
Cmdr

Andreas Kupries ActiveState Software Inc. 409 Granville Vancouver, BC CA

andreask@ActiveState.com

ABSTRACT
The cmdr framework is a set of 12 related Tcl packages for the easy specification of the interfaces of command line applications.
This means the declaration of the set of commands provided by the application, and their parameters, be they options or
positional inputs. At runtime the internals of the framework, guided by the chosen specification, handle the bulk of processing
$::argv. This covers determining the requested command, mapping argument words to command parameters, and validating
them. Additional features of the runtime are an integrated help system and interactive command line shells with basic
command and argument completion.

1. INTRODUCTION
Following a short overview of the framework’s history, the bulk of the paper describes its design and internal structure.

The paper concludes with a dicussion of limitations, warts, and possible future directions to take.
Development of cmdr[3] (speak Commander) began as a rewrite of the stackato command line client’s[1] because of various

problems with the existing system, namely the use a global namespace for all options of all commands, and the hacks needed
to support hierarchical commands.

Wanted was a system able to at least handle most of the tasks of command line processing automatically, like parsing
the list of words, determining the requested command, separating named options from positional inputs, matching argument
words to the parameter, etc.

Further wanted were facilities to ease the implementation of less common tasks, like validation of parameter values, trans-
forming from external (string) to internal representations, performing checks across multiple parameters, etc.

Existing packages like getopt[10] and cmdline[8] were much too simple for all of the above, so development of a new package
was begun. The TEPAM[8] package, which actually comes relatively near to the requirements, was not remembered at
the time. It is also more geared towards the creation of procedures with more complex argument processing, and not the
description of the entire command line syntax of applications.

A requirement going beyond the above, and initially more of a wish, was support for an interactive command line shell.
This spawned the development of a CriTcl[4] binding[9] to the linenoise[2] C library which portably handles all the necessary
low-level tasks regarding terminal access and control. Build on top of this cmdr not only supports command line shells in
various places of the runtime, but also has command line completion.

This paper describes version 0.4 of the framework.
As a small motivating example see listing 1 which specifies a command line providing 3 commands for the management of

command aliases. This is actually a slice of stackato’s interface, modified to fit.
While this example does not have the necessary backend procedures required to actually run the commands, it is enough

to demonstrate the integrated help system. Listing 2 shows the output of tclsh ./alias0.tcl help.
The decoupling of command names from their implementations we see here makes it easy to re-arrange and re-label the

user visible commands without having to touch any other part of the code.
Listing 3 for example shows how the specification would look like if a command hierarchy is prefered over a flat set of

names.
The associated help is shown in listing 2, albeit in the shortest variant possible, the result of running the command tclsh

./alias1.tcl help --list 1.

1And a bit of manual breaking of lines normally done automatically, guided by the terminal width. The default of 80 did not
fit here.

2. SPECIFICATION
The domain specific language demonstrated in the previous section is the first, and main, interface seen by a developer.
It actually consists of three separate languages, for the specification of the overall command hierarchy (see table 1), of the

individual commands in that hierarchy (see table 2), and their parameters (see table 3).

2.1 General
The conceptual model underneath the command hierarchy is that of a tree.
The inner nodes of the tree represent command ensembles, here called “officer”s. Each officer knows one or more commands,

and delegates actual execution to their respective specification, which may be another officer, or a private.
The leaf nodes of the tree represent the individual commands, here called “private”s. Each private is responsible for a single

action, and knows how to perform it and the parameters used to configure that action at runtime.
The same model is graphically presented in the Entity-Relationship-Diagram 1 below.

Figure 1: The Entities and their Relations

The not yet described “Actor” is the common base class for the ensembles and commands. The other, “Config”, is the
second interface seen by the developer, as the sole argument to the action callback argument of private (see 2nd-last row of
table 1). This container holds all the declared parameters of the command the action is invoked for, and provides easy access
to them through its methods at the time “Execution” (→ 3.4).

2.2 Officers
The three most common DSL commands used to specify officers (officer, private, and description, see table 1) have

already been demonstrated in the examples (see listings 1 and 3).

alias name = name’... Declare an alternate name for a command path.
alias name Declare an alternate name for the previous command.
common name script Declare shared code block.
default Set last command as default.
description text Set help text for the current ensemble.
ehandler cmdprefix Execution Interposition.
officer name script Declare a nested ensemble.
private name script cmdprefix Declare a simple command. The script uses the commands found in table 2.
undocumented Hide ensemble from help.

Table 1: Officer DSL

This leaves us with five commands not shown yet.
Of these alias is a structuring command, for the command hierarchy. It main uses are the creating of alternate com-

mand names, and of shortcuts through the command hierarchy. For example, stackato’s command specification for alias
management is more like listing 3 and uses shortcuts similar to what is shown in listing 5 to provide the look of a flat
namespace.

