
Integrated Tcl/C Performance Profiling

Brian Griffin and Chuck Pahlmeyer

Mentor Graphics

8005 SW Boeckman Road

Wilsonville, OR 97070

brian_griffin@mentor.com

chuck_pahlmeyer@mentor.com

ABSTRACT

We present an approach to combine compiled (C) and interpreted (Tcl) call stack information for

profiling purposes. We have integrated Tcl proc and C function calls into combined call stack

information to provide a more complete picture of program state at profile sample times.

1. Introduction and Motivation.

According to mathematician Richard Hamming, ―The purpose of computing is insight, not

numbers.‖ (Hamming, 1962). In that light, we use performance profiling to gain insight into

where our program is spending time. The goal is to provide that ―Ah ha!‖ that leads to finding

and correcting a performance problem. To that end, we have devised a method to provide

greater insight in our profiling results.

What is the problem?

Adequate performance is an important attribute for many software applications. Profiling is a

useful tool to provide insight into where a program is spending time. A statistical profiler

records the program call stack at regular intervals and collates information to provide statistics

on number of samples encountered in various parts of the program. Examples of statistical

profilers include Zoom, Oprofile, gprof, google-perftools and Intel® VTune™. Even gstack and

gdb can be used as crude statistical profilers; simply do ―gstack <pid>‖ a number of times during

program execution or interrupt execution and retrieve the call stack periodically in gdb.

Additionally there exist instrumenting profilers which work by modifying function entry and

exit. These events are recorded during program runtime and later collated into reports of time

and function call count. Examples of this include callgrind, DTrace and gprof (gprof uses both

statistical as well as instrumented approaches).

There are also Tcl-specific performance profilers. Although the authors are unaware of any

statistical Tcl performance profiler, the ActiveState® Tcl Dev Kit includes a Tcl profiler.

DTrace can also be used for Tcl profiling. These profilers instrument the code and record

information about every call. This information is summarized into various profile reports.

However, Tcl applications often have a combination of C and Tcl. A section of call stack of C

code representing execution of Tcl code shows up in a standard profiler as shown in Figure 1.

This provides very little insight into the Tcl language calls that were being executed.

Tcl_Eval

 Tcl_EvalEx

 TclEvalObjvInternal

 Tcl_IfObjCmd

 Tcl_EvalObjEx

 TclCompEvalObj

 TclExecuteByteCode

 TclEvalObjvInternal

 Tcl_CatchObjCmd

 Tcl_EvalObjEx

Figure 1 Sample call stack representing Tcl code evaluation

Why is it interesting and important?

To understand what portion of a program is involved in time consuming activities, it is essential

that the profile results provide reference to the original source code, whether that code was

compiled (e.g. C) or interpreted (e.g. Tcl). Existing profilers provide information for either the

compiled or interpreted code, but not both together.

Why is it hard?

The Tcl interpreter is a collection of C functions that execute Tcl command. Tcl command

execution shows up in a standard call stack as a series of C function calls with names like

TclExecuteByteCode and TclEvalObjvInternal. The difficulty in providing an

integrated call stack is in knowing which C functions in the call stack are executing which Tcl

procs. The C call stack alone provides insufficient information for this.

What are the key components of this approach and results?
 In order to provide integrated C and Tcl call stack information, it is necessary to reference

auxiliary information about the state of the Tcl call stack. Our approach uses a standard

statistical profiler which collects and processes program call stacks at intervals during program

execution. In addition, we maintain a representation of the Tcl call stack as Tcl calls are being

made. When a C call stack is processed to include Tcl command entries, the Tcl call stack

information is used to replace entries on the C call stack with the appropriate Tcl commands.

We correlate position in the C call stack with position in the Tcl call stack by tracking how many

TclEvalObjvInternal calls have been encountered in processing the call stack. This

allows us to present profile results with a combination of C functions and Tcl procs.

