
Toward RESTful Desktop Applications

William H. Duquette
Jet Propulsion Laboratory, California Institute of Technology

William.H.Duquette@jpl.nasa.gov

Abstract

The REpresentational State Transfer (REST) architecture includes: the use of Uniform Resource
Locators (URLs) to place a universe of data into a single namespace; the use of URL links within
the data to allow applications and users to navigate the universe of data; HTML/CSS for the
presentation of data; a limited set of operations that are available for all URLs; multiple content
types; and content negotiation when retrieving data from a URL. REST is primarily used in web
applications; however, pure desktop applications can also benefit from RESTful concepts and
technologies, and especially from the integration of web-like technologies with classic
application software. This paper describes how REST concepts and technology have been used
in the Athena simulation to present a vast sea of heterogeneous data to the user.

1. Background

The Athena Stability & Recovery Operations (S&RO) Simulation is a model of political actors
and the effects of their actions in a particular region of the world. The region is divided into
neighborhoods, in which reside various civilian groups. The actors have a variety of assets,
including money, military and police forces, and means of communication, which they use to
achieve their political ends. The extent to which they succeed depends on the attitudes of the
civilians, which change in response to current events. The model runs for a period of months to
years, and produces a vast quantity of data, all of which needs to be presented to the analyst in
some form or other.

The Problem

Athena stores most of its data in an SQLite3 run-time database (RDB). In Athena V2.0 most
data was made available to the user by taking the output of a particular database table or view
and throwing it into a tablelist-based browser.[1] Such a tabular display is useful; but when
the information about a particular entity, an actor, say, is extremely heterogeneous, one tabular
display cannot tell the whole story. It is possible to collect together the information about the
actor by looking across a number of tabular browsers…but not surprisingly our users thought
that the application ought to be doing this for them.

If only there was an easy way of presenting heterogeneous data to the user, while taking
advantage of relationships within the data as an aid to navigation….

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

The Solution

HTML/CSS is a powerful, well-understood means of presenting heterogeneous data to the user.
Uniform Resource Indicators (URIs) are a powerful means of identifying specific resources to
present to the user from within a vast sea of such resources. Links to URIs embedded in the data
are a powerful means of allowing the user (or the application) to navigate the sea of data. The
resource pointed at by a URI can exist in multiple content-types; through content negotiation, the
client can retrieve the content-type that is most useful for its purposes. These have generally
been used in web applications. However, there is no reason why these concepts cannot be
fruitfully used in the desktop environment within the context of a single application with no
network interfaces, when the application’s data model calls for it.

2. The Desktop REST Architecture

HTML, URIs, and the rest of the web technologies described above were created to support an
architecture called REpresentational State Transfer (REST) [2]; an application that uses REST is
called a RESTful application. REST is a web architecture; this section describes how we have
modified the basic concept to create a desktop REST architecture within our application.

REST: A Summary

A RESTful application, or client, accesses resources: collections of data, or indeed any kind of
entity, by means of Uniform Resource Indicators (URIs), of which there are two kinds, Uniform
Resource Locators (URLs), for resources that can be located and retrieved on-line, and Uniform
Resource Names, which are unique names for entities that exist off-line.

The client accesses these resources by means of a handful of verbs, which in principle apply to
all resources. In a traditional REST app, which uses HTTP for its transport, these are usually
GET, PUT, POST, and DELETE.

The resources are provided to the client by a server, and the server provides the data in a form
called the content type. Content types are typically expressed as MIME types such as
text/plain and text/html. A single resource might be available in any number of content
types, and the precise data returned for the resource might differ from one content-type to the
next. (E.g., text/html contains structure in a way that text/plain does not.)

The client accesses a server using an agent. The client gives the agent the URI of a resource, and
a verb, and the agent locates the server and accesses it on the client’s behalf. In particular, the
agent handles content negotiation: given the content types the client is prepared to handle, the

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

agent works with the server to provide the resources to the client in the content type it would
most prefer.

A resource’s content frequently contains URIs linking to related resources. The client can make
use of these URIs to navigate the sea of resources.

The most common content type is text/html, because it provides a way to display the
resource data attractively and allows the user to navigate the data space by clicking on links.
These days, HTML documents typically use Cascading Style Sheets (CSS) for formatting and
Javascript for interactivity. In a Tcl/Tk application, naturally, Tcl replaces Javascript.

These concepts and technologies provide just the thing to display heterogeneous, highly linked
data to the user.