While common is a structuring command as well, its use is in structuring the specification itself. It creates named values,
usually code blocks, which can be shared between specifications. Each block is visible in the current officer and its subordinates,
but not to siblings. An example of such a block is shown in listing 6 (page), where it defines an option to access the subsystem
for debug narative [8]. The example is actually special, as the code block named *all* is reserved by the framework. This
code block, if defined, is automatically included at the front of all private specifications, i.e. shared across all specified
commands. A very important trait for the option in the example, as it makes the debug setup available to all commands
without having to explicitly include the block, and possibly forgetting such.

Use of the undocumented command influences the help generation, excluding all officers marked with it (and their sub-
ordinates) from the help. Note that subordinates reachable through aliases may be included, under the alias name, if not
explicitly excluded themselves.

The last two commands influence the framework’s behaviour at runtime
The default command sets up a default command to use at runtime if the currently processed word does not match any

of the commands known to the officer. Without such a default an error would be thrown instead.
The ehandler command is possibly the most disruptive. It should normally only the specified at the top of the whole

hierarchy. At runtime the framework will call the command prefix specified through it with a single argument, a script whose
execution is equivalent to the phases “Parsing”, “Comletion”, and “Execution” of the framework, as described in section ??.
The handler must call this script, and can perform any application-specific actions before and after.

The handler’s main uses are the capturing and handling of application-specific errors which should not abort the application,
or shown as Tcl stacktrace, and for the cleanup of application-specific transient settings the parameter callbacks and/or
command implementations may have set during their execution. This is especially important if the interactive command line
shells of the framework are not disabled. Without such a handler and its bespoke cleanup code transient settings will leak
between multiple commands run from such a shell, something which is definitely not wanted.

2.3 Privates
The specification of simple commands is relatively simple, with only seven commands (see table 2). The important parts

are found in the parameter specifications, explained in the next section.

description text Set help text for command.
interactive Allow interactive shell.
undocumented Hide command from help.
use name Execute the named common block here.
input name help script Declare a positional parameter. See table 3 for the available commands.
option name help script Declare a named parameter. See table 3 for the available commands.
state name help script Declare a hidden parameter. See table 3 for the available commands.

Table 2: Private DSL

The commands description and undocumented behave like the equivalents for officers.
use is the counterpart to common of officers, inserting the named code block it defines into the specification.
interactive influences the runtime. By default the only interactive command line shells are associated with the officers.

Setting this marker activates such a shell for the command, to be invoked when required parameters do not have a value. The
global command cmdr::config interactive can be used to globally activate this type of shell for all commands.

The remaining three commands all add one of the three kinds of parameters to the command.

2.4 Parameters
The parameters of private commands are the heart of the system, providing the space needed to transfer the command

arguments to the implementations, and having the most attributes controlling their behaviour.
This complexity is mitigated strongly by the use of sensible defaults for each of the three possible kinds of parameter, i.e.

positional inputs, named options, and state hidden from the command line. Each kind has its own construction command
in the DSL for private, specifying the common information which cannot have defaults, i.e. the name identifying it to the
system (→ 2.4.1, the help text describing it in informal speech, and, of course, the specification itself (see table 2).

The association between the specification commands, parameter attributes, and their defaults is found in table 3, with each
group explained in the following sections.

2.4.1 Naming
We have two commands to influence the visible naming of all parameters.
As background, all parameters are named for proper identification within the framework and other Tcl code, i.e. the

various calbacks, including a private’s action. This system name has to be unique within the private a parameter belongs
to. Beyond that however the visible parameters have to be identified within help texts, and, in case of options, for detection
during “Parsing” (→ 3.2). That is the visible naming, seen by a user of any application whose command line processing is
based on the cmdr framework.

The label command handles this, using the system name as default. Note that in most cases this default is good enough.
The only use case seen so far is when two semantically equivalent input and option parameters clash, requiring different
internal names due to the requirement for uniqueness, yet also the same visible name and flag within the help to highight
their connection and equivalence.

In case of options the label command and its default specifies the name of the primary flag recognized during “Parsing”.
If that is not enough for a specific option the command alias allows the specification of any number additional flags to
be recognized. Note however that the framework automatically recognizes not only the specified flags, but also all unique
prefixes, obviating the need for alias in many cases.