2. Integrating Tcl procs into call stacks

Mentor Graphics' Questa® simulator has a built-in statistical performance profiler. It uses a

timer-driven mechanism to collect call stack information at regular intervals. It provides a user

interface to allow interactive exploration of profile results. However, prior to this work, it

reported only C-language call stacks, providing limited usefulness for our application which is

written in Tcl and C. To get better insight into program hotspots, we sought to integrate Tcl

procs into C call stacks.

2.1 Overview

To collect and store Tcl call stacks, we utilize Tcl_CreateObjTrace to set up a trace

function for Tcl command execution. For each Tcl command that is executed, a call to our

specific trace function is made. In the trace function, we store a textual version of the command

at the level-th location in a static array. When we process a C call stack, we can replace every

TclEvalObjvInternal call with the corresponding Tcl command. We maintain

correlation between the C and Tcl call stacks by matching on each TclEvalObjvInternal

call—that is, each TclEvalObjvInternal call maps to an entry in the tcl_stack. A

counter is incremented for each TclEvalObjvInternal call—the counter value is used to

address into the static array of Tcl procs. Figure 2 provides an overview of the processing

involved. Simplified code segments in Section 2.2 below provide more detail.

2.2 Implementation

The Tcl call stack (tcl_stack) is stored in this compact structure (Figure 3); it consumes only a

few tens of KB.
typedef struct t_tcl_stack {

 char command[80];

} s_tcl_stack, *p_tcl_stack;

s_tcl_stack tcl_stack[300];

Figure 3 Storage for Tcl stack

tcl_stack

Tcl Core

ProcessCallStack:
integrates Tcl procs
into C call stack

C call stack

Combined C and
Tcl call stack

SaveCmd called for
each Tcl command;
this continually
updates tcl_stack.

C call stack retrieved
on interrupt for
ProcessCallStack

Timer
interrupt

Tcl_CreateObjTrace(… SaveCmd, …)

Figure 2 Flowchart indicating overview of profiling operation

A simplified version of the trace function is shown below in Figure 4. tcl_stack_max_loc

is a global variable indicating the maximum depth of the Tcl call stack at any moment. This

variable is used in the call stack processing routine (ProcessCallStack). Note that the

processing required in the trace function is small; this is essential since this function is called for

each Tcl command that is evaluated. In the example in Section 3 below, about 2,800 profile

samples were collected. During this process, SaveCmd was called about 21,000,000 times. The

vast majority of entries that SaveCmd made into tcl_stack were unused. The calls to

SaveCmd were necessary, though, to keep tcl_stack current because a profile sample could

be taken at any time.

int SaveCmd(

 ClientData clientData,

 Tcl_Interp* interp,

 int level,

 const char *command,

 Tcl_Command commandToken,

 int objc,

 Tcl_Obj *const objv[])

{

 /* There are cases where Tcl trace skips levels in the call stack

 * callback. Fill any intermediate levels with entries that will be

 * skipped in ProcessCallStack(). */

 for (i=tcl_stack_max_loc+1; i<level && i<300 ; ++i) {

 strcpy(tcl_stack[i].command, "SkippedTclStackEntry");

 }

 if (level < 300) {

 strcpy(tcl_stack[level].command, command);

 }

 tcl_stack_max_loc = level;

 return TCL_OK;

}

Figure 4 SaveCmd trace function implementation

A simplified version of the call stack processing routine is presented in Figure 5 below. This

function is executed for each call stack that is collected and processed. Processing of the call

stack starts from the root (e.g. ―main‖ (or ―vish_inner_loop‖ for Questa)) and proceeds toward

the leaf function call. The while loop processes each entry of the call stack. Each entry is

handled in one of three ways:

 We replace TclEvalObjvInternal with the corresponding Tcl proc name. We do

some manipulation of the reported text depending on the Tcl command being processed.

For example, if a string command is being processed, we add one or two arguments to

make a more informative entry. Also, some Tcl commands like if and foreach are

ignored because we felt that they didn’t add useful information to the call stack.

 Items on the call stack that match ―Tcl*‖, ―Itcl*‖, etc. are ignored as they don’t add to our

understanding of the processing.

