
Optimizing Tcl Bytecode
Donal Fellows

The University of Manchester / Tcl Core Team
donal.k.fellows@manchester.ac.uk

1. Abstract
The Tcl interpreter has an evaluation strategy of parsing a script into a sequence of commands, and
compiling each of those commands into a sequence of bytecodes that will produce the result of the
command. I have made a number of extensions to the scope of commands that are handled this way
over the years, but in 2012 I started looking at a new way to do the compilation, with an aim to
eventually creating an "interpreter" suitable for Tcl 9. This paper looks at the changes made (some
of which are present in 8.6.0, and the rest of which will appear in 8.6.1) and the prospects for future
directions.

1. Introduction

During the development of Tcl 8.6, Kevin
Kenny and Ozgur Dogan Ugurlu demonstrat-
ed[1] (through the implementation of the
command ::tcl::unsupported::assemble) that it
was possible to create an assembler for Tcl
bytecodes that was sufficiently safe that it was
suitable for exposure in a Safe Interpreter. In
particular, it became clear that there were a
set of constraints that could be applied that
would ensure that a Tcl assembler would nev-
er generate code that could crash; access to
parts of the stack not “owned” by the code
was prohibited. Though infinite loops were
still possible — excluding infinite loops re-
quires either totally emasculating the capabili-
ties of Tcl or the possibility of proving excep-
tionally complex mathematical theorems —
those loops would never exceed properly cal-
culable stack bounds.

I found this absolutely fascinating, as it
showed that the bytecode that we had been
generating was not nearly as unruly as I had
previously feared; my problems with writing
compilation commands such as for switch and
dict had been more due to my not being aware
of those implicit constraints, rather than their
absence. It also allowed us to quantify exactly
what was wrong with the compilation of break

and continue, both of which had long been
known to be problematic in cases previously
only known in an operational sense.

When we considered the implications of this,
we realized that it also made it substantially
easier to consider compilation of Tcl to actual
native code. Previous attempts[2] had focused
on a simplistic transformation of the existing
bytecodes to their machine-code equivalents,
but that is a strategy that is unlikely to yield
significant benefits for several reasons:

1. The bytecode that they are starting
from is significantly non-optimal in the
first place.

2. Tcl commands are potentially highly
dynamic, with the option for their im-
plementations to be changed substan-
tially as a script executes.

3. The value-model of Tcl is very strong-
ly rooted in the concept of an immuta-
ble reference with typed views, which
is substantially different to that of ma-
chine code (mutable references to ma-
chine words) or languages like C (mu-
table references to typed variables).

The combination of these issues means that
compilation of Tcl to machine code is a sig-
nificant challenge. This paper will be primari-

ly looking at dealing with the first part of this
problem, so that the bytecode that the compi-
lation starts from is at least a stronger founda-
tion. The advantage of working on this part is
that the results of doing this can be made
available to the community more rapidly than
the other parts; full compilation will require a
lot more work to support than tweaking
things to work better within current con-
straints.

In this paper, I present a summary of Tcl’s
bytecode system in Section 2. In Section 3, I
describe how I have been improving the cov-
erage of commands that bytecode is generated
for. In Section 4, I describe the improvements
I have made to the bytecode generated for a
number of existing Tcl commands. In Section
5, I talk about an improvement to the intro-
spection tools for Tcl bytecode so as to more
simply expose the information that is there to
scripts. In Section 6, I describe the simple op-
timizer that I have created for Tcl bytecode,
and in Section 7 I present some performance
measurements to examine whether I am mak-
ing any progress on the performance front.
Finally, I examine possible future directions
in Section 8.

2. About Bytecode

Tcl’s current system of compilation uses a
custom target called Bytecode[3], designed
primarily to be an in-memory and on-disk da-
ta structure1 that has minimal space consump-
tion as a primary goal.

The fundamental model of bytecode execu-
tion is that there is a stack of values that rep-
resent intermediate working values, argu-
ments and results. Every command becomes
a sequence of instructions that ends up with

1 Support for what became the TclPro compiler
and the tbcload extension was part of the original
mandate, though it is not part that is officially
supported for general free use. However, the con-
sequences of that support are subtly scattered
through the code.

the result of the command being pushed on
the stack; in the simplest case, a command is
compiled into a push of all the argument
words and an invoke via Tcl’s basic com-
mand dispatch, which will in turn replace
those argument words with the single result
value. The pushing of the argument words
may be non-trivial if the words are complex
compounds of various substitutions, but the
overall model is comparatively simple.

When this simple universal execution strategy
is used, the command in question is referred
to as uncompiled. This is obviously not actual-
ly true — we have just discussed what the
compilation is! — but the key is that the actu-
al embodiment of the semantics of the com-
mand is still the standard implementation
function; all that is bytecode-compiled is the
assembly of the arguments and the lookup
and invocation of that function. With a
“compiled” command, the semantics of the
command are embodied by a direct sequence
of bytecode instructions. Those instructions
will produce the result of the command with-
out (typically) going through command dis-
patch.

Command compilation

Each compiled command has its own strategy
for producing instructions, the command
compiler, which is asked to consider how to
do the compilation in a particular case. Any
failure of the command compiler will cause
the standard compilation to be used, which is
also used when the command name itself is
dynamically generated (e.g., the value of a
variable or the result of a command), as at
that point Tcl is unable to statically determine
the command compiler to use.2

2 It is a consequence of this that TclOO instance
dispatch is unlikely to ever be compiled; a key us-
age pattern of TclOO is to hold the name of the
instance to invoke in a variable, clearly a case that
cannot ever be compiled to anything substantially
better than the current dispatch mechanism.

Command compilers can fail for many rea-
sons. One of the main reasons is if one of
their arguments is not a literal despite the
compiler requiring it to be; this is what hap-
pens when any of the arguments to while is
not a literal. The other two common reasons
for failure are if there is a lack of a local vari-
able table (LVT) in the compilation context,
or if given the wrong number of arguments,
though this is very much not an exhaustive
set.

The lack of an LVT case requires some expla-
nation. The local variable table is a numerical-
ly indexed collection of variables that is used to
hold the formal arguments to a procedure, the
local variables inside that procedure, and
whatever extra information is necessary (local
temporary variables that hold values in pat-
terns that would interfere with the stack).
Some instructions for compiling commands
only exist in a form that accesses the local
variable table, so compilations that necessari-
ly use those instructions cannot be done with-
out an LVT present: this is exactly why
foreach is not efficient except when used in a
procedure (or other procedure-like entity,
such as a lambda term or TclOO method).

Exposure of bytecode in Tcl scripts

There has been a disassembler for Tcl
bytecodes since they were introduced in Tcl
8.0, but up to 8.4, this was one of the most
hidden features (it required setting a magic
variable and then reading standard output,
itself tricky on Windows). In 8.5, this disas-
sembler was exposed more cleanly via the
disassemble command in the tcl::unsupported
namespace.

In 8.6 this was joined by assemble, though the
two commands shared very little in terms of
actual syntax beyond the names of the in-
structions. In addition, the supported instruc-
tion sets were also subtly different, mainly
due to it being hard to correctly and safely is-
sue some instructions.