2.4.2 General control
The general handling of a parameter is influenced by three commands.
Like officers and privates parameters can be hidden from the generated help. The command for this is undocumented,

the same as for the first two . This is mainly of use to hide options giving an application developer access to the internals of

Command Attribute Input Option State Notes
– name – – – Parameter name, unique

within the private.
– description – – – Help text.
– visible yes yes no Parameter is (in)visible to

“Parsing” (→ 3.2).
– ordered yes no n/a Access during “Parsing” (→

3.2) is ordered.
label text label name name n/a Name to use in the help,

and as primary flag (for an
option).

alias name aliases n/a none n/a Declare alternate flag for an
option to be recognized by.
Multiple aliases are allowed.

optional optionality no n/a (yes) n/a (no) Declare input as optional.
test acceptance threshold n/a n/a Control the matching of

words to optional inputs (→
??).

undocumented undocumented no no n/a (yes) Declare as hidden from help.
list listness no no no Declare as list-valued.
default value default ∗ ∗ ∗ Set constant default value.

Details in section 2.4.3.
generate cmdprefix generate ∗ ∗ ∗ Set callback returning the

default value. Details in sec-
tion 2.4.3.

interact ?prompt? interact, prompt ∗ ∗ ∗ Enable the interactive en-
try of the string value. De-
fault prompt derives from
the label. Details in section
2.4.3.

defered defered no no yes Defer calculation of the in-
ternal representation until
demanded.

immediate defered yes yes no Complement of defered.
Calculate the internal rep-
resentation during “Comple-
tion” (→ 3.3).

presence presence no no n/a Declare as boolean option

without argument. Implies
default and validate set-
tings.

validate cmdprefix validate ∗ ∗ ∗ Declare validation type. De-
tails in section 2.4.4.

when-complete cmdprefix when-complete none none none Set callback executed when
the value becomes known.

when-set cmdprefix when-set none none none Set callback executed when
the string value becomes
known.

Table 3: Parameters: DSL, Attributes, and Defaults

their application, something a regular has no need of, and doesn’t have to know about.
Next is the possibility of specific inputs not being required to be set by the user of the application, i.e. having sensible

defaults (see also validation in section2.4.4). To mark such parameters use the command optional. During “Parsing” (→
3.2) the system will then expend some effort to determine whether an argument word should be assigned to such a parameter,
or not.

The test command is related to this, switching from the standard regime based on counting to a different one based on
validation. The details are explained in section 3.2.

2.4.3 Representations
An important concept of parameters is something taken up from Tcl itself. The differentation between string and internal

representations. Where Tcl uses internal representations to speed up its execution here this separation is that between the
information delivered to the application by a user, and the application-specific data structures behind them.

All parameters will have an internal representation. This is usually derived from the string representation provided by the
user. The details of that process are explained in section 2.4.4 about validation types. However we have cases where the user
cannot specify a string representation (states), or is allowed to choose not to (optional inputs, options). For these cases
three specification commands are made available enabling us to programmatically choose the internal representation. They
are default, generate, and interact.

The first, default, provides a constant value for the internal representation. The second, generate, provides a callback to
compute the internal representation at runtime. This is useful if the default is something which cannot be captured as a fixed
value, for example a handle to some resource, or a dynamically created object. These two commands exclude each other, i.e.
only of them can be specified.

If none of them are specified, and we need a default (see the cases above) a default is chosen per the two rules below:

1. Use the empty string for a list parameter.

2. Use the default value supplied by the chosen validation type (See section 2.4.4).

The third command, interact, actually does not specify an internal representation, but activates another method for the
user to specify a string value for the parameter, outside of the command line. As such it has priority over either default and
generate, and can be specified with either. A parameter marked with it will interactively ask the user for a value if none was
specified on the command line.

To recapitulate:

1. A string representation specified on the command line has the highest priority and goes through the chosen validation
type to get the associated internal representation.

2. If activated via interact a small shell is run asking the user for a value (or more, as per list). The result goes through
the chosen validation type to get the associated internal representation.

3. After that the internal representation is either the declared default, or the result of invoking the generate callback.
As internal representations they are not run through the chosen validation type.

A command just noted in the recapitulation is list. It is used to mark parameters whose string and thus internal value
should be treated as a list. This affects the handling of the parameter during “Parsing” (→ 3.2), by interact above, and the
use of the validation type. The last two ask for multiple values, and feed the elements of the string value separately through
validation instead of just the string value in one. During “Parsing” treatment of options changes from keeping only the last
assigned value to accumulation of all values. Similarly a list-input takes all remaining words on the command line for itself
instead of just the current word. Because of this list-inputs are only allowed as the last parameter of a private.

The last two specification commands dealing with the representations control when the internal representation is created.
A defered parameter will do it on-demand, on the first access to its value. A immediate parameter on the other hand will
do this during “Completion” (→ 3.3).

2.4.4 Validation
The answer to the necessity of moving between the string and internal representations described in the previous section are

the validation types. Given a string representation they either return the associated internal representation or raise an error,
signaling that the input was illegal. This part of their work, the verification of the legality of the input string gave them their
name.

Because of the same necessity all parameters must have a validation type assigned to them, and the system will choose
which, if the user did not. This choice is made per the six rules below and always returns one of the standard types shown
in table 4.