 Other C function name entries are taken as-is.

static int ProcessCallStack()

{

 int tcl_stack_loc = 1;

 char *name, *proc;

 while (more entries in call stack) {

 name = name of call stack entry;

 if (name == "TclEvalObjvInternal") {

 char *cmd[4] = { 0 }, lcmd[80];

 strcpy(lcmd, tcl_stack[tcl_stack_loc].command);

 ++tcl_stack_loc;

 cmd[0-3] = first 4 tokens of lcmd

 if ((cmd[0]==0) || (cmd[0][0]==0) ||

 (strcmp (cmd[0], "::")==0) ||

 (strcmp (cmd[0], "if")==0) ||

 ...

 (strncmp(cmd[0], "Transcript::ReturnKey", 21)==0)) {

 proc = NULL; /* Ignore these Tcl commands */

 } else {

 /* Manipulate names for better info in displayed callstack */

 if (cmd[1] &&

 ((strcmp ("add" , cmd[0])==0) ||

 ...

 (strncmp("." , cmd[0],1)==0))) {

 proc = dstrPrintf(&ds, "%s++%s", cmd[0], cmd[1]);

 } else if ((strcmp ("string", cmd[0])==0) ||

 (strcmp ("switch", cmd[0])==0)) {

 if ((cmd[1][0]=='-')) {

 dstrPrintf(&ds, "%s++%s++%s", cmd[0], cmd[1], cmd[2]);

 } else {

 dstrPrintf(&ds, "%s++%s", cmd[0], cmd[1]);

 }

 proc = dstrValue(&ds);

 ...

 } else {

 proc = cmd[0];

 }

 }

 } else if ((strncmp(name, "Tcl", 3) == 0) ||

 (strncmp(name, "Itcl", 4) == 0) ||

 ...

 (strcmp (name, "WindowEventProc") == 0)) {

 proc = NULL; /* Ignore these functions in callstack */

 } else {

 proc = name; /* Save other non-Tcl C-level code addresses */

 }

 if (proc) addToDisplayedCallStack(proc);

 }

}

Figure 5 ProcessCallStack implementation

3. Results

We can compare results using standard C call stacks versus ones with Tcl commands substituted.

The Tcl code in Figure 6 was used as a simple test case. It exercises the tok2column proc –

code built into the Questa simulator. tok2column is designed to tokenize a string. The rules

for tokenizing are different depending on the HDL language in use; in this case we specify

―Verilog‖ as the language.

proc doWork { howMany } {

 set l [list]

 for {set i 0 } { $i<$howMany } { incr i } {

 set l [doWork2 $i]

 }

 puts $l

}

proc doWork2 { i } {

 set line "The quick brown fox jumps over the lazy dog."

 set l [tok2column Verilog 23 $line]

 return $l

}

time { doWork 1000000 }

Figure 6 Test Tcl code

tok2column is a small routine that runs quickly (less than 50 microseconds). Calling it many

times allows us to collect profile statistics and analyze it. In this case we call tok2column

1,000,000 times in 44 seconds collecting about 2,800 samples in the process.

3.1 Profile Results

The contents of the table below (Figure 7) show the ProcessCallStack processing for a

portion of a representative call stack. The three columns in the table are:

 The C call stack entries. The TclEvalObjvInternal entries are shown in red; these

are the items on which we base our C function to Tcl proc mappings.

 The processing done for each entry:

o ―-->‖ means that the C function was taken verbatim.

o ―X‖ means that the entry was filtered out.

o ―map to …‖ means that the entry was mapped to a Tcl command. Note that two

Tcl commands (time and for) were suppressed though.

 The entries in the combined C and Tcl call stack.

Note the difference in length of the two call stacks. The combined C and Tcl call stack is much

more compact.