3. Improving Coverage

In order to improve the overall generation of
bytecode by Tcl, it is necessary to increase the
fraction of Tcl code that can be compiled to
pure bytecode. That is, an instruction se-
quence is pure bytecode if it does not contain
any of the instructions invokeStk1, invokeStk4
(commonly just referred to as invokeStk, as
they are a linked pair) or invokeExpanded3.
Script fragments that have their instruction
sequences entirely free of those instructions
are entirely predictable in their behaviour, at
least at an operational/type-theoretic level.

But what was the status of Tcl’s compilation
of commands back in mid-2012? Well, there
had been some adjustments done during the
development of 8.6, but they had been rather
piecemeal. After the introduction of compila-
tion strategies for subst (in 2009), unset (in
2010) and dict with (in 2011), not much had
really changed; the set of scripts that would be
likely to become pure bytecode was indeed
very small.

Improving key loop types

To change this, I instead took a different tack
and looked at scripts where I wanted them to
become pure bytecode. An example of the sort
of script that I wanted to be pure was an inner
loop of a simple value-generating coroutine.
Such a coroutine is this one, which yields first
its own name (often a useful thing to do), then
each of its arguments, and finally it causes the
receiving loop to break.

proc all args {
 yield [info coroutine]
 foreach item $args {
 yield $item
 }
 return -code break
}

3 The other instruction that should not be present
is invokeReplace, which I will discuss later in this
paper.

This coroutine body procedure would be cre-
ated and its values consumed something like
this:

set c [coroutine X all "foo" "bar"]
while 1 {
 puts "X\[[incr i]\] = [$c]"
}

As you can see, all the commands in all are
part of Tcl itself, and ones that are reasonably
likely to occur in an inner loop. Furthermore,
all the operations involve data that is availa-
ble locally; it is all either immediately present
on the stack, in the stack frame, or in the in-
terpreter.

An alternative mechanism for doing such a
simple yielding loop is this one:

proc all args {
 yield [info coroutine]
 foreach x [lrange $args 0 end-1] {
 yield $x
 }
 return [lindex $args end]
}

This has a different pattern of usage, or rather
two slightly different patterns, one of which is
done with info commands:

set c [coroutine X all "foo" "bar"]
while {[llength [info commands $c]]} {
 puts "X\[[incr i]\] = [$c]"
}

And the other with namespace which (equiva-
lent to having the -command option specified):

set c [coroutine X all "foo" "bar"]
while {[namespace which $c] ne ""} {
 puts "X\[[incr i]\] = [$c]"
}

Making these as pure as practical (i.e., the
generating and receiving loops except for the
necessary call to the coroutine itself, and — in
this illustrative example — the call to puts to
print the values) required being able to
bytecode-compile both a way to actually pro-
duce values, yield, and a way to detect wheth-
er the coroutine had terminated from both
within and outside the coroutine. Within the

coroutine, it was a matter of making info
coroutine be a compiled operation (interior
termination detection is really just a matter of
whether a non-yielding exit from the coroutine
is performed, such as a return) and from out-
side the coroutine it was a matter of allowing
for a way to query whether a particular com-
mand existed, which was done in different
ways by different people: some used info
commands with a literal non-pattern argument,
and others used namespace which -command.

Similar concerns with determining whether a
procedure call actually provided a value for
some optional argument encouraged me to
add info level to the compilation list. I also did
namespace current and self object, as these are
very common in some coding styles, while
representing information that is readily avail-
able.

The compilations of all of these introspection
commands are to straightforward instructions
that implement the functionality; thus, the
coroName instruction implements the func-
tionality of info coroutine, resolveCmd imple-
ments namespace which, the yield instruction
(unsurprisingly) implements the core of the
yield command, etc.

Examining the Teapot

Yet for all that, I did not feel that I had made
much of an impact in the coverage. I needed a
different technique for selecting what com-
mands would attract improvements. So I
turned to the Tcl packages that I had installed
in my local Teapot repository.

The vast majority of packages in the Teapot
are either wholly or partially scripts, so this
forms a substantial body of Tcl code that is in
current use. By looking at this and finding
what commands were common but uncom-
piled, I would at least establish a set of com-
mands that should be compiled if possible and
reasonable. Not all of them actually ought to
be compiled (for example, there is no real
benefit to compiling commands that do I/O)

but it would at least establish some priority;
very rarely used commands clearly need not
attract significant effort.

In particular, I studied the core ensemble
commands array, dict, namespace and string.
(The vast majority of info and interp is only
used on code that does not need to be fast,
and chan is almost entirely focused on OS ac-
cess.)

As can be seen in Table 1 and in more depth
in Appendix 1 (the frequency counts date
from October 2012), just how frequent the
various subcommands are varies widely; array
set is nearly 70 times more common than
array size. In addition, some of the subcom-
mands are largely impractical to implement:
the operations that read the state of an array
(size, get and names) have really rather strange
trace behaviour, using privileged access to the
implementation of the arrays to operate (the
existence of elements has to be checked dur-
ing the processing of those subcommands).
But it does indicate that array set is a strong
candidate for compilation.

Similarly, I have identified that the first, last,
map, and range operations of string are practi-
cal, as are the code, qualifiers and tail opera-
tions of namespace, and the merge operation of
dict. (Strictly, string last is not actually suffi-
ciently frequent to be worthwhile, but its func-
tionality is required to implement the more
frequent namespace qualifiers operation.) Some
of the impractical operations were namespace
eval (very common, but crosses stack frame
boundaries) and string is (potentially very rel-
evant, but very complex).

Generating values

In addition, I looked for commands that
could be used to produce literals. With the
introduction of lmap and dict map in 8.6, we
have increased the need to be able to produce
a literal value as the result of evaluating a Tcl
script. A few techniques were in common use:

• expr 123 — Fine for numbers, but poor
where the value is non-numeric or
(even worse) looks like a number but
isn’t.

• subst abc — A reasonable way of pro-
ducing a simple value, but not actually
commonly chosen.

• format abc — A way that works pro-
vided the literal being produced has no
%-substitutions in it, but otherwise
problematic. Also slow.

• format "%s" abc — Lacks the formal
problems of the option immediately
above, but still very slow.

• list abc — Not correct at all except for
literal lists! This is particularly obvious
when the literal being produced con-
tains spaces.

• return -level 0 abc — The “official”
method, hardly used by anyone due to
it being so thoroughly unobvious.

It was clear that it was desirable to make
more of these operations efficient. In particu-
lar, wherever these commands produce a con-
stant value or a value determined entirely by
arguments, there is an excellent opportunity
for generating the operation via efficient
bytecodes. Since some of these were already
bytecoded (expr, subst, list and that complex
return form) what I was seeking to do was to
ensure that the other potential common forms
were efficient: in particular, where format has
constant arguments or is only using simple
string concatenation (literal pieces plus exact-
ly %s) then it is entirely practical to bytecode

Command Incidence Practical
array size 37 No
array exists 56 Yes
array unset 191 Yes
array get 479 No
array names 1085 No
array set 2511 Yes

Table 1: Incidence of array subcommands

them. The other forms of format remain un-
compiled.

