
Tcl Fast Track: From a Novel Concept to
Global Launch in Eleven Months

Clif Flynt
Noumena Corporation

Whitmore Lake, MI

Bruce Ross
The ROMaN Project, Inc

Cary, NC

September 6, 2013

Abstract
The LORACISTM Remote Monitoring software was developed for the

clinical trials industry to allow the rapid verification of reported data from
human studies while markedly reducing unproductive time and travel ex-
penses. The successful completion of this unique and complex software
was achieved in just eleven months due to our selection of Tcl as the pro-
gramming language.

1 Introduction

1.1 Clinical Trials and the Monitoring of Study Data

Every prescription drug on the global market, and all diagnostic and thera-
peutic devices, must first undergo a long process of scientific evaluation and
clinical testing (clinical trials) to find out if they are effective and safe for use.
In the U.S. the Food and Drug Administration (FDA) controls this approval
process; other nations have similar regulatory agencies.

These clinical trials are necessary and scientifically important, but are also
very expensive to conduct. In 2012, the global cost for all clinical trials ex-
ceeded $42 billion. Approximately 25% of the total cost for conducting a clin-
ical trial is spent on the verification and validation of the study data reported
by the investigating physicians. This process is called monitoring and involves
frequent travel to their clinics and hospitals for comparing the study medical
records versus the study data.

In the end, it is the consumers of health care who must pay these costs ev-
ery time our doctors write a prescription or orders a diagnostic test. In 2011,
the FDA issued a draft guidance document that encouraged the clinical trials
industry to develop new ways of monitoring clinical trials, including the adop-
tion of new technologies and implementation of risk-based methods. While
only a draft document, the FDA was giving study sponsors (e.g. pharmaceu-
tical companies), consulting firms (CROs, clinical research organizations), and

investigators the green light to develop new systems and processes to improve
the quality and lower the overall cost for each study.

LORACISTM Remote Monitoring (LORACIS) was conceived in early 2011,
prior to the FDAs publication of the draft guidance document; however, fol-
lowing that event our development time-line had to be compressed since it
was likely that other companies would create similar products.

1.2 Regulatory Background

Every clinical trial must comply with hundreds of international, Federal, state,
and local regulations or else risk being hit with fines, lawsuits, investigations,
and rejection of their study results. The full regulatory background is far be-
yond the scope of this paper, but the two most relevant categories of regula-
tions must be reviewed to place the rest of the story into its proper context.

Patient Privacy and Data Protections: The clinical trials industry is ar-
guably one of the most heavily regulated industries in the world. Each country
has one or more government agencies dedicated to creating regulations for the
research, manufacturing, packaging, and sales of drugs, medical devices, and
diagnostic tests in response to laws passed by their respective legislative or
judicial branches.

These agencies include the U.S. Food and Drug Administration (FDA) the
Health Canada Agency (HCA), and the European Medicines Agency (EMA). In
the U.S., there are additional government agencies with regulations that must
be complied with during the the conduct of clinical studies, including the De-
partment of Health and Human Services (DHHS) and the Department Home-
land Security (DHS). One of the more familiar of these non-FDA regulations is
the Health Insurance Portability and Accountability Act of 1996, better known
as HIPAA; an even more restrictive counterpart in Europe is the EU Directive
95/46/EC - The Data Protection Directive. Both require the protection of pa-
tient privacy and safeguarding of patient health information (PHI) regardless
of whether they are participating in a study.

Computer Systems Used in Clinical Trials: In 1997, the FDA first released
its regulations covering the use of electronic signatures and computer systems
in clinical trials as Title 21 Code of Federal Regulations, Part 11 Section 11.1
(a), now commonly shorted to 21 CFR Part 11. As computer technology has
advanced the regulation has been updated (2003, 2007) and will be updated
again as needed. Virtually all software, computer hardware, and electronic
systems that generate, transmit, store, or manipulate clinical trials data must
comply with this regulation.