Why Not a Web App?

The advantages of the REST architecture would seem to be an argument for implementing
Athena as a web application, yet there are compelling reasons for not doing so.

• Athena already exists as a single-user desktop application; moving to the web would
change the architecture considerably.

• Network interfaces come with security headaches. And although Athena is not classified,
it is often used in classified environments where network resources are tightly controlled
and security is taken very seriously.

• Ease of installation is key; we do not want to require the users to install a web server. We
could work around the installation issue by embedding something like TclHTTPD in
Athena; but that still leaves us with the security headaches.

• We’ve not been asked to, nor do we have funding to make such significant changes, or to
come fully up to speed on robust, secure web applications.

Adapting REST to the Desktop

So the question becomes, how do we use these RESTful concepts in a desktop application? We
need to:

• Define a set of URIs that give access to various application resources.
• Determine the relevant content types. We use standard content types like text/

html, but also types relevant to the desktop environment, such as tk/image
and tk/widget.

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

• Implement a content server, and an agent with which to access it. Because the
server resides within the application itself, access can be synchronous; the
protocol reduces to a set of procedure calls.

• Specify tools for parsing URIs. We use the uri package from Tcllib.[3]
• Create tools for generating HTML output. (Yes, I wrote yet another HTML-

formatting module. It’s just something I do.)
• Choose a widget for displaying HTML/CSS
• Implement a web-browser-like mega-widget on top of TkHTML 3.0.
• Implement other widgets that can take advantage of server content.

With the RESTful components added, Athena’s architecture is as shown in the following
diagram; the new components are shown with a shaded background.

The Model represents the non-GUI portion of the application, including all management of
scenario data and the simulation proper. As described in [4], Athena’s User Interface interacts
with the Model via three mechanisms. First, the UI can query the Model in any way it likes,
provided that the queries do not affect the content of the Model in any way. Second, it can send
orders to the model; all changes to Model content and operation are triggered by these orders.
Third, the Model can send events to the UI, to notify it of particular happenings within the
model. This portion of the Athena architecture remains unchanged from previous versions.

As a consequence of this existing architecture, we have not implemented the PUT, POST or
DELETE verbs of the REST architecture; the existing mechanisms handle these operations

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

perfectly well. Instead, we have focused on the GET operation, which is what we chiefly need to
present information to the user.

At present, Athena includes three servers. The helpserver serves up on-line help pages from
a pre-compiled help database. The rdbserver provides access to the schema and content of
the application’s run-time database as an aid to development and debugging. The appserver
is the most important of the three, as it provides access to the Model’s resources. These servers
are all instances of the myserver type.

Each of these servers is registered with the myagent module; instances of myagent provide
GET access to the servers, and also do content negotiation.

Instances of mybrowser can be used to browse the content of these servers in the usual way;
and there are other widgets that access the servers as well.

3. Displaying HTML/CSS

Desktop REST stands or falls on the application’s ability to display HTML content. And in order
to display HTML content, or at least HTML-like content, in a Tcl/Tk application, you need to
have an HTML widget. There is no perfect choice; this is a place where Tcl/Tk is sadly lacking.
The available options are these:

• Solutions based on the Tk text widget

• TkHTML 2.0

• TkHTML 3.0 [5]

• A wrapper around Gecko or some similar engine HTML engine.

It is possible to do a mostly adequate job of displaying an early version of HTML in a Tk text
widget; it handles links and interaction perfectly well, and it can even display images and
embedded widgets. HTML-style tables are a problem, however, and tools to position images and
embedded widgets precisely relative to the text (e.g., wrapping paragraphs around an image) are
lacking. In short, the Tk text widget is a solution, but only a mediocre one for this purpose.
(Were we to use it, we’d probably abandon HTML in favor of a Tcl-based presentation language,
to avoid parsing.)

Athena 1.0 and 2.0 had a help browser based upon TkHTML 2.0. It is stable, having been
abandoned long ago, but it is highly quirky and its HTML support is archaic. Font support is
problematic; for example, you can have monospace type or bold type, but not both at the same
time. It claims to support embedded widgets but in our experience all attempts to do so end in a

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

crash. In our experience TkHTML 2.0 edges out the Tk text widget for display of rich content,
primarily due to its support for tables, but it is not very satisfactory.