4. Improving Generation

But it is not just that the set of commands for
which instructions are issued has been ex-
tended; I have also looked at improving the
generation of bytecode for existing com-
mands.

In particular, the very complex commands
switch, try and dict with have had a lot of at-
tention from me, as have the built-in ensem-
bles as generic features. I have also worked on
changing the break and continue compilers so
that they jump to their target instruction loca-
tions (after doing appropriate clean-up) rather
going to the expense of throwing exceptions.

Improving ensembles

One of the key features of Tcl’s ensembles is
that they can be bytecode compiled into. This
is a key feature that distinguishes them from
objects; they are command groupings, but the
name of the command and its subcommand
are expected to normally be literals in scripts.
This is particularly true for those ensembles
defined by Tcl itself. (Enabling compilation
for all ensembles would have the unfortunate
side effect of making the Snit extension
enormously more expensive.)

The ensemble dispatch mechanism in Tcl 8.5
normally uses a cache in the subcommand’s
Tcl_Obj to hold a reference to the implementa-
tion command to dispatch to (building that
cache from the ensemble’s internal table if it
does not exist or has been modified) and dis-
patches via Tcl_EvalObjv. This mechanism is
fairly quick, but has some overhead relative to
directly invoking the command. Where the
ensemble is marked for compilation (via an
internal flag not exposed to third-party code,
used for string, info, etc.), the subcommand is
a known literal, and the implementation
command has a compilation implementation
of its own, the compiler for that implementa-

tion is called with the rewritten argument list
so that bytecode is generated. This means that
we can use this mechanism for well known
core Tcl ensembles with no degradation in
performance.

However, the mechanism is not that fast
where specialist bytecode compilers are not
available. In particular, there are a number of
steps that are relatively costly, such as the re-
write of the argument lists and the double
dispatch (once to process the overall ensemble
command, and a second time for the dispatch
to the implementation), and a fair number of
the subcommands that it is used with are rele-
vant for use in high-performance code (e.g.,
the string tolower command is really rather
common when cleaning up external data).

To improve this situation, I have done two
things. The first is to embed a new mecha-
nism in Tcl (via the new bytecode instruction
invokeReplace) to perform the efficient dispatch
of ensemble subcommands. This embeds part
of the mechanism described above; it reduces
the overhead of the dispatch mechanism to
the minimum (i.e., a single call to
Tcl_EvalObjv) while preserving the exact exter-
nally visible semantics that already existed.
The second improvement is to add very sim-
ple command compilers to many (but not all)
of the existing subcommand implementa-
tions; these simple compilers just check if the
correct number of arguments is supplied (i.e.,
that there will be no call to Tcl_WrongNumArgs
at runtime, as that is one of the few functions
that can observe the differences due to en-
semble dispatch) and if the right number of
arguments is present, issues a direct invokeStk
instruction to call the relevant implementa-
tion command.

Following this change, we can now observe
four different ways that ensemble subcom-
mands can be dispatched:

1. Directly compiled subcommands just
generate normal bytecode:

string range foo 2 3

Compiles to:

push "foo"
strrangeImm 2 3

2. Simple subcommands become invoca-
tions of the underlying implementa-
tion:

string tolower foo

Compiles to:

push "::tcl::string::tolower"
push "foo"
invokeStk1 2

3. Complex subcommands become the
replacing invoke of the subcommand:

namespace eval ::foo { bar }

Compiles to:

push "namespace"
push "eval"
push "::foo"
push " bar "
push "::tcl::namespace::eval"
invokeReplace 4 2

4. Invocations of uncompiled ensembles
use the old mechanism:

userEnsembleExample x y

Compiles to:

push "userEnsembleExample"
push "x"
push "y"
invokeStk1 3

The criteria for whether a subcommand is
deemed to be “complex” are whether it eval-
uates a script during it’s processing (as those
scripts can contain a call to info level or info
frame, both of which can observe the differ-
ence), or whether the subcommand has a non-
trivial mechanism for determining if the cor-
rect number of arguments has been supplied
(the chan copy command is one of these).

As previously noted, this mechanism is not
enabled for ensembles created outside the

core of Tcl. This is because the cost of delet-
ing or doing an update of a compiled ensem-
ble is substantial: it triggers the re-compilation
of all bytecode in the interpreter. The impact
on Snit in particular would be enormous, giv-
en that it is constructing an object system on
top of the ensemble mechanism.

Improving switch

The switch command has a number of main
modes of operation from the perspective of
bytecode generation. There are three principal
ones:

• Jump table. This is generated when do-
ing exact matching of the argument,
and is fast especially when the number
of things to compare against is large
(such as in the implementation of the
clock command’s format parser). This
was already substantially correct, as it
did not need to retain a copy of the
value to test against for any length of
time.

• Sequence of conditions. This is what is
normally generated, and is what is
used for case-insensitive exact match-
es, glob matches and simple regular
expression matches. This is the area
that had a substantive amount of work
applied to it, mainly to ensure that the
computed stack depth used during the
compilation of the body scripts was ac-
tually correct so that any break or con-
tinue across the switch command
would function correctly instead of
causing one of a whole variety of
crashes.

Note that this did not substantially
change the actual code generated; this
is much more about getting correct
metadata about the generated code, so
that other code could be generated cor-
rectly.

• Uncompiled. This represents the degen-
erate case, and is used in awkward sit-
uations such as when a script is not a
literal, or when a particularly complex
regular expression match is used (par-
ticularly with capturing of the sub-
expressions). This case remains in
need of substantial work in the future
in order to reduce the number of varia-
tions of switch that are not compiled.

Improving try

For the try command, the key to understand-
ing its fundamental complexity is that there
are two major conditions to consider when
doing code generation: the correct way to cre-
ate code depends strongly on whether or not
there are any on or trap clauses4, and whether
or not there is a finally clause. If there are nei-
ther, the try is little more than an eval variant
(without the concatenation).

The aim of any code generation plan for a
construct like try has to be to keep the amount
of overhead down. Additionally, care has to
be taken when an error occurs during the pro-
cessing of any on, trap or finally clauses, as the
original exception state has to be embedded in
the option dictionary’s -during option. The
major opportunity for optimization is when
there is no finally clause and no trapping of a
TCL_OK result, when it is possible to allow the
exiting of the context without having to do a
full trap and reissue of all exceptions; only the
actual exceptional cases need special extra
processing.

If we look at this code:

try {
 puts "foo bar"
} on error msg {
 puts "bad stuff: $msg"
}

4 The only difference between a trap clause and an
on error clause is that the former also checks
whether the given words match a prefix of the -
errorcode list.