1. Use “identity” if a generate callback is specified.

2. Use “boolean” if no default is specified and the parameter is an option.

3. Use “identity” if no default is specified and the parameter is an input.

4. Use “boolean” if the specified default value is a Tcl boolean.

5. Use “integer” if the specified default value is a Tcl integer.

6. Use “identity” as fallback of last resort.

Name Complete-able Accepts
boolean yes A Tcl boolean
identity no All strings
≡ pass
≡ str
integer no A Tcl integer
rdirectory yes A readable directory name
rfile yes A readable file name
rpath yes A readable path
rwdirectory yes A read/writable directory name
rwfile yes A read/writable file name
rwpath yes A read/writable path

Table 4: Builtin Validation Types

The general concept of validation types was taken from snit [7], and modified to suit cmdr. Where snit’s types expect
only a single method to validate the input cmdr expects all types to support an ensemble of four methods, one for the basic
validation and transformation of the input, another for the release of any internal representation so generated, plus delivery
of a default representation and support for command line completion. The details (method names, signatures, etc.) can be
found in table 5.

{∗}vtype... Meaning
... complete p x Return the list of legal string representations for the type and parameter p which have the incomplete

word x as their prefix.
... default p Return the default internal representation for the type and parameter p.

... release p x Release the (resources associated with the) internal representation x of parameter p.

... validate p x Verify that x is a legal string representation for p, and return the associated internal representation.

Table 5: Validation Type Methods

As an example the implementation of the standard boolean validation type is shown in listing 7. Note that while this
example uses a namespace ensemble other methods are possible too, i.e. all the various object systems for Tcl would be
suitable as well.

It should be noted that while snit’s validation types in principle allow for the transformation of input into a disparate
internal representation, they never went so far as to allow complex representations which might require the release of resources
after use.

Regarding the timing of a validation type’s use of its methods see table 7 about the association of phases and callbacks.
The validate and release methods are primarily used during either “Completion” (→ 3.3) or “Execution” (→ 3.4),

depending on the chosen deferal state. They may also be used during “Parsing” (→ 3.2), for optional inputs under the
test-regime (→ 2.4.2).

The complete method will be used whereever the system activates an interactive command line shell where arguments may
be assigned to parameters.

The default method on the other hand can expect to be invoked during “Dispatch” (→ 3.1), as part of the system’s
declaration processing, if not preempted by default and generate declarations for the parameter. Note here that the
default method has the same signature as a generate callback and can be used as such. This is actually needed and useful
when the default internal representation for a validation type cannot be expressed as a fixed value and its creation while
parsing the specification itself is too early. We can still use the validation type for its generation, by hooking it explicitly into
generate to change the timing of its invokation.

Not yet discussed so far is presence. This is best handled as part of the wider area of options with a boolean validation type
assigned to them. These have associated special behaviours, both in the handling of the specification, and during “Parsing”
(→ 3.2).

First, normal boolean options. They have automatic aliases declared for them, derived from their primary flag. An
option named “foo” will have an alias of “no-foo”, and the reverse. During parsing the “foo” and “no-foo” flags have inverse
semantics, and both are allowed to occur without option argument following the flag. This is in contrast to all other options
which must have such an argument. The parser essentially uses the validation type to decide if the word after the flag is a
proper boolean value, or not, i.e. an argument to assign to the parameter, or not.

Now presence declares a variant of the above, a boolean option without the automatic aliases, and never taking an
argument during “Parsing” (→ 3.2). Its mere presence on the command line will set its parameter. Their default is
consequently fixed to “false” as well.

2.4.5 Signaling
Of the four callbacks supported by parameters the first two, generate and validate have been described already, in the

sections 2.4.3 about representations and 2.4.4 about validation types, respectively.
This section explains the commonalities between the callbacks in general, and the last two, for notifications about state

changes in detail.
All callbacks are treated as command prefixes, not scripts. There are no placeholder substitutions, only arguments added

to each command prefix on invokation. This does not harm the generality of the system, as complex scripts can be used via
procedures or equivalents (i.e. apply).

The signatures expected by the system are shown in the tables 6 and 5.

Callback Signature
generate cmd {∗}$cmd param

validate cmd See table 5
when-complete cmd {∗}$cmd param intrep

when-set cmd {∗}$cmd param string

Table 6: Callback signatures

The last two callbacks not yet described are the two state-change callbacks defined via when-set and when-complete.
They are invoked when either the string representation of their parameter is set (when-set), or their internal representation
(when-complete). Through them the framework can actively drive parts of the application while processing the command
line, whereas normally the application drives access to parameters through their methods (see table 9).