Another option is TkGecko [6], a Tk wrapper for Mozilla’s Gecko HTML engine. It is clear
from the TkGecko paper that Gecko is very much a moving target, and that wrapping it in a
robust way is by no means easy. It would be an interesting choice if we wished to display live
web content from over the network, but we do not; and stability is crucial.

TkHTML 3.0 is an HTML/CSS renderer implemented as the basis for a Tcl/Tk web browser.
Abandoned some years ago, it has not kept up with the latest web standards. It has more than
enough horsepower for displaying application data, however, including tables, embedded
images, embedded widgets, and complex formatting. The bare widget lacks event bindings and
other features that were provided by the web browser within which it was to be embedded, but
once these are provided it becomes quite satisfying to use. It is fast, versatile, and sufficiently
stable for our use, and is what we have opted to use.

4. The URI Scheme

Athena uses two distinct URI schemes, neither one of which is found in the wild: the my://
scheme and the gui:// scheme.

The my:// Scheme

The most usual URI scheme used in Athena is the “my://” scheme, which is a simplification of
the familiar http:// scheme. my:// URLs have the same syntax as http:// URLs, with
the unnecessary parts (port numbers, passwords, etc.) omitted:

my://server/path…?query#anchor
Here the server is the name of a myserver registered with myagent, and the path, query, and
anchor are defined as usual.

We chose the name “my:” for this scheme because the named resource belongs to the
application itself, rather than to some other entity out in the network. We considered abusing the
http:// scheme but rejected this for two reasons. First, we wanted to make it absolutely clear
that Athena has no network interface; it is not pulling resources down from the web. Second, it
allows us to modify the standards for http:// URLs without causing confusion to future
developers.

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

The gui:// Scheme

The gui:// scheme is a set of Uniform Resource Names (URNs) for entities in the Athena
GUI. Links using this scheme are not handled directly by the myagent/myserver
infrastructure; instead, the mybrowser widget hands them to its parent object via a callback,
which hands to the application for handling. The upshot is that the user can click on a link in a
browser, and the application will take them to some other tab in the GUI, or pop up an order
dialog. For ease of parsing, the gui:// scheme also uses a subset of the usual http://
syntax.

5. Content Types

The myserver component allows each instance of the server to serve up content of any
imaginable type. The standard MIME types text/html and text/plain are used for
HTML and plain text context respectively; for consistency, application-specific content types are
named in the same style, with “tk/type” used for Tk-specific content and “tcl/type” used
for other kinds of data. The application-specific content types currently in use described in the
following subsections.

The tk/image Content Type

The content consists of the name of a Tk image. An instance of mybrowser can display
tk/image content directly and as the src of an HTML tag.

The tk/widget Content Type

The content consists of a Tcl script to create the widget so that it can be displayed in an HTML
page. The HTML <object> tag is used to embed widgets in pages; for example, the following
HTML embeds a time plot in the page:

<object data="my://app/plot/time?start=2+vars=basecoop"
width="100%" height="3in"></object><p>

The query portion of the URL specifies the variables to plot, and the start time of the interval for
which they should be plotted. The server uses these to customize the widget options, and then
returns the script to create the widget. (The TkHTML 3.0 widget handles the width and height
itself.) For example:

timechart %W –vars basecoop –start 2

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

The server doesn’t know the window name to use, so it inserts a “%W” in place of the window
name. The mybrowser substitutes in the window name and creates the widget, which then
appears in the web page.

The Netscape Tcl plugin was never so easy.

The tcl/enumlist Content Type

This content type is simply a Tcl list of enumerated values; it is usually used to populate
pulldowns in HTML forms, but can also be used by non-browser widgets.

The tcl/enumdict Content Type

This content type is similar to tcl/enumlist, but the value is a dictionary of enumerated
values and their human-readable equivalents. It is also used to populate pulldowns in HTML
forms.

The tcl/linkdict Content Type

This content type is used to represent trees of links. A tcl/linkdict is a nested dictionary
mapping URLs (relative to the current server) to link metadata, primarily a human readable
label and a listIcon, a Tk image to display next to the label. As such it represents one
node in the tree, and its immediate children. By recursively retrieving tcl/linkdicts for the
URLs, a component like the linktree widget can build up a tree of model entities or help
pages.

6. Software Components

The Athena infrastructure includes the following software components.

The myagent Component

The myagent component is responsible for managing all interaction between clients and the
various myserver instances. Servers register themselves with the myagent module, and
instances of myagent retrieve data from the servers, doing all necessary URI resolution and
content negotiation.