1.3 Centralized Monitoring

One time-tested method for reducing the number of locations a monitor must
visit is to create a central repository of photocopied patient and study records.
However, in order to be acceptable for use in verification of study data, each
photocopied page should be certified (usually by initialing and dating of each

page by the person doing the copying) as a complete and accurate copy of
the original. Also, in order to comply with the privacy regulations all iden-
tifiable patient information (e.g. name, address, medical record number, and
month/day of birth) must be obliterated (redacted, de-identified) and replaced
with a study subject identification number. The resulting binder of photo-
copied records is called a shadow chart and may be, or not be, an accurate
compilation of the study records.

Shadow charts maintained in a central location (central monitoring) are
only possible for certain dispersed networks of study sites, and still require
significant travel time and cost to visit the central locations. Also, the timeli-
ness of the centralized files may range from good to abysmal. In recent years
more and more medical clinics and hospitals have been moving from the use
of paper to electronic medical records (EMR). EMRs have increased the poten-
tial risk of privacy breaches as more individuals are given access to the EMR
computer systems for medical as well as research purposes.

As a result, the FDA’s final guidance document (August 6, 2013) defined:

Required Functionality in an Effective Remote Monitoring Platform

The functionality required in a comprehensive remote monitoring plat-
form should include the following attributes:

• Compliance with all applicable privacy protection regulations, in-
cluding HIPAA and EU-DPD

• Compliance with 21 CFR Part 11

• Compatibility with commonplace computer and server systems

• Accessible from any computer with Internet access

• Ease of use for study site personnel, monitors, and other sponsor per-
sonnel

• Maintain strong document security protection at all times

• Support for multiple global languages

• Permanent audit trail

• Overall cost for use must be less than traditional monitoring systems

1.4 The Winding Road that Led to TCL

In June 2011, ROMaN began talks with several document management soft-
ware development firms in search of one with the requisite experience, capa-
bility, and interest in creating our remote monitoring application. From the
beginning, most were surprised by the proposed complexity of functions and
security features outlined in the draft technical specifications; some declined to
offer proposals based on this alone. Others were intrigued but could not fit the
project into their schedules for many months to even years later, while others

yet were not interested as their potential profit for making our products was
simply too small.

By September 2011, a potential programming firm was located in New
Zealand that initially expressed interested and had relevant experience plus
a good pedigree - they have produced cutting edge document management
software for more than a decade. Our CEO visited the company and within
days they produced a very rough proof of concept application that showed
the most critical component called the Associated Data File could, in fact, be
made. Unfortunately, as negotiations progressed during the following months
it became apparent that several other important features could not be made by
their team while their projected budget grew beyond our ability to proceed.

In late October 2012, we contacted an expert in an older programming lan-
guage known as Clarion. This language was first released in 1986 and though
a bit antiquated, its most appealing feature is the use of a proprietary database
engine that would allow for systemic encryption of the data as well as its use
of readily available ”templates” (both open source and commercially available)
that can be quickly combined to produce much larger packages of functional
code that would otherwise require weeks or months of more traditional pro-
gramming effort. Within a month he produced a more full-featured proof of
concept than his predecessors, and again it demonstrated the overall concept,
by then code-named LORACIS, was at least possible to achieve. Unfortunately,
over several months, it became apparent that Clarion had significant difficulty
in providing the needed functionality as the third-party template library used
to produce searchable PDF documents was not able to perform as was desired.
It was also difficult to interface with other components using .NET and other
more modern languages.

In February 2012, we approached Noumena Corporation based on referrals
from the author of one component we were in-licensing. They expressed inter-
est and following a verbal agreement, produced a proof of concept application
within a month. Unlike the two previous POC applications, his showed it was
possible to overcome the more worrisome challenges by using the Tcl program-
ming language. He was able to begin working in earnest by June 2012, and the
rest is history.

LORACISTM entered beta testing at actual clinical research centers during
October, and the first production version was locked down by May 2013 in
time for our scheduled global launch date of June 24, 2013.

This concludes the recitation of the motivation, challenges, and decision
pathways that led The ROMaN Project to use Tcl for creating what is today the
only comprehensive remote monitoring platform available to the clinical trials
industry. The next part of this paper is devoted to a more technical explanation
of how Tcl achieved this goal.

2 Solution

Some languages and development environments have ceilings that limit their
usefulness.