C function only

call stack entry

ProcessCallStack

action

Combined C and Tcl

call stack entry

vish_inner_loop --> vish_inner_loop

Tk_MainEx --> Tk_MainEx

Tk_MainLoop --> Tk_MainLoop

Tcl_DoOneEvent X

Tcl_ServiceEvent X

WindowEventProc X

Tk_HandleEvent X

TkBindEventProc X

Tk_BindEvent X

Tcl_EvalEx X

(lines of Tcl*) X

TclEvalObjvInternal map to Tcl command .vcop++Action

(lines of Tcl*) X

Tcl_CatchObjCmd X

TclEvalObjEx X

TclCompEvalObj X

TclExecuteByteCode X

TclEvalObjvInternal map to Tcl command EvalUserCmd

tclprim_UserEval --> tclprim_UserEval

Tcl_EvalObjEx X

TclEvalObjEx X

TclCompEvalObj X

TclExecuteByteCode X

TclEvalObjvInternal map to ―time‖, but suppress

Tcl_TimeObjCmd X

Tcl_EvalObjEx X

TclEvalObjEx X

TclCompEvalObj X

TclExecuteByteCode X

TclEvalObjvInternal map to Tcl command doWork

TclObjInterpProc X

TclObjInterpProcCore X

TclExecuteByteCode X

TclEvalObjvInternal map to ―for‖, but suppress

Tcl_ForObjCmd X

TclEvalObjEx X

TclCompEvalObj X

TclExecuteByteCode X

TclEvalObjvInternal map to Tcl command doWork2

TclObjInterpProc X

TclObjInterpProcCore X

TclExecuteByteCode X

TclEvalObjvInternal map to Tcl command tok2column

TclInvokeStringCommand X

tclprim_tok2column --> tclprim_tok2column

lang2lang_type --> lang2lang_type

Tcl_Eval X

Figure 7 Processing of example C call stack to combined C and Tcl call stack

The outputs in Figures 8 and 9 are profile results from the Questa simulator. The contents

consist of

1) function name,

2) number of samples in and beneath the function (Under column), and

3) number of samples in the function (In column).

The indentation of the function names indicates calling hierarchy. For example, if function A

called function B, B would be shown indented one space with respect to A. The number of

samples is used to understand the cost of that function, with and without its children.

This output in Figure 8 shows the depth of a standard C call tree report; multiple call stacks

collated together form a call tree. The items hand-annotated with ―>>>‖ prefix and in larger font

are Questa-supplied C routines. Note that 110 and 50 lines of ―Tcl*‖ entries were suppressed

for readability. Without that substitution, the report would be 224 lines long.

Name Under(raw) In(raw)