When creating an instance of myagent, the client specifies the content types it is prepared to
handle, and the default server to contact:

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

myagent $agent \
 –defaultserver app \
 -contenttypes {text/html text/plain}

The client can then retrieve a URI’s content as follows:

set cdict [$agent get $url]

The agent will throw a NOTFOUND error if the data cannot be retrieved; otherwise, it returns a
dictionary with three keys: url, contentType, and content, which the client can do with
as it pleases. If desired, the client can specify the desired content type or types explicitly:

set cdict [$agent get $url tk/widget]

Instances of mybrowser will normally accept text/html, text/plain, and tk/image,
but will explicitly ask for tk/widget when handling an <object> element.

The myserver Component

Instances of the myserver component are registered with myagent, and thus become
accessible to the application. Each instance of myserver defines the set of URLs that it can
handle, and the content types for each:

myserver ::appserver
myagent register app ::appserver

appserver register / {/?} \
 text/html [list /:html] \
 {Athena Welcome Page}

 appserver register /actor/{a} {actor/(\w+)/?} \
 text/html [list /actor:html] \
 "Detail page for actor {a}."

Each of these calls technically registers a pattern, rather than a specific URL; the handler handles
all URLs that match the pattern. The first pattern registered above is simply “/”, the top-level
page for the server; the second registers a URL with a place holder for an actor’s symbolic name.

For each pattern, we specify a unique name, e.g., /actor/{a}, and a documentation string;
these are used in the server’s /urlhelp page, which every instance of myserver provides
automatically. Next, we provide a regular expression, which matches URLs of the correct

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

pattern. (Note that “^” and “$” are added to the expression automatically.) The regular
expression may include parentheses to indicate match parameters; these will be provided to the
handler. Finally, for each URL we specify a set of content types and handler commands.

Thus, when the server is given a URI it matches it against the registered resources; if a match is
found, and the URI has a compatible content type, the handler for that content type is called. For
example:

proc /actor:html {udict matchArray} {
 upvar 1 $matchArray ""

 set actor [string toupper $(1)]

if {![actor exists $actor]} {
 return –code error –errorcode NOTFOUND \
 "Unknown entity: [dict get $udict url]"
 }
 .
 .
 .
 return $content
}

The udict parameter is a dictionary of the components of the URI: the path, the query, and so
forth, as returned by uri::split. The matchArray parameter is the name of an array variable
containing the matches from the regular expression; in this case, the actor’s symbolic name. The
handler may make use of both the udict and the matchArray or neither.

The mybrowser Component

The mybrowser component is a web-browser-like widget built on top of TkHTML 3.0. It has
its own instance of myagent, and thus can retrieve resources from servers. In addition to the
normal browser navigation tools, it has the following capabilities:

• Display text/html, text/plain, and tk/image resources.

• Embed tk/widget content in text/html pages, when specified using the
<object> tag.

• Support HTML forms.

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

The following figure shows an instance of mybrowser. The toolbar, scroll bars, html pane, and
the paned window widget that allows the side bar to be resized, are all provided by
mybrowser; the sidebar itself is an instance of linktree (see Section The linktree
Component).

The browser’s support for HTML forms is robust but idiosyncratic. Athena has its own set of
data entry field widgets which do not entirely match up to the standard HTML form fields;
consequently, it provides its own mapping of <input> types and attributes to data entry fields,
ignoring the standard HTML input types completely. For example, this HTML creates a form
consisting of a single “enum” field, essentially a pulldown containing items from an enumerated
list. The list of values comes from URL my://app/enum/sortby, which must provide
content type tcl/enumdict. The default value for the pulldown is “name”.

<form action="my://app/page/Cal" autosubmit="yes">
<label for="sortby">Sort Cells By:</label>
<input name="sortby" type="enum" content="tcl/enumdict"
 src="my://app/enum/sortby" value="name">
</form>

The form looks like this in use:

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

When the form is submitted, which will happen automatically when the user selects a new value
from the pulldown, the form’s values will be appended to the action URL as a query, and the
URL will be retrieved:

my://app/page/Cal?sortby=name

At present, mybrowser supports enum, text, and submit input types.

The myhtmlpane Component

The myhtmlpane component is essentially a mybrowser without the navigation controls. It
is intended to display a single page, retrieved from a myserver, as an alternative to a window
defined using normal Tk widgets. If the user clicks on a link on the page, the URI is passed
along to the application for display in the application’s main browser.