This is only compiled when placed in a con-
text with a local variable table (i.e., in a pro-
cedure, lambda term or method) and it pro-
duces this rather long bytecode sequence in
Tcl 8.6.0 (for clarity, the parts that are not ac-
tually executed normally are indented, and
the parts that are normally executed are in
bold):

beginCatch4 0
push "puts"
push "foo bar"
invokeStk1 2
push "0"
reverse 2
jump1 +4 # à pc 22
 pushReturnCode
 pushResult
pushReturnOpts # = pc 22
endCatch
storeScalar1 %2
pop
storeScalar1 %1
pop
dup
push "1"
eq
jumpFalse4 +26 # à pc 60
 pop
 loadScalar1 %1
 storeScalar1 %msg
 pop
 push "puts"
 push "bad stuff: "
 loadScalar1 %msg
 concat1 2
 invokeStk1 2
 jump4 +11 # à pc 66
pop # = pc 60
loadScalar1 %2
loadScalar1 %1
returnStk
done # = pc 66

With the changes, this is now rather longer
(alas) because of the need to handle the -during
exception logging, but also correct and faster
when no errors occur:

beginCatch4 0
push "puts"
push "foo bar"
invokeStk1 2
endCatch
jump4 +103 # à pc 115
 pushReturnCode

 pushResult
 pushReturnOpts
 endCatch
 storeScalar1 %2
 pop
 storeScalar1 %1
 pop
 dup
 push "1"
 eq
 jumpFalse4 +78 # à pc 109
 pop
 loadScalar1 %1
 storeScalar1 %msg
 pop
 beginCatch4 1
 push "puts"
 push "bad stuff: "
 loadScalar1 %msg
 concat1 2
 invokeStk1 2
 endCatch
 jump4 +57 # à pc 115
 pushResult
 pushReturnOpts
 pushReturnCode
 endCatch
 push "1"
 eq
 jumpFalse1 +28 # à pc 98
 loadScalar1 %2
 reverse 2
 storeScalar1 %2
 pop
 push "-during"
 reverse 2
 dictSet 1 %2
 reverse 2 # = pc 98
 returnStk
 jump4 +11 # à pc 115
 pop # = pc 109
 loadScalar1 %2
 loadScalar1 %1
 returnStk
done # = pc 115

In particular, I have highlighted in bold the
instructions taken when no error occurs in the
body; as can be seen, the number of instruc-
tions processed in this, the expected case, is
now far smaller; the execution overhead of the
try command is demonstrably reduced despite
the increase in length of bytecode created.
This difference is only exacerbated when the
try command has a sequence of trap clauses
instead of a single simple on error clause.

Improving dict with

Sometimes, the Tcl community find things to
do with Tcl commands that I never anticipat-
ed. So it was with dict with, where one of the
key use-cases has turned out to be converting
a dictionary into a group of local variables
without maintaining the binding to the map-
ping in the dictionary. The common idiom for
this technique is to use an empty body script,
and that has the advantage that it is a case
that can be simply detected during compila-
tion.

When I detect this case, I am able to deter-
mine precisely that there can be no exceptions
arising from the evaluation of the body of the
dict with — no commands, no substitutions,
therefore no errors — so I can omit the (com-
plex!) code stanza to manage exceptions aris-
ing from the body script. Indeed, I can actual-
ly omit virtually everything from the imple-
mentation of the command other than the op-
eration to expand the dictionary into variables
and the operation to write the values back.
The latter has to remain as I cannot prove at
the time of issuing the code that none of the
variables have a trace set on them that modi-
fies the values.

Improving break and continue

Traditionally, the break and continue com-
mands are implemented as commands that
produce the specialized result codes
TCL_BREAK (defined to be 3 in tcl.h) and
TCL_CONTINUE (4) respectively. In the
bytecode-compiled era, these have been trans-
lated into instructions (with the same names
as the commands) that generate the relevant
exception conditions. However, this is actual-
ly not very efficient, as it requires the code
processing these conditions to jump outside
the main bytecode evaluation loop to the sep-
arate code that finds the exception target in
the two cases.

Instead, I track exactly what exception trap-
ping ranges are present at the point where the

break/continue is issued. By finding the in-
nermost active range, I can directly determine
where the exception would end up branching
to, and directly use a jump instruction instead.
This is a significantly more optimal instruc-
tion sequence.

However, there are some significant wrinkles
to this. In particular, it is possible for the stack
depth to be different between the place where
the break/continue command is being com-
piled and the place where we want to jump
to; this is actually a bug in Tcl’s bytecode
generation of long standing. The problem is
not (usually) the nesting of commands that
you see with most Tcl scripts, but rather more
esoteric scripts such as:

while 1 {
 puts "foo,[continue]"
}

This is problematic because words for the in-
ner invocation of puts are being placed on the
evaluation stack when the continue is pro-
cessed, and a skip back to the start of the loop
without resetting (whether done via an excep-
tion or via a direct jump) results in the overall
stack depth growing without reasonable
bound. Preventing this requires additional pop
instructions to be done before the jump so that
the stack depth is correct for the target in-
struction. This does somewhat decrease the
efficiency in this case, but since it is rare and
previously a critical error, the cost is entirely
justifiable. (The complexity of tracking the
stack depths and jump targets is only borne
during compilation, not execution.)

A variation on this (also handled) is where
there are expansions being processed on the
stack at the same time, because expansions
have their own tracking stack.

Improving expanding list

The final major improvement to code genera-
tion that I have made was to the list com-
mand when some of its arguments are derived
from expansion. While it is not generally pos-

sible to handle expansion which produces the
first word of a command, as it easily becomes
impractical to figure out what command is
being compiled, when that command is capa-
ble of processing any number of arguments
and producing a result, it should be possible
to make a compiled version of that command.
The only command for which I have done
this is list, where an all expanding arguments
version:

list {*}$foo {*}$bar

is actually semantically equivalent to this:

concat [lrange $foo 0 end] \
 [lrange $bar 0 end]

However, it can be implemented in a consid-
erably more efficient manner, as there is no
need to consider what is going on with string
interpretations; it can be a pure list operation.

In terms of how the code generated changes,
this:

list {*}$foo {*}$bar

used to compile to this5:

expandStart
push "list"
loadScalar %foo
expandStkTop 2
loadScalar %bar
expandStkTop 3
invokeExpanded

Following this change, we instead generate
this sequence of instructions:

loadScalar %foo
loadScalar %bar
listConcat

This sequence with three arguments to list,
one of which is expanded:

list $foo $bar {*}$grill

Used to compile to this:

5 It turns out that the numeric parameter to
expandStkTop is not actually necessary for the in-
struction to function correctly, not now that stack
depth calculations are correct.

expandStart
push "list"
loadScalar %foo
loadScalar %bar
loadScalar %grill
expandStkTop 4
invokeExpanded

But now becomes this:

loadScalar %foo
loadScalar %bar
list 2
loadScalar %grill
listConcat

The listConcat instruction used is a simple bi-
nary operation to concatenate two lists.

It should be noted that the mechanism for al-
lowing a command to take charge of what in-
structions it is compiled when expansion is
present is generic. The potential exists to in-
crease the number of commands that produce
efficient code, but most commands have the
issue that they support additional options or
fixed-position arguments, so compilers have
to be relatively careful; the list command is a
special case in that it is a simple command
that treats all arguments (after the initial
command name) exactly the same.

5. Improving Inspection

As part of this work, and with a little minor
prodding from Colin McCormack, I found
that there were some fairly severe limitations
on the built-in disassembler that needed to be
addressed.