Dispatch Parsing Completion Execution
validate (default) ∗
validate (complete) ∗ immediate defered

when-set ∗
generate immediate defered

validate (validate) test immediate defered

validate (release) test immediate defered

when-complete immediate defered

Table 7: Execution Phases and Callbacks

Due to their nature these callbacks are invoked at runtime during either “Parsing” (→ 3.2), “Completion” (→ 3.3), or
“Execution” (→ 3.4). The details are shown in table 7. The specification commands influencing the timing, i.e. forcing the
use in a specific phase are shown in the intersection of callback and phase.

3. EXECUTION
At runtime a command line is processed in four distinct phases, “Dispatch” (→ 3.1), “Parsing” (→ 3.2), “Completion” (→

3.3), and “Execution” (→ 3.4), explained in more detail in the following sections.

3.1 Dispatch
The first phase determines the private to use. To this end it processes words from the command line and uses them to

navigate the tree of officers until a private is reached.
Each word of the command line is treated as the name of the officer instance to descend into. An error will be thrown

when encountering a name for which there is no known actor2, and the current officer has no default declared for it.
On the converse, when reaching the end of the command line but not reaching a private the framework will not throw

an error. It will start an interactive command line shell instead. This shell provides access to exactly the commands of the
officer which was reached, plus two pseudo-commands to either exit this shell or gain help (.exit, and .help).

Execution of the command tree specification, i.e. generation of the associated internal cmdr data structures, is intertwined
with this descend through the command tree. I.e. instead of processing the entire specification in full it is lazily unfolded on
demand, ignoring all parts which are not needed. Note that the generated data structures are not destroyed after “Execution”
(→ 3.4), but kept, avoiding the need to re-parse the parts of the specification already used at least once when an interactive
command line shell is active.

2officer or private

3.2 Parsing
This is the most complex phase internally, having to assign the left-over words to the parameters of the chosen private,

taking into account the kind of parameters, their requiredness, listness, and other attributes.
Generally processing the words from left to right options are detected in all positions, through their flags (primary, aliases,

and all unique prefixes), followed by their (string) value to assign.
When a word cannot be the flag for an option the positional inputs are considered, in order of their declarations. For a

mandatory input the word is simply assigned as its string value and processing continues with the next word, and the next
input, if any. Operation becomes more complex when the input under consideration is optional. Now it is necessary to
truly decide if the word should be assigned to this input or the following.

The standard method for this decision is to count words and compare to the count of mandatory inputs left. If there
are more words available than required to satisfiy all mandatory inputs, then we can and do assign the current word to the
optional input. Otherwise the current input is skipped and we consider the next. A set of condensed examples can be found
in table 8, showing how a various numbers of argument words are assigned to a specific set of inputs, optional and non.
This is called the “threshold” algorithm.

Parameter A? B C? D? E
#Required 2 1 1
2 arguments: a b
3 arguments: a b c
4 arguments: a b c d
5 arguments: a b c d e

Table 8: Example: Mapping arguments to optional inputs by threshold

The non-triviality in the above description is in the phrase to “count words”. We cannot simply count all words left
on the command line. To get a proper count we have discard/ignore all words belonging to options. At this point the
processor essentially works ahead, processing and removing all flags/options and their arguments from the command line
before performing the comparison and making its decision.

The whole behaviour however can be changed via test (→ 2.4.2). Instead of counting words the current word is run through
the validation type of the current input. On acceptance the value is assigned to it, otherwise that input is skipped and the
next one put under consideration.

After all of the above the system will process any options found after the last word assigned to the last input to consider.
Errors are thrown if we either find more words than inputs to assign to, or encountering an unknown option flag. Note that

not having enough words for all required inputs is not an error unless the framework is not allowed to start an interactive
shell. In this shell all parameters are mapped to shell commands taking a single argument, the string value of parameter to
assign. Additional five pseudo commands are available to either abort, or commit to the action, or gain help (.ok, .run,

.exit, .cancel, and .help).

Parameters marked as list-valued also trigger special behaviours. For options the assigned values get accumulated instead
of each new value overwriting the last. For inputs only one such parameter can exist, and will be the last of the private.
The processor now takes all remaining words and assign them to this parameter. If the list is also optional then options may
be processed ahead or not, depending on the chosen decision mode, as described for regular inputs above.

Then are the boolean and presence options modifying the handling of flags and flag arguments. The details of this were
already explained in section 2.4.4.

3.3 Completion
This phase is reached when all words of the command line have been processed and no error was thrown by the preceding

phases. At this point we know the private to use, and its parameters may have a string representation.
All immediate-mode parameters are now given their internal representation. The parameters marked as defered are ignored

here and will get theirs on first access by the backend.
This completion of parameters is done in their order of declaration within the enclosing private. Note that when parameters

have dependencies between them, i.e. the calculation of their internal representation requires the internal representation of
another parameter then this order may be violated as the requesting parameter triggers completion in the requested one on
access. If this is behaviour not wanted then it is the responsibility of the user specifying the private to place the parameters
into an order where all parameters access only previously completed parameters during their completion.