The Clarion approach to developing the LORACISTM application ran into
difficulties when there was a need for functionality that didn’t exist within the
Clarion framework.

In his keynote talk at the 1997 Tcl/Tk Conference Brian Kernighan reported
that he found Visual Basic to be a faster tool for developing an application
than Tcl/Tk, but he reached a point where the functionality he needed was not
available, and the application could not be completed.

He pointed out that Tcl/Tk does not have a ceiling that an application can-
not exceed.

Many languages share this facility of having no ceiling - ”C” is a classic
example. However, many of the limitless languages are also mid-level or low-
level languages that carry long development times with them.

2.1 Choosing a development platform

The first step in determining if the application could be created and what the
best development language would be was to define the base sets of functional-
ity.

The primary requirements for this application are:

• Authenticate a local user.

• Validate per site and per study subscription licenses.

• Support multiple languages and alphabets.

• Display shrink-wrap-quality GUI.

• Interact with an encrypted database.

• Accept document from scanner.

• Accept document from print queue.

• Accept existing document.

• OCR process a scanned document.

• Redact personal information from PDF document.

• Modify PDF File metadata.

• Encrypt processed document.

• Perform remote authentication.

• Transmit document via SFTP.

The short development cycle forced the decision to a high-level scripting
language as the primary language.

The need to interact with external libraries suggested a language with strong
support for connecting to C and C++ libraries.

The following features are either natively supported by Tcl, are available in
the Tcllib libraries or can be easily constructed with a few lines of code:

• Authenticate a local user.

• Validate per site and per study subscription licenses.

• Support international alphabets.

• Display shrink-wrap-quality GUI.

• Interact with an encrypted database.

• Encrypt processed document.

The other requirements could be met by interacting with existing external
libraries which were available either as .NET components or linkable libraries.

After considering multiple languages, Tcl was the obvious choice:

• Tcl is a good platform for rapid prototyping.

• Tcl has strong support for integrating with external packages. Tcl sup-
ports .NET interactions as well as shared library, direct linking to external
libraries and executing separate tasks.

• Tcl uses 16-bit Unicode for all strings, which provides strong internation-
alization support.

• Tk delivers high-quality GUI tools.

• Tcl tools are mature and stable. In particular the database interface with
SQLite is very stable.

• Tcllib provides a wide range of industrial strength libraries.

Tcl is a high level language, thus application development is faster in Tcl
than it would be in C or Java.

It’s estimated that one line of Tcl replaces 10 lines of ”C” code. In The Mythi-
cal Man-Month Fred Brooks claims that a programmer produces 10 lines of code
per day, regardless of the language. Using a high-level scripting language in-
stead of a mid-level compiled language reduces the development time by a
factor of 10.

Language features are also important. A language that lacks key function-
ality will delay a project’s completion while the programmers work around or
correct the deficiencies.

Tcl has long been plagued by the lack of a native Object Oriented support.
OO Programming is not the answer to all problems, but it is a good answer
for some problems. The lack of native OO support hasn’t stopped people from
developing applications using [incr Tcl], SNIT or other OO extensions, but
having the OO support in the core where it’s guaranteed to be available is a
benefit.

Tcl 8.6 beta was used for the initial development of the ROMaN applica-
tion. When the first 8.6 release became available that became the base platform.
TclOO features were used effectively for complex widgets that were developed
for this application.

2.2 Assembling the tools

Tcl stands for Tool Control Language, but that doesn’t make it a complete tool-
box. There is a rich set of development tools available for Tcl applications.
Using these can cut development time even further.

Developing the ROMaN application used several off-the-shelf and semi-
custom tools including:

• Tcllib

• SQLite-SEE

• SWIG

• EditTable

• tktest

2.2.1 Tcllib

Tcllib is not part of the standard Tcl distribution, but as perl would be less
useful without CPAN, Tcl is enhanced by downloading Tcllib either from Ac-
tiveState or http://core.tcl.tk/tcllib.