Disassembler history

The disassembler in Tcl 8.5 was originally a
part of Tcl 8.0 as a debugging tool. It was en-
abled by setting the variable tcl_traceCompile to
2 and causing the code in question to be com-
piled, when it would print the disassembled
bytecode directly to standard out. (In situa-
tions without a real C-level stdout, such as in
wish or tkcon on Windows, no output would
be produced at all.) As you can no doubt
guess, this was highly tricky to use; you had

to wrap it in something like this, assuming an
argument to the procedure was required for it
to work:

proc disasProc {procedureName} {
 global tcl_traceCompile
 rename set SET
 rename SET set
 set tcl_traceCompile 2
 catch {$procedureName}
 set tcl_traceCompile 0
 return
}

This was horrible (especially the need to flush
the bytecode cache by bumping the compila-
tion epoch) so in Tcl 8.5 I altered the code to
do the direct printing to instead dump its re-
sults out to a string buffer instead of printing
directly, and wrapped this into the disassemble
command (which was put in the
tcl::unsupported namespace to signify that we
were not guaranteeing the interface) together
with a bit of code to allow the control of ex-
actly what was being printed. This allowed
the equivalent of the above to be done with:

proc disasProc {procedureName} {
 puts [disassemble proc \
 $procedureName]
}

This is an enormous improvement in usabil-
ity, and works correctly on all platforms. (The
parameter passed as proc above is used to dis-
ambiguate between procedures, scripts, lamb-
da/apply terms, etc.)

However, the results of the disassembly (used
in abbreviated form earlier in this paper) are
difficult to consume in a script, as they are
designed purely to be a basic debugging tool.
In particular, they intermix metadata and the
disassembly information. There is also quite a
bit of information in the bytecode itself that is
not exposed in the disassembled code, mostly
relating to the parsed script’s commands.

The new disassembler

To address this, I have created an additional
disassembler6 that takes the same arguments
as the existing disassembler, but instead of
producing its results as a complex string, it
generates a dictionary that describes the
bytecode. The description dictionary contains
these keys:

• literals — contains a list of all literal
values used in push instructions in the
bytecode.

• variables — contains a list of infor-
mation about all variables defined in
the bytecode. Each variable is repre-
sented by a list where the first word is
a set of flags (e.g., “scalar” to indicate
that the variable is a simple variable)
and the second word is the name of
the variable; temporary variables don’t
have the second word as they are un-
named.

• exception — contains a list of dictionar-
ies that describe the exception ranges in
the bytecode. Each of these dictionar-
ies states what type it is (catch ranges
trap all non-TCL_OK exceptions, loop
ranges only trap TCL_BREAK and
TCL_CONTINUE), what range of instruc-
tions are covered, and where to jump
to when an exception occurs.

• instructions — contains a dictionary of
the disassembled code, with the keys
of the (inner) dictionary being the nu-
meric addresses of the instructions in
order and the values of the dictionary
each being a list that is the disassembly
of the instruction. The first value in
each list is the instruction name, and
the subsequent values are the argu-

6 This is ::tcl::unsupported::getbytecode at the time of
writing. This is not a name that I consider to be a
long-term name, as it is not getting the bytecode so
much as describing it.

ments. Each argument may be an inte-
ger, a reference to a literal (an index
into the literals list preceded by “@”), a
jump target (an address preceded by
“pc ”), a variable index (a “%” fol-
lowed by the index into the variables
list), an immediate index literal (starts
with a period, “.”, followed by a list
index which may be either start- or
end-relative), or an auxiliary index (a
“?” followed by an index into the
auxiliary list).

• auxiliary — contains a list of auxiliary
information descriptors. This is used to
encode three key things: the descrip-
tion of what variables are used by the
foreach-related instructions, the de-
scription of relative jumps to use in a
jumpTable instruction, and the descrip-
tion of how to map variables in the in-
structions used to compile dict update.
Each descriptor is a dictionary where
the only guaranteed key is name, which
holds the name of the type of auxiliary
information encoded in the particular
record.

• commands — contains a list of diction-
aries that describe what commands
were detected in the code that was
compiled to produce the bytecode. The
order of the list of dictionaries is the
order in which the commands start
within the script. For each command,
the dictionary contains the range of in-
structions generated from that com-
mand (as addresses, in the codefrom
and codeto members), the range of the
source code that the command occu-
pied (as offsets from the beginning of
the script, in the scriptfrom and scripto
members), and in the script element,
the full text of the command that was
compiled (which can include sub-
commands).

• script — contains the full text of the
script that was actually compiled to
produce the bytecode.

• namespace — contains the fully quali-
fied name of the namespace used as
context to resolve commands in the
bytecode.

• stackdepth — contains the maximum
stack depth (approximately the maxi-
mum number of arguments that need
to be on the stack at once, plus the
space for evaluating expressions).

• exceptdepth — contains the maximum
depth of nested exception ranges.

The general principle of how the information
is encoded in the result of getbytecode is to en-
sure that the maximum amount of infor-
mation from the low-level bytecode is present
without exposing any of the complex encod-
ings that are used there or requiring consum-
ers of the result to know how each of the in-
structions actually treats its result. In fact, this
isn’t quite all the information in the bytecode,
but it is exceptionally difficult to make use of
the rest (such as the interpreter reference and
the compilation epoch) from scripts.

Using the disassembly

Though the output of getbytecode is not easy
to read as a person, for scripts it is exception-
ally easy to process. This makes it easy to do
things like analysing the flow of control in the
program, detecting automatically where loops
are and allowing the visualization of how ex-
ception ranges are used.

An example of what can be done with this is
shown in Appendix 2, where the controlflow
command (based on a heavily-modified ver-
sion of a x86 instruction renderer[4] originally
written in Python) prints out the address of
each instruction followed by the instruction
itself, with arguments converted to an easier-
to-read form (e.g., variable references are con-

verted to %name, or %%%index if they are
nameless temporaries). Arrows are added as a
prefix to indicate jumps, the different colour
applied to the instructions in the middle of the
output indicates that a (loop) exception range
is in force, and the two coloured addresses are
the targets for the exception range, one for
TCL_CONTINUE (being where to go to start the
next loop iteration) and the other for
TCL_BREAK (for finishing the loop). The out-
put part of the code renders to a normal Unix
terminal.

It should be noted that the technique I used is
not infallible when it comes to display. When
asked to display a moderately complex proce-
dure, such as those present in the implemen-
tation of Tcl’s clock command (e.g.,
ParseClockFormatFormat2), that has a number
of substantial switch statements that compile
into jump tables, the number of indents be-
comes larger than any reasonable width of
terminal.

6. Optimization

Given all the work described above, it has be-
come clear that it is necessary to generate im-
proved bytecode. There are a number of plac-
es where simply generating better code within
the implementation of a command was not
generating good code within the wider stream
of bytecode.

For example, it is the fundamental structure
of Tcl command compilation that they overall
push a single word onto the bytecode execu-
tion engine’s stack. Then, in the common
case where the result of the command is not
needed, that word is then immediately
popped off the stack again. It is therefore
closer to optimal to not push the value in the
first place, if it is possible to avoid doing so.
Some cases are particularly easy to determine,
such as where the commands being compiled
always produce an empty (or other constant)
value as their results; the last step of the com-
pilation of both for and foreach is the push of

an empty value, and it is very rare to actually
use the results of those commands precisely
because it is always the empty string.