---- ---------- -------

vish_inner_loop 2795 0

 Tk_MainEx 2795 0

 Tk_MainLoop 2795 0

 Tcl_DoOneEvent 2795 0

 Tcl_ServiceEvent 2795 0

 WindowEventProc 2795 0

 Tk_HandleEvent 2795 0

 TkBindEventProc 2795 0

 Tk_BindEvent 2795 0

 Tcl_EvalEx 2795 0

 (110 lines of Tcl* suppressed)
 Tcl_CatchObjCmd 2787 0

 TclEvalObjEx 2787 0

 TclCompEvalObj 2787 0

 TclExecuteByteCode 2787 0

 TclEvalObjvInternal 2787 0

>>>>>>>>>> tclprim_UserEval 2787 0
 Tcl_EvalObjEx 2787 0

 TclEvalObjEx 2787 0

 TclCompEvalObj 2787 0

 TclExecuteByteCode 2787 0

 TclEvalObjvInternal 2787 0

 Tcl_TimeObjCmd 2787 0

 Tcl_EvalObjEx 2787 0

 TclEvalObjEx 2787 0

 TclCompEvalObj 2787 0

 TclExecuteByteCode 2787 0

 TclEvalObjvInternal 2787 0

 TclObjInterpProc 2787 0

 TclObjInterpProcCore 2787 0

 TclExecuteByteCode 2787 0

 TclEvalObjvInternal 2787 0

 Tcl_ForObjCmd 2787 3

 TclEvalObjEx 2747 4

 TclCompEvalObj 2743 7

 TclExecuteByteCode 2712 20

 TclEvalObjvInternal 2679 10

 TclObjInterpProc 2442 0

 TclObjInterpProcCore 2436 3

 TclExecuteByteCode 2399 17

 TclEvalObjvInternal 2381 13

 TclInvokeStringCommand 2082 2

>>>>>>>>>>>>>>>>>>>>>>>>>>>> tclprim_tok2column 2072 1

>>>>>>>>>>>>>>>>>>>>>>>>>>>>> lang2lang_type 1843 4
 Tcl_Eval 1750 3

 (50 lines of Tcl* suppressed)
 sprintf 28 0

 _IO_vsprintf 28 2

>>>>>>>>>>>>>>>>>>>>>>>>>>>>> HDLTextTok2Col 221 3

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> yylex 173 39

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> is_keyword 96 54
 TclCheckInterpTraces 163 10

 Tcl_Release 41 41

 Tcl_Preserve 37 37

 GetCommandSource 41 2

 Tcl_ReturnObjCmd 28 0

 TclCheckInterpTraces 125 8

 Tcl_Release 38 38

 Tcl_Preserve 34 34

 Tcl_ExprBooleanObj 34 0

 Tcl_ExprObj 34 2

 TclExecuteByteCode 32 15

Figure 8 Profile results with C call stack entries only

The profile report in Figure 9 below is one in which our approach has been used to replace

―Tcl*‖ entries with the actual Tcl procs that were being evaluated. This is a screen shot of one of

the profile windows in the Questa user interface; the profiler windows allow user interaction with

profile data to better manage what is viewed. In this figure, C functions and Tcl commands can

be distinguished by the different icons associated with each. The same six entries of Questa

supplied C-code can be easily found. Note the interleaving of C functions and Tcl procs. For

example, doWork, doWork2 and tok2column are implemented in Tcl,

tclprim_tok2column and lang2lang_type are C functions, lang2lang_type

calls Tcl proc ::MtiFS::IsVerilogLanguage, etc.

Figure 9 Call tree with Tcl and C entries

3.2 Using Profile Results to Analyze Performance

We can use this profile data to analyze performance of the tok2column proc. In looking at the

children of Tcl proc tok2column, we see that C function tclprim_tok2column takes the

majority of tok2column’s time. We see that tclprim_tok2column spends time in two

child routines: lang2lang_type and HDLTextTok2Col. The lang2lang_type routine

is designed to determine the language type of the incoming language argument;

HDLTextTok2Col does the actual tokenizing. We can see that lang2lang_type takes

1901 samples while HDLTextTok2Col takes only 228 - tclprim_tok2column is

spending 8 times as much time to interpret the language argument as doing the actual tokenizing

that the routine nominally does! We look further at the components of lang2lang_type:

MtiFS::IsVerilogLanguage and MtiFS::IsVHDLLanguage and see their costs. We

can examine the source code of these functions and procs to understand if unneeded work is

being done or if necessary work could be done more efficiently; see Figure 10.

static int lang2lang_type (Tcl_Interp *interp,const char *lang)

{

 char buf[256];

 sprintf(buf, "::MtiFS::IsVHDLLanguage %s", lang);

 if (Tcl_Eval(interp, buf) == TCL_OK) {

 if (Tcl_GetIntResult(interp)) {

 Tcl_ResetResult(interp);

 return LANGVHDL;

 }

 }

 sprintf(buf, "::MtiFS::IsVerilogLanguage %s", lang);

 if (Tcl_Eval(interp, buf) == TCL_OK) {

 if (Tcl_GetIntResult(interp)) {

 Tcl_ResetResult(interp);

 return LANGVERILOG;

 }

 }

 . . .

proc MtiFS::IsVerilogLanguage { type } {

 if {[string compare -nocase $type [VerilogLanguage]] == 0 } {return 1}

 return 0

}

proc MtiFS::VerilogLanguage {} { return "verilog" }

Figure 10 Source code for C function and Tcl procs used by test case

Since we specify ―Verilog‖ as an argument to tok2column, we expect lang2lang_type

to return LANGVERILOG. We can inspect lang2lang_type and see why

IsVHDLLanguage and IsVerilogLanguage both show up with about the same costs.