These Tcllib packages were used in the ROMaN desktop application:
twapi Invoke windows API calls to set focus, raise windows,

when invoking Windows native applications
dde To communicate with native windows applications.
tcom Interact with .NET objects
des md5
sha256
cryptkit

Encrypting and decrypting data files

msgcat Internationalization
The Tcllib code collection is a controlled library. The contributions to

Tcllib include validation tests and documentation.

2.2.2 SQLite

The SQLite database library was developed by D. Richard Hipp and was de-
scribed at his invited talk and tutorials at the 2006 Tcl conference. SQLite is
an embeddable SQL engine that uses a single file as the database rather than
using a client and server. It is ideal for applications that have complex data rep-
resentation requirements but do not need to control transactions with multiple
writers.

SQLite has been distributed with Tcllib and other ”Batteries Included” Tcl
distributions for over a decade.

A downside to SQLite for this application is that an SQLite database can
be opened and read with the SQLite3 program. The SQLite database will
contain a patient’s personal information. Access to this information needs to
be restricted to only individuals who require access to it.

Richard also provides a non-free variant of SQLite (SQLite-SEE) that en-
crypts the database file. A user needs to know the encryption key in order to
access data in this file.

The SEE variant of SQLite solves the problem of restricting access to a pa-
tients personal data.

The SEE extension to SQLite supports the same Tcl interface as the usual
SQLite extension. This made it easy to use standard SQLite for the early proof-
of-concept and then purchase the SEE extension to be linked with the applica-
tion in the last phases.

2.2.3 SWIG

Tcl does not have native tools for manipulating a PDF file: changing the meta-
data, performing OCR, or adding watermarks. This functionality is provided
by the PDF-X library from Tracker Software:
http://www.tracker-software.com/.

This library is provided as linkable C and C++ dynamic link libraries. As
distributed they don’t interface with Tcl.

Fortunately, Tcl was designed to be interfaced to external libraries. The glue
to turn an external library into a Tcl extension is generally under 100 lines of
”C” code.

Getting data into and out of libraries that weren’t designed around Tcl’s
”everything is a string” mantra requires some ”C” code to translate from Tcl
Objects a function’s native float, int or struct formats.

This translation code is not difficult or tricky, but it’s faster to let a code
generator create it, rather they typing it by hand.

The SWIG application will examine an include file and generate the ”C”
glue code to link a library into a Tcl extension. SWIG stands for Simplified Wrap-
per and Interface Generator. This package was designed by David Beazley and
introduced at the Tcl conference in 1996. It’s available from
http://www.swig.org/

SWIG generates an Init function that invokes Tcl CreateObjCommand
to create the Tcl commands and also creates commands to translate from Tcl
format to native data formats required by the library.

In practice, the library’s include file usually needs to be modified, and re-
duced to just the parts of the API an application needs. The PDF-X library is
extensive, and only a half dozen entry points were needed for this application.
The need to rework the include file impacted the development time.

The CriTcl package is also useful for creating interfaces to external li-
braries. For example, CriTcl was used to create the cryptkit encryption
extension.

Using CriTcl would have avoided the cost for reworking the include file
at a cost of doing a bit more hand-coding and defining interfaces. I find CriTcl
to be better than SWIG for relatively simple external APIs, but the complexity
of the data structures used by the PDF-X API made SWIG’s parsing and code
generation more attractive than creating the glue code by hand.

2.2.4 EditTable

A data-centric project requires data entry screens. These are simple and easy
to write, but in the early phase of a project when the understanding of what’s
needed is changing, the time to recreate simple screens can add up.

The EditTable package will generate a data entry screen from an SQL
schema. It was described at the 2012 Tcl Conference.

The EditTable package is constructed using the TclOO mega-widget de-
sign pattern described by Donal Fellows (Tcl/Tk Proceedings 2009). This pat-
tern emulates a standard Tcl widget, allowing the new editTable object to be
created like any other Tk widget.

Syntax: editTable widgetName mixin dbEngine args

widgetName Name of the widget, normal Tk style
mixin Name of the db engine mixin
dbEngine Name of the db engine to use
args Optional arguments for opening the db engine

Creating an editTable connected to an SQLite database named test.db
would resemble:

set obj [editTable .t1 SQLITE3_support sqlite3 -dbArgs test.db]

Once an EditTable object has been created, the getSchema and makeGUI
methods will create a GUI that’s adequate for for testing and initial data entry.