Yet to safely avoid doing that extra work at
runtime, you have to be cautious during com-
pilation. In particular, suppose the generation
of the pointless result is followed by a pop of
the value, but the pop can also be jumped to
from elsewhere (a pattern easily generated
when using the if command) then might well
be wrong to just remove the push/pop se-
quence as that will cause other code paths to
create an unbalanced stack.

The simplest way of preventing such prob-
lems with code removal is to determine if
there are any jumps (of any kind, including
conditionals, result-branch operations, jump
tables, exception targets, etc.) and to only do
the removal when the pop can only be reached
by that one push. This safety requirement re-
duces the number of optimizations done, but
ensures that those that are done are correct.

Optimizations performed

There are a number of optimizations that are
done now that were not part of Tcl 8.6.0.
These are:

• Removal of push/pop sequences, as de-
scribed earlier.

• Folding logical not into a following
branch by inverting the branch instruc-
tion’s condition.

• Removing tryCvtNumeric (part of the
compilation of expressions) when the
subsequent instruction will perform
the numeric conversion anyway.

• Advancing jumps to their ultimate tar-
get, instead of having them pass
through a chain of jumps and nops to
get there. This was a relatively com-
mon pattern, especially given that
jumps are now being generated from
break and continue commands.

• Removing startCommand instructions7
where the code is found to be suitably
“well-behaved”, such as compiling to
bytecode without any invoking of ex-
ternal commands or being located
within the implementation of Tcl. Un-
like the other optimizations described
here, this one is done by rerunning the
compiler in a special mode where it
simply does not issue the instruction
we want to exclude.

• Removing outright unreachable code
at the end of a bytecode compilation.
Where there is code after a done in-
struction that is not jumped to, it is
possible to determine exactly that the
following code cannot possibly be exe-
cuted, and so makes it a good candi-
date for removal. However, this is an
exceptionally minor optimization, as
unreachable code is not executed by
virtue of its very unreachability.

These optimizations are supported by a new
peephole optimization within the execution
engine. I added a special case to the pro-
cessing of pop instructions so that a sequence
of pops would be handled more efficiently.
The optimizer generates such sequences at
this point because it does not move any
pointers into the bytecode other than those
held by simple jump and branch instructions.
In particular, command boundaries are not
modified; they have a singularly complex en-
coding that it is non-trivial to work with.

7 The startCommand instruction is used to skip the
rest of the bytecode of a command when the
compilation epoch of the interpreter has been up-
dated since the start of processing of the bytecode
in question, typically in response to a rename or
deletion of a command with a bytecode compiler
attached to it. It is a common instruction to deal
with a rare case so as to ensure official semantic
correctness, and unfortunately is relatively expen-
sive to process.

7. Performance Measurements

In order to compare the performance of Tcl
between different versions, it is necessary to
be very specific about what is actually being
tested. In particular, it is easy to measure
something completely different to what you
expected to measure. To that end, the code
used to perform the performance measure-
ments is included in Appendix 3; the timings
in Table 2 are rounded to 4 significant figures
and are in microseconds.

The ListConcat program tests the performance
of the new way of handling expansion in the
list command. The Fibonacci program tests
general bytecode and integer operation han-
dling, the ListIterate program tests general
bytecode and list operation handling, and the
ProcCall program tests the costs of calling a
procedure. The LoopCB program tests the
costs of the break and continue commands.
The EnsDispatch* programs test the perfor-
mance of ensembles: EnsDispatch1 tests the
costs of doing ensemble dispatch for two cas-
es where we can convert to a direct invoca-
tion of the implementation command,
EnsDispatch2 tests the costs where we can fully
compile to bytecode, EnsDispatch3 tests a case
that still has to use the full ensemble dispatch
mechanism, and EnsDispatch4 tests the costs
for user-defined ensembles, verifying that no

unreasonable costs have been introduced in-
advertently. The DictWith program illustrates
the handling of the empty-body special case in
dict with. The Try* programs illustrate the
change of profile of costs associated with try:
TryNormal shows what happens when no er-
ror is trapped, TryError shows a trapped error,
TryNested shows the relative costs of throwing
an error in a handler script (note that none of
these execute on Tcl 8.5; the try command
was new in 8.6, and was not compiled fully in
8.6b1), and TryOver shows the overhead asso-
ciated with the evidence collection technique
used in TryNested (using the interior workload
associated with TryNormal).

Performance tests were done on a MacBook
Pro with a 2.7GHz Intel Core i7 processor
running OS X 10.8.4. The tests were deliber-
ately not disk intensive, and the amount of
memory used was much smaller than the free
memory available. The executables used for
these performance tests were compiled from
clean checkouts of the source tree for the re-
lease versions associated with each tag from
fossil, except for 8.6.0+, which corresponds to
the commit labelled bc57d06610b7. All were
compiled with exactly the same version of the
compiler, and using the default, optimizing
configuration. The benchmark driver script
forces compilation of the code being bench-
marked by running it once, then runs it for
100k iterations each of 20 times, taking the
minimum (so as to try to avoid any potential
problems with jitter due to the OS).

The overall evidence8 is that some of the op-
timizations are definitely valuable; for exam-
ple, the optimizations to core ensemble dis-
patch restore or even improve on the speed
that was in Tcl 8.5 for the majority of ensem-

8 It makes no sense to combine the performance
figures, as the benchmarks are not chosen at all to
represent realistic code or to give equal weight to
all operations. They are best regarded as samplings
of the performance of small parts of the implemen-
tation of Tcl.

Program 8.5.14 8.6b1 8.6b2 8.6.0+
ListConcat 0.418 1.564 0.544 0.493
Fibonacci 1.266 1.722 1.441 1.441
ListIterate 3.077 3.315 2.091 2.176
ProcCall 0.863 1.449 1.310 1.264
LoopCB 1.074 1.714 1.404 1.617

EnsDispatch1 0.975 1.944 1.400 0.888
EnsDispatch2 0.489 1.385 0.990 0.393
EnsDispatch3 0.520 1.598 1.261 1.112
EnsDispatch4 0.448 1.311 0.803 0.804

DictWith 2.634 4.072 1.895 1.289
TryNormal N/A 26.221 1.385 0.522
TryError N/A 39.313 3.804 3.931

TryNested N/A 57.236 7.727 11.788
TryOver N/A 39.230 4.120 4.290

Table 2: Times to execute key programs

ble subcommands. Similarly, some other op-
erations (e.g., dict with, try in the non-error
case) are clearly much cheaper now.

However, not everything is faster; command
dispatch is definitely slower in 8.6 than in 8.5
and that has an impact on many of these
benchmarks (most notably ProcCall and
EnsDispatch4) and I have no idea why Lis-
tIterate is so much faster in 8.6 and LoopCB so
much slower; further examination of the situ-
ation will be required. The increase in execu-
tion time of TryNested is expected due to the
change of semantics of option dictionary
handling in the error-in-handler case; TryOver
confirms that this is the cause, and not the
additional overhead of the error trapping used
in our little benchmarking framework.

