\JQ $’\\ «((\O @O ‘;\6 O\\Q
QOO(\Q\OOOOOOO.\(}%O,\6$®Q
e VRS O & 2@
& @ KT H VY« &
MR NSRS '\Q\%

(/ 25-27 Sept. 2013

Tcl 2013, New Orleans

m3.5.9
m3.5.15
= 8.6b1
= 8.6b2
~8.6.0
=8.6.1

32

BN O o~

Relative Performance
N w

Relative Performance

Normalized to mean of 8.5-series performance (8.6 for try)

P
P o

@=3.5.9
=3 5.15
==8.6b1
8.6b2
8.6.0

8.6 1

Performance Measurement
Highlights

* 8.6 1is not universally faster
* Procedure calls pay a real penalty (NRE)

* 8.6.0is not universally faster than betas
* But you probably don't want to worry about that
* 8.6b2 universally faster than 8.6b1

* 8.6.11s sometimes much faster than 8.6.0
* try now about as cheap as catch when no error

* System binary may not be built in fastest mode

* Which C compiler really matters

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

34

Implications for-Optimization

* Improving the compilation of commands provides the
biggest gain

* But only for code that uses those commands
* Doesn’t deliver a guantum leap for most

* General optimization has had little impact so far

* Answering “Is Tcl getting fastere” is hard
* Some things are faster, some are not
* "It depends”
* We can easily answer for particular scripts

* How should we weight each sample script fo get an
overall figure?

/ 25-27 Sept. 2013 Tcl 2013, New Orleans 35

Where nexte

* Integrate “getbytecode” info trunk
* Nameze

* Compile more commands
* Some of the biggest wins will be very hard to get right

* Some should be done without immediate wins,
because they strengthen the type algebra

* Compile more cases with existing commands?

* Can we optimize in Tcle
* Definitely can’t do so yet; can’t assemble foreach

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

37

Where nexte

* The command dispatch mechanism is quite a bit
more expensive in 8.6

* Can we improve ite

* Several performance tests very sensitive 1o this

* That's one reason why no TclOO benchmarks this
time

* Warning! Might be optimizing for benchmarks, not for
reality

* Can we inline sufficiently simple procedures?

* Suspect it is fairly easy for variable-free code
* Only really relevant with some variables...

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

38

Where nexte

*k Can we generate native code?
* Topic for Tcl 9.0!
* Automatic type annotations are key

* The Lehenbauer Challenges
* Attaining even Level 1 (speed x2) is hard
* Arguably the case for a few scripts
* Level 2 (x10) is extremely difficult!
* Bytecode engine is not fast enough

/ 25-27 Sept. 2013 Tcl 2013, New Orleans

39