3.4 Execution
The last phase is also the most simple.
It only invokes the Tcl command prefix associated with the chosen private, providing it with the config instance holding

the parameter information extracted from the command line as its single argument.
Listing 8 is an example of very simple action implementations, matching to the initial example specifications in listings 1

and 3.
All parameters declared for the private are made accessible through individual methods associated with each. A parameter

named P is mapped to the method “@P”, with all methods provided by the parameter class accessible as sub-methods. This

general access to all methods may be removed in the future, restricting actions and callbacks to a safe subset. A first
approximation of such a set can be found in table 9.

cmdline True if the parameter accessible on command line.
config ... Access to the methods of the container the parameter belongs to, and thus all other

parameters of the private.
default Default value, if specified. See hasdefault.

defered True if the internal representation is generated on demand.
description ?detail? Help text. May be generated.
documented True if the parameter is not hidden from help.
forget Squash the internal representation. See also reset.

generator Command prefix to generate a default value (internal representation).
hasdefault True if a default value was specified. See default.

help Help structure describing the parameter.
interactive True if the parameter allows interactive entry of its value.
is type Check if the result of type matches the argument.
isbool True if the parametr is a boolean option.
list True if the parameter holds a list of values.
lock reason For use in when-set callbacks. Allows parameters to exclude each other’s use.
locker The reason set by lock, if any.
name The parameter’s name.
options List of option flags, if any.
ordered True if the parameter is positional.
presence True if the parameter is a boolean option not taking arguments.
primary option True if the provided flag name is the primary option to be recognized (instead of an

alias, or complement).
prompt Text used as prompt during interactive entry.
required True if the option is mandatory ((input) only).
reset Squash internal and string representations. See also forget.

self The parameter’s instance command
set value Programmatically set the string representation.
set? True if the string representation was set.
string Return the string representation, or error.
type Parameter type. One of input, option, or state.

validator Command prefix used to validate the string representation and transform it into the
internal representation.

value Return the internal representation. May calculate it now from the string representa-
tion.

when-complete Command prefix invoked when the internal representation is set.
when-set Command prefix invoked when the string representation is set.

Table 9: Parameter Methods

Calling “@P” without arguments is a shortcut for “@P value”, i.e. the retrieval of the associated internal representation.
Possibly calculating it if it is the first access and the parameter was in defered mode.

4. FUTURE DIRECTIONS
While I consider the framework to be quite mature, and it is already in use in a medium complex command line application,

i.e. stackato [1], it is not without warts, nor opportunities for extension and improvement.
For example, the entire distinction between immediate and defered parameters is possibly not required.
The main use of immediate and “Completion” (→ 3.3) was to generate the internal representation of all parameters before

invoking the action, validating all before use by the backend. Currently my thinking is beginning to doubt if that is as much
of an advantage as I thought, over the converse, i.e. having everything defered and validating each parameter on first access.
This would ignore all parameters not used by the chosen path through the code, leaving them unchecked. Which still offends
my sensibilities somewhat.

Then there are the error messages currently generated for missing parameters, superfluous arguments, unknown options,
etc. These are not as good as they could be, given the information available through the specification, i.e. all the help text.
It might make sense to actually generate the help of the command and make it a part of the general error message.

Furthermore, currently all options are associated with specific commands. While the common and use commands allow
the sharing of option definitions this is essentially duplication, even if hidden somewhat. Having actual global options not
associated with any command, yet available to all is a request recently made for stackato. This would require some changes
to “Dispatch” (→ 3.1), as it would have to recognize and process options as well, while navigating the command tree.

A wart I might have to live with is the hard-wired support for the special behaviours of boolean and presence options.

While I would like to replace that special code in “Parsing” (→ 3.2) with a general interface added to validation types and
then moving them into the boolean type I currently do not see how this general interface should look like.

What is possible, would be to extend the validation types with optional methods to support type-specific interactive entry
of values, to overide the simple shells currently used. These would then become fallbacks, used only for types without bespoke
interaction. Related to that is the idea of adding a menu based interactor to the current set of general string and list entry
interactors, to be used for validation types limited to a finite (and small) set of legal inputs. That is something which can be
determined already, by inspecting the result of a type’s complete method in response to an empty string.

A simple extension of the framework would the addition of more general validation types, i.e. useful to a broad class of
applications. At least the builtin integer type could be extended to allow sub-typing, i.e. restriction to a range of integers
instead of accepting all possible. Very application-specific validation types should be left out of the framework however.

On the side of the generated help the most important situations should be covered by the builtin formats, especially given
that the json format provides access to essentially the entire specification in a portable format, convertible to any other
format needed by a particular environment. Even so I am tempted to add direct support for at least doctools [8].