The getSchema method retrieves schema information from the database
or another source. The default behavior is to query the database. This is used
internally to build GUIs for tables containing relations.

Syntax: editObj getSchema tableName

editObj A widget created with editTable command
getSchema Return the schema for a table
tableName Name of the table to return Schema for

The makeGUImethod is the workhorse that builds a GUI within the editTable
frame. It can build a GUI for any table defined within the database. The
editTable object can rebuild itself to display a different table as necessary.
The default GUI includes buttons to perform simple searches, and add, delete
or modify a record.

Syntax: editObj makeGUI schema

editObj A widget created with editTable command
makeGUI Construct a GUI within the editTable object frame.
schema a Schema - may be return from getSchema

The next example shows initializing a sample database and creating a sim-
ple GUI for a table.

toplevel .tt
set obj [editTable .tt.t1 TDBC_support sqlite3 -dbArgs test2.db]
set db [$obj config db]

$db allrows {
CREATE TABLE person (

id integer unique primary key,
loginid text, -- loginID
fname text, -- First name
lname text, -- Last name
addrRef integer references addr
);

}

$obj makeGUI [$obj getSchema person]
$obj config -table person
$obj populateBySearch "loginid = ’aaa’"

pack .tt.t1

The generated GUI resembles this:

Figure 1: Un-instrumented EditTable GUI

This was suitable for the initial development and constructing bits of func-
tionality. The advantage from a development time perspective is that no time
was wasted rebuilding better looking GUIs while the schema was still evolv-
ing.

The default GUI generated by EditTable was not suitable for end users,
but with an instrumented schema it was quite adequate.

Figure 2: LORACISTM

2.2.5 tktest

Coding projects always proceed faster at the beginning than they do at the
end. It can feel like every day completes half of the remaining tasks, and final
completion will take forever.

One reason that projects slow as they reach completion is that developing
and testing standalone pieces is relatively fast compared to integrating and
testing the final application, and then re-testing everything when a low-level
bug is discovered.

The amount of time spent in re-running tests gets longer, and when the
tests are run by hand the number of times they need to be restarted because of
a mis-key increases.

The TkReplay application was developed by Charles Crowley, and re-
ported at the 1995 Tcl Conference. Clif Flynt updated and expanded this into
the tktest package and described in a paper at the 2004 Tcl conference.

In brief, Tk widgets can be configured with a binding to report when an
event occurs. These events can then be played back to simulate a user changing
focus, typing keys, and clicking buttons.

Figure 3: tktest

The tktest application was used extensively during the middle and end
phases of this project.

During the mid-phase of project, when individual pieces are being inte-
grated and the functionality is being extended it’s very common to need to
step through several screens and inputs to get to the section of the application
where new code is being created and tested.

As that sequence of events gets longer, the probability of mis-typing and
needing to restart gets larger and the fatigue factor on the developer grows.
Being able to save the initial steps that lead to the new code and replay them
both speeds the code/test/debug debug cycle, and enables the programmer to
be productive for a longer period of time.

The LORACIS suite of applications is not quite shrink-wrap. The Loracis
client and servers must be configured for initial licenses, studies and authenti-
cation tokens. The configuration is currently done in separate steps and must
be validated before an installation kit is sent to the user.

The final validation of a distribution involves selecting, processing and up-
loading 16 documents. For obvious reasons, tktest is used to validate the
distributions before they are sent to a client.

2.3 Conclusion

The extensible nature of Tcl/Tk meant that the complex LORACISTM applica-
tion could be written using Tcl/Tk.

The high-level nature of the Tcl/Tk meant that the reduced development
cycle was possible using Tcl/Tk.

The available libraries and packages meant that production grade code did
not need to be written from scratch, saving even more time.

Code generation and testing packages reduced development time yet again.
In the end, a revolutionary new product was taken from conception to dis-

tribution in less than a calendar year and about 6 man months of developer
time. This is a fraction of the time and cost that would have been required us-
ing other tools. The final product includes about 8,000 lines of new Tcl code
and 300 lines of ”C” code.