The invocation of Tcl procs from C code to determine language type is time-consuming. With

this insight into where time is spent in tok2column, we can easily reimplement

lang2lang_type() as a strictly C function to speed tok2column considerably.

This example demonstrates the utility of combining Tcl and C routines into a single call tree for

performance analysis. Note that tclprim_tok2column, lang2lang_type and

HDLTextTok2Col do show up in the first (C function only) profile output (Figure 8). Without

the context of the surrounding Tcl procs, though, it is more difficult to understand their role in

the overall performance picture.

We have used this profiling feature to track a number of issues in the Questa simulator. For

example:

 Tracking GUI sluggishness at a remote customer site. The developer initially suspected the

message viewer was involved due to a high number of messages being processed. However,

the profiler showed that code that scans simulation events was actually consuming the

majority of the time. With this information, the developer was able to understand and

address the real problem.

 We’ve recently integrated the Scintilla editor. Certain of our regression tests ran quite slowly

using this editor. The profiler was able to point to the portion of the code that was

consuming excess time.

4. Limitations and Notes

Our approach required a few small changes to the Tcl core code in order to get a consistent value

for numLevels that could be matched to depth of TclEvalObjvInternal on the call

stack. However, these changes weren't completely compatible with other uses of the notion of

numLevels in the Tcl library. We’re using these modifications in the Questa simulator version

of Tcl, but they haven’t been propagated to the public Tcl version.

We found that if TCL_ALLOW_INLINE_COMPILATION was specified in the flags argument

to Tcl_CreateObjTrace(), the alignment assumptions made for this process were violated.

That is, the assumption of number of times that TclEvalObjvInternal appeared in a call

stack didn’t match the depth of the Tcl call stack.

In our testing, doing profiling in this way caused a doubling to tripling of overall execution time.

This is due to two primary factors:

 The cost of maintaining the Tcl call stack at all times via the trace functionality. The

trace call is somewhat expensive due to internal overhead.

 Deoptimization of the Tcl code due to not specifying

TCL_ALLOW_INLINE_COMPILATION to Tcl_CreateObjTrace().

Although this is a non-trivial performance cost, the information it provides is generally

worthwhile.

The filtering done in ProcessCallStack works well for our needs. Different rules could be

used to support profiling in a different application or with interest in aspects of the Tcl library

itself.

There were places where the trace function SaveCmd didn’t appear to be called for every level

of Tcl command that was executed. For example, the trace function might be called with

level=12 followed by a call with level=15. In this case, we’d enter the value

SkippedTclStackEntry into the entries 13 and 14 of the Tcl call stack (tcl_stack) so

that a known value is present on the stack all the way to tcl_stack_max_loc, the deepest

level of the Tcl call stack. This didn’t occur frequently, but did require the handling we

provided.

Certain techniques described in this paper are patent-pending as a patent application has been

submitted to the US Patent Office.

5. Future work

In the Tcl 8.5 environment, it could be useful to have a lighter-weight function to record Tcl

command calls. The Tcl_CreateObjTrace approach had a large overhead due to mutex

locks that were used around each trace call.

In the Tcl 8.6 environment, "stackless evaluation" has been introduced. This will require a

different mechanism to record location in Tcl command call stack for correlation with C call

stack.

Acknowledgements

We would like to thank Mark Young of Mentor Graphics for engaging discussions when

developing this functionality. We would also like to thank the Questa GUI development team

for testing this functionality.

Bibliography
Hamming, R. (1962). Numerical Methods for Scientists and Engineers. McGraw-Hill Education.

Tcl Library. (n.d.). Retrieved August 2013, from Tcl Developer Xchange!:

http://www.tcl.tk/man/tcl8.5/TclLib/contents.htm