Structurally the help currently follows the hierarchy of commands and can show only either the single requested command,
or all commands of a specific sub-tree. While this is ok for basic use a nicer help might have its own hierarchy, splitting the
set of commands commands into logical sections which follow the use of the application instead. Support for this will require
additional specification commands declaring the section(s) an application command is in.

APPENDIX

A. REFERENCES

[1] Various, Stackato Client https://github.com/ActiveState/stackato-cli

[2] Andreas Kupries, Linenoise. https://github.com/andreas-kupries/linenoise/,
fork of Steve Bennet, https://github.com/msteveb/linenoise/,
fork of Antirez, https://github.com/antirez/linenoise/

[3] Andreas Kupries, Cmdr. https://core.tcl.tk/akupries/cmdr/

[4] Andreas Kupries, Critcl https://github.com/andreas-kupries/critcl/

[5] Andreas Kupries, Kettle. https://core.tcl.tk/akupries/kettle/

[6] Andreas Kupries, Linenoise Utilities. https://core.tcl.tk/akupries/linenoise-utilities

[7] Will Duquette, Snit.
https://core.tcl.tk/tcllib/doc/trunk/embedded/www/tcllib/files/modules/snit/snit.html#subsection11

[8] Various, Tcllib. https://core.tcl.tk/tcllib

[9] Andreas Kupries, Tcl Linenoise Binding. https://github.com/andreas-kupries/tcl-linenoise/

[10] Various, Tcl Core. https://core.tcl.tk/tcl/

B. LISTINGS

Listing 1: Simple alias management API
−∗− t c l −∗
package require Tcl 8 . 5
package require cmdr
#package require foo−backend

cmdr c r e a t e : : f o o foo {
pr i va t e a l i a s+ {

d e s c r i p t i o n {
Create a shor t cut for a command (p r e f i x) .

}
input name {

The name o f the new sho r t c u t .
} {

va l i d a t e : : f o o : : ba ckend : : v t : : no ta command
}
input command {

The command (p r e f i x) the name w i l l map t o .
} {

l i s t
}

} : : f o o : : b a c k e n d : : a l i a s : : a d d

p r i va t e a l i a s− {
d e s c r i p t i o n {

Remove a shor t cut by name.
}
input name {

The name o f the shor t cut to remove.
} {

va l i d a t e : : f o o : : b a c k e n d : : v t : : a l i a s n a m e
}

} : : f o o : : b a c k e n d : : a l i a s : : r e m o v e

p r i va t e a l i a s ? {
d e s c r i p t i o n {

L i s t the known a l i a s e s (sho r t cu t s) .
}

} : : f o o : : b a c k e n d : : a l i a s : : l i s t
}

f oo do {∗}$argv
exit

https://github.com/ActiveState/stackato-cli
https://github.com/andreas-kupries/linenoise/
https://github.com/msteveb/linenoise/
https://github.com/antirez/linenoise/
https://core.tcl.tk/akupries/cmdr/
https://github.com/andreas-kupries/critcl/
https://core.tcl.tk/akupries/kettle/
https://core.tcl.tk/akupries/linenoise-utilities
https://core.tcl.tk/tcllib/doc/trunk/embedded/www/tcllib/files/modules/snit/snit.html#subsection11
https://core.tcl.tk/tcllib
https://github.com/andreas-kupries/tcl-linenoise/
https://core.tcl.tk/tcl/

Listing 2: Help for Listing 1
a l i a s+ name command . . .

Create a shor t cut f o r a command (p r e f i x) .

name The name o f the new shor t cut .
command The command (p r e f i x) the name w i l l map to .

a l i a s − name
Remove a shor t cut by name .

name The name o f the shor t cut to remove .

a l i a s ?
L i s t the known a l i a s e s (sho r t cu t s) .

he lp [OPTIONS] ?cmdname . . . ?
Ret r i eve he lp f o r a command or command s e t . Without
arguments he lp f o r a l l commands i s g iven . The d e f au l t
format i s −− f u l l .

−− f u l l Act ivate f u l l form o f the he lp .
−− l i s t Act ivate l i s t form o f the he lp .
−−shor t Act ivate shor t form o f the he lp .

cmdname The e n t i r e command l i n e , the name o f the
command to get he lp f o r . This can be s e v e r a l
words .