8. Future Considerations

This document represents on-going work;
many things remain to be done in each of the
areas described. For example, in the area of
language coverage, we still need to analyse
what is the actual set of commands required
to allow the majority of Tcl scripts to be vir-
tually entirely compiled to bytecode without
the use of the generic dispatch sequence.
There are a number of commands that are
fairly common, relatively simple, but which
are not compiled (e.g., string trim). Which
ones can we change that status on? This re-
mains to be determined.

On the other hand, we also know that the
large majority of Tcl scripts are going to be
continuing to call commands even after con-
version to bytecode. This is because there is
an on-going need to invoke user-defined
commands, whether they are procedures, ob-
jects or functionality defined in an extension
written in a foreign language. What can we
do to make that step more efficient? Can we
support anything like inlining of procedures?
(It is my theory that the last question can be
definitely answered affirmatively with relative
ease provided the local variable table has no

named entries in it, but that’s an incredibly
restrictive condition; the real question is
whether it is possible to do so with fewer re-
strictions, and to what extent the results
change the visible semantics.)

When it comes to the quality of the generated
code, more can be done. In particular, the
current mechanisms for exception handling
are especially complex, and have a far-
reaching impact on code generation. Perhaps
adding a mechanism such as perhaps internal
subroutines à la classic BASIC would enable at
least some reduction in complexity.

There is also the fact that we currently need to
explicitly push exception depths on the stack; it
would be far nicer (from the perspective of code
generation at least) if the target stack depth in-
formation were encoded in the exception range
record. After all, we now have that information
accurately during code generation.

For the disassembly side of things, the obvi-
ous thing to do now would be to move to al-
lowing the assembler to be able to handle
what the disassembler produces in some way,
possibly with syntactic changes, so that we
can perform a full round-trip from Tcl code to
bytecode to disassembled bytecode to code
that is executable again. Currently there are a
few key things missing, most notably includ-
ing the ability to issue the foreach-related in-
structions. The aim would be to enable the
writing of more of the optimizer in Tcl itself
(ignoring for now the problems associated
with optimizing the optimizer’s own code).

However, for all the above, the major chal-
lenge for the future of bytecodes has to be to
improve the optimizer. The next step has to
be to actually remove irrelevant and unreach-
able code and other miscellaneous related
structures (e.g., exception ranges). This would
let the code issued be made quite a bit more
compact. This might in turn require substan-
tial reconfiguration of the in-memory repre-
sentation of bytecode.

Longer term

The real goal is meeting the Lehenbauer
Challenges and achieving speedups of be-
tween 2× (i.e., code that executes in half the
time) and 10× (i.e., code that executes in a
tenth of the time) as these will improve a
great many Tcl scripts instead of specific
code. The optimization strategies described
within this document may go some way to-
wards addressing the lower end of that range
of improvements depending on the exact pro-
file of code to be improved (indeed, the Dic-
tWith micro-benchmark in Section 7 already
achieves a better-than-double speedup), but
the higher end will definitely require native
code generation.

The aim of this work is therefore to provide
an improved basis for generating code where
it is possible to more easily analyse the code
to be native-compiled and determine its real
type behaviour. Proving micro-theorems
about the types of variables is the key to de-
termining how to generate good native code
from Tcl programs, and it is conjectured that
bytecode has a key advantage over straight
Tcl code as a starting point in that the type
logic of bytecode is more static. It remains to
be seen if this conjecture is actually a true
one.

9. References
[1] Ugurlu, O.D., Kenny K., A bytecode assembler

for Tcl, in Proceedings of the 17th Annual
Tcl/Tk Conference (Tcl’2010), Tcl Communi-
ty Association, Whitmore Lake, MI, 2010.

[2] Vitale, B., Abdelrahman, T.S., Catenation and
specialization for Tcl virtual machine performance,
in Proceedings of the 2004 Workshop on In-
terpreters, Virtual Machines and Emulators
(IVME’04), pages 42–50, ACM, Washington,
DC, 2004. doi:10.1145/1059579.1059591

[3] Lewis, B., An on-the-fly bytecode compiler for Tcl,
in Proceedings of the 4th Annual USENIX
Tcl/Tk Workshop, USENIX, Berkeley, CA,
1996.

[4] Fairchild, D., Automagical ASM Control Flow
Arrow-Annotation, weblog entry at
http://blog.fairchild.dk/2013/06/automagical-asm-

control-flow-arrow-annotation/, June 11, 2013,
accessed June 19, 2013.

Appendix 1: Teapot Ensemble Subcommand Frequency Tables

In the tables below, the assessment of whether a command is practical to bytecode depends mainly
on the internal complexity of the command; commands that create or destroy commands are al-
ways considered to be impractical as they potentially modify the interpreter epoch. The final col-
umn states whether the subcommand was bytecode-compiled in Tcl 8.6b2, i.e., prior to the work in
this paper.

The shell script used to extract the information was (with the environment variables
$TEAPOT_REPOSITORY and $TCL_CMD supplying the place to look for the sources and the command
to look for respectively):

find $TEAPOT_REPOSITORY -name "*.tm" -print0 | xargs -0 grep -lw $TCL_CMD \
 | xargs cat | grep -w $TCL_CMD | sed -nE "
 /$TCL_CMD +\[a-z\]/ {
 s/^.*$TCL_CMD (\[a-z\]*).*\$/\\1/
 p
 }

" | sort | uniq -c | sort -n

The result of that script was then hand-filtered to remove irrelevant values (such as words in free-
text that just happen to mention the major command) and to coalesce abbreviations onto their
main subcommand.

For the string command (subcommands not mentioned did not occur):

Command # Uses Practical to Bytecode Bytecoded in 8.6b2
string totitle 1 Possibly No
string replace 2 Possibly No
string trimleft 8 Yes No
string last 28 Yes No
string trimright 33 Yes No
string repeat 34 Possibly No
string toupper 145 Possibly No
string trim 147 Yes No
string index 245 Yes Yes
string tolower 248 Possibly No
string is 424 Possibly No
string map 569 Possibly No
string first 674 Yes No
string range 892 Yes No
string match 898 Yes Yes
string length 1100 Yes Yes
string equal 2129 Yes Yes
string compare 5971 Yes Yes

For the dict command (subcommands not mentioned did not occur; note that dict map was only in-
troduced after this survey was done):

Command # Uses Practical to Bytecode Bytecoded in 8.6b2
dict keys 1 Yes No
dict with 1 Yes Yes
dict unset 2 Yes No
dict lappend 3 Yes Yes
dict values 8 Yes No
dict for 8 Yes Yes
dict merge 15 Yes No
dict incr 18 Yes Yes
dict create 22 Yes No
dict append 28 Yes Yes
dict exists 34 Yes No
dict get 297 Yes Yes
dict set 347 Yes Yes

For the namespace command (subcommands not mentioned did not occur):