Listing 3: Hierarchical commands
−∗− t c l −∗
package require Tcl 8 . 5
package require cmdr
#package require foo−backend

cmdr c r e a t e : : f o o foo {
o f f i c e r a l i a s {

d e s c r i p t i o n {
A c o l l e c t i o n o f commands to manage
u s e r− s p e c i f i c sho r t cu t s for command
entry

}

pr i va t e add {
d e s c r i p t i o n {

Create a shor t cut for a command (p r e f i x) .
}
input name {

The name o f the new sho r t c u t .
} {

va l i d a t e : : f o o : : ba ckend : : v t : : no ta command
}
input command {

The command (p r e f i x) the name w i l l map t o .
} {

l i s t
}

} : : f o o : : b a c k e n d : : a l i a s : : a d d

p r i va t e remove {
d e s c r i p t i o n {

Remove a shor t cut by name.
}
input name {

The name o f the shor t cut to remove.
} {

va l i d a t e : : f o o : : b a c k e n d : : v t : : a l i a s n a m e
}

} : : f o o : : b a c k e n d : : a l i a s : : r e m o v e

p r i va t e l i s t {
d e s c r i p t i o n {

L i s t the known a l i a s e s (sho r t cu t s) .
}

} : : f o o : : b a c k e n d : : a l i a s : : l i s t
}

}

f oo do {∗}$argv
exit

Listing 4: Help for Listing 3 (–list format)
a l i a s add name command . . .
a l i a s he lp [OPTIONS] ?cmdname . . . ?
a l i a s l i s t
a l i a s remove name
help [OPTIONS] ?cmdname . . . ?

Listing 5: Specifying alternate names
a l i a s a l i a s+ = a l i a s add
a l i a s a l i a s− = a l i a s remove
a l i a s a l i a s ? = a l i a s l i s t

Listing 6: Option shared by all commands
common ∗ a l l ∗ {

opt ion debug {
Act ivate c l i e n t i n t e r n a l t r a c i n g .

} {
undocumented
l i s t
when−complete [lambda {p tags } {

foreach t $tags { debug on $t }
}]

}
}

Listing 7: Validation type: Boolean

package require cmdr : :va l idate : : common

namespace eval : : cmd r : : v a l i d a t e : : b o o l e a n {
namespace export default va l i d a t e complete r e l e a s e
namespace ensemble c r e a t e

namespace import : : cmd r : : v a l i d a t e : : c ommon : : f a i l
namespace import : : cmdr : :va l idate : : common: :complete−enum

}

proc : : c m d r : : v a l i d a t e : : b o o l e a n : : r e l e a s e {p x} {
Simple i n t e r na l r e p r e s en t a t i on . Nothing to r e l e a s e .
return

}

proc : : c m d r : : v a l i d a t e : : b o o l e a n : : d e f a u l t {p} {
return no

}

proc : : cmd r : : v a l i d a t e : : b o o l e a n : : c omp l e t e {p x} {
x i s string r e p r e s en t a t i on . Resu l t as w e l l .
return [complete−enum {

yes no f a l s e t rue on o f f 0 1
} 1 $x]

}

proc : : c m d r : : v a l i d a t e : : b o o l e a n : : v a l i d a t e {p x} {
x i s string r e p r e s en t a t i on . Resu l t i s i n t e r na l r e p r e s en t a t i on .
i f { [string i s boolean − s t r i c t $x]} {

return $x
}
f a i l $p BOOLEAN ”a boolean ” $x

}

Listing 8: Simple alias management backend
−∗− t c l −∗−
#####################

namespace eval : : f o o : : b a c k e n d : : a l i a s {
namespace export l i s t add remove
namespace ensemble c r e a t e

}

#####################
Command implementat ions .

proc : : f o o : : b a c k e n d : : a l i a s : : l i s t { c on f i g } {
set a l i a s e s [manager known]

i f { [$ c on f i g @json]} {
puts [jmap a l i a s e s $ a l i a s e s]
return

}

[t a b l e : : d o t {Al ia s Command} {
foreach {name command} $ a l i a s e s {

$t add $name $command
}

} show d i sp l ay
return

}

proc : : f o o : : b a c k e n d : : a l i a s : : a d d { c on f i g } {
set name [$ con f i g @name]
set command [$ con f i g @command]

manager add $name $command
say [c o l o r green ” Su c c e s s f u l l y a l i a s e d ’$name ’ to ’$command ’ ”]
return

}

proc : : f o o : : b a c k e n d : : a l i a s : : r e m o v e { c on f i g } {
set name [$ con f i g @name]

i f { ! [manager has $name]} {
e r r [c o l o r red ”Unknown a l i a s ’ $name ’ ”]

} else {
manager remove $name
say [c o l o r green ” Su c c e s s f u l l y una l i a s ed ’$name ’ ”]

}
return

}

#####################
package provide f o o : : b a c k e n d : : a l i a s 0

	Introduction
	Specification
	General
	Officers
	Privates
	Parameters
	Naming
	General control
	Representations
	Validation
	Signaling

	Execution
	Dispatch
	Parsing
	Completion
	Execution

	Future Directions
	REFERENCES -9pt
	Listings