Command # Uses Practical to Bytecode Bytecoded in 8.6b2
namespace forget 3 No No
namespace inscope 6 Possibly No
namespace parent 7 Yes No
namespace children 17 Possibly No
namespace qualifiers 30 Yes No
namespace exists 50 Yes No
namespace which 56 Yes No
namespace delete 77 No No
namespace code 116 Yes No
namespace import 130 No No
namespace upvar 132 Yes Yes
namespace origin 153 Possibly No
namespace tail 206 Yes No
namespace ensemble 269 No No
namespace current 272 Yes No
namespace export 757 Possibly No
namespace eval 2681 No No

For the array command (subcommands not mentioned did not occur):

Command # Uses Practical to Bytecode Bytecoded in 8.6b2
array size 37 Possibly No
array exists 56 Yes No
array unset 191 Yes No
array get 479 Possibly No
array names 1085 Possibly No
array set 2511 Yes No

For the info command (subcommands not mentioned did not occur; note that info class and info
object are themselves ensembles, and that info patchlevel is impractical due to the “interesting” fail-
ure mode behaviour):

Command #Uses Practical To Bytecode Bytecoded in 8.6b2
info class 1 Yes (parts) No
info default 1 No No
info loaded 1 No No
info frame 2 Possibly No
info sharedlibextension 4 No No
info nameofexecutable 8 No No
info object 8 Yes (parts) No
info patchlevel 11 No No
info complete 12 Possibly No
info body 29 No No
info vars 33 Possibly No
info args 42 No No
info procs 50 No No
info hostname 54 No No
info script 67 Possibly No
info commands 274 Possibly No
info level 587 Yes No
info exists 3822 Yes Yes

For other ensembles, they are typically wholly impractical to bytecode other than through generic
mechanisms (e.g., the chan ensemble, which is thoroughly entangled with the I/O subsystem and so
likely to encounter dominating OS-related delays, but which still benefits from the generic im-
provements to the ensemble mechanism).

Appendix 2: Example of controlflow Output

Sample code used to create the output:

controlflow lambda {{a b c} {
 set sum 0
 foreach x [list $a $b $c] {
 incr sum [expr {$x**2}]
 }
 puts "sum of squares: $sum"
}}

Output from the above code:

 0 push1 "0"
 2 storeScalar1 %sum
 4 pop
 ┌─ 5 startCommand ➡ 61 2
 │ 14 loadScalar1 %a
 │ 16 loadScalar1 %b
 │ 18 loadScalar1 %c
 │ 20 list 3
 │ 25 storeScalar1 %%%4
 │ 27 pop
 │ 28 foreach_start4 {data %%%4 loop %%%5 assign %x}
 ┌──┼► 33 foreach_step4 {data %%%4 loop %%%5 assign %x}
 │ ┌┼─ 38 jumpFalse1 ➡ 59
 │┌┼┼─ 40 startCommand ➡ 56 2
 ││││ 49 loadScalar1 %x
 ││││ 51 push1 "2"
 ││││ 53 expon
 ││││ 54 incrScalar1 %sum
 │└┼┼► 56 pop
 └─┼┼─ 57 jump1 ➡ 33
 └┼► 59 push1 ""
 └► 61 pop
 62 push1 "puts"
 64 push1 "sum\ of\ squares:\ "
 66 loadScalar1 %sum
 68 concat1 2
 70 invokeStk1 2
 72 done

As you can see, the implementation of the loop body has been indented, and the (loop) exception
range — the range of instructions where a TCL_BREAK or TCL_CONTINUE instruction will trigger a
jump to a nominated target instruction — has been highlighted in red. The break-target for the ex-
ception range has its address highlighted in blue, the continue-target has its address highlighted in
red.

The source to the controlflow command is too long to include in this document. It can be down-
loaded from DropBox: https://dl.dropboxusercontent.com/u/19238925/Tcl/2013/controlflow.tcl

Appendix 3: Performance Measurement Script

The performance measurements of Section 7 were done with this consolidated script.

package require Tcl 8.5

proc listConcat {a b c} {
 list $a $b {*}$c
}

proc Fibonacci {n} {

 set a 0
 set b 1
 for {set i 2} {$i <= $n} {incr i} {
 set b [expr {$a + [set a $b]}]
 }
 return $b
}

proc iter {param} {
 set result {}
 foreach x $param {
 lappend result [string length $param]
 }
 return $result
}

proc inner {} {
 return "ok"
}
proc outer {} {
 inner; inner; inner; inner; inner
}

proc loopcb {x} {
 for {set i 0} {$i < 10000} {incr i} {
 if {$i == $x} break
 continue
 }
 return "ok"
}

proc ensDispatch1 {} {
 info tclversion
 info patchlevel
}

proc ensDispatch2 {} {
 namespace current
 info level
}

proc ensDispatch3 {} {
 namespace inscope :: {return -level 0 "ok"}
 namespace inscope :: {return -level 0 "ok"}
}

proc ensDispatch4 {} {
 ens4 foo bar

}
namespace ensemble create -command ens4 -map {
 foo {::ens4core}
}
proc ens4core {msg} {
 return $msg
}

proc dictWithAdd {d} {
 dict with d {}
 return [expr {$a + $b}]
}

proc tryNormal {} {
 set d 1.875
 try {
 set x [expr {$d / $d}]
 } on error {} {
 set x "error happened"
 }
 return $x
}

proc tryError {} {
 # Zero divided by zero is an error (no NaN please!)
 set d 0.0
 try {
 set x [expr {$d / $d}]
 } on error {} {
 set x "error happened"
 }
 return $x
}

proc tryNested {} {
 set d 0.0
 catch {
 try {
 set x [expr {$d / $d}]
 } on error {} {
 error "error happened"
 }
 } msg opt
 return $opt
}

proc tryNestedOver {} {
 set d 0.0

 catch {
 try {
 set x [expr {$d / $d}]
 } on error {} {
 set x "error happened"
 }
 } msg opt
 return $opt
}

proc benchmark {title script {version 8.5}} {
 if {[package vsatisfies [info patchlevel] $version]} {
 eval $script
 for {set i 0} {$i < 20} {incr i} {
 lappend t [lindex [time $script 100000] 0]
 }
 puts [format "%s: %4f" $title [tcl::mathfunc::min {*}$t]]
 } else {
 puts [format "%s: N/A" $title]
 }
}

benchmark "ListConcat" { listConcat {a b c} {d e f} {g h i} }
benchmark "Fibonacci" { Fibonacci 10 }
benchmark "ListIterate" { iter {a aaa aaaaa} }
benchmark "ProcCall" { outer }
benchmark "LoopCB" { loopcb 10}
benchmark "EnsDispatch1" { ensDispatch1 }
benchmark "EnsDispatch2" { ensDispatch2 }
benchmark "EnsDispatch3" { ensDispatch3 }
benchmark "EnsDispatch4" { ensDispatch4 }
benchmark "DictWith" { dictWithAdd {a 1 b 2 c 4} }
benchmark "TryNormal" { tryNormal } 8.6
benchmark "TryError" { tryError } 8.6
benchmark "TryNested" { tryNested } 8.6
benchmark "TryNestedOver" { tryNestedOver } 8.6

This script can be downloaded from DropBox:
https://dl.dropboxusercontent.com/u/19238925/Tcl/2013/optbench.tcl