The linktree Component

The linktree component is a Tk treectrl widget configured to display a tree of resource links
retrieved from a given URL. The widget retrieves its top-level items from the URL, and then
works its way recursively down the tree, retrieving tcl/linkdict content at each node. The
descent ends when a leaf no longer has any tcl/linkdict content associated with it.
Optionally, the linktree can retrieve content for non-leaf nodes when they are first expanded.

The sidebar in the browser screenshot in Section The mybrowser Component shows a linktree of
simulation entities.

The htmlframe Component

Although not actually part of the RESTful infrastructure, the htmlframe widget has proven to
be a useful addition to the toolkit. It is simply a TkHTML 3.0 widget configured to layout its
children according to an HTML layout string. For example:

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

htmlframe .f
ttk::entry .f.first
ttk::entry .f.last

.f layout {
 First Name: <input name=”first”><p>
 Last Name: <input name=”last”><p>
}

It includes a set method to set attributes of HTML elements by id; thus, the application can
customize the appearance by setting CSS classes or styles on particular elements dynamically, or
simply by providing a new layout. And since the TkHTML 3.0 widget supports scrolling, it is
easier to create a scrolling window than it is using a standard frame widget.

This can be a much simpler way to create a complicated GUI layout than using the normal Tk
geometry managers.

7. Status and Future Work

The infrastructure described in this paper is currently in use in two applications: the Athena
simulation proper and in a separate development tool used to debug certain kinds of models. It
has proven to be powerful, effective, and easy to use. The Athena application defines three
servers and over sixty distinct URL patterns, many of them with placeholders. Many pages use
forms and embedded objects, and that number is expected to increase over time.

It is possible that future applications may opt to extend the myagent/myserver pair with
PUT, POST, and DELETE operations, and make use of these instead of Athena’s existing “order”
mechanism for editing and creating application data. Such an application would be truly
RESTful, rather than merely “accidentally RESTful”, as now.

8. A Bit of Advocacy

Tk needs a robust, solid, well-documented HTML widget for uses like those shown here, and the
existing TkHTML 3.0 widget makes a good starting point. The secret is to stop chasing the big
browsers; we will never have enough development horsepower to keep up with Mozilla,
Microsoft, and Google, and even if we could produce a widget that was completely up to date
and could display any HTML page on the web, it would be out-of-date in months, if not weeks.

But this is OK. An HTML widget need not be capable of doing everything Firefox does to be
useful to the application.

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

9. References

[1] Nemethi, Csaba, Tablelist Widget, http://www.nemethi.de/.

[2] Sletten, Brian, “Resource-Oriented Architectures: Being ‘In the Web’,” in Beautiful
Architectures, pp 89-109, 2009, O’Reilly & Associates, ISBN: 978-0-596-51798-4.

[3] Kupries, Andreas, and Ball, Steve, uri URI Utilities package, found in Tcllib, http://
tcllib.sourceforge.net/doc/uri.html.

[4] Duquette, William H., "The State Controller Pattern: An Alternative to Actions", 17th Tcl/
Tk Conference,
http://www.tclcommunityassociation.org/wub/proceedings/Proc
eedings-2010/WillDuquette/Statecontroller.pdf.

[5] Kennedy, Dan, TkHTML 3.0 Widget, http://tkhtml.tcl.tk/tkhtml.html.

[6] Petasis, Georgios, “TkGecko: Another Attempt for an HTML Renderer for Tk”, 17th

Tcl/Tk Conference,
http://www.tclcommunityassociation.org/wub/proceedings/Proc
eedings-2010/GeorgePetasis/TkGecko.pdf

10. Acknowledgements

This research was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration, during the
development of the Athena Stability & Recovery Operations Simulation (Athena) for the
TRADOC G2 Intelligence Support Activity (TRISA) at Fort Leavenworth, Kansas.

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.

http://www.nemethi.de/
http://www.tclcommunityassociation.org/wub/proceedings/Proceedings-2010/GeorgePetasis/TkGecko.pdf
http://www.tclcommunityassociation.org/wub/proceedings/Proceedings-2010/GeorgePetasis/TkGecko.pdf
http://tkhtml.tcl.tk/tkhtml.html
http://www.tclcommunityassociation.org/wub/proceedings/Proceedings-2010/WillDuquette/Statecontroller.pdf
http://www.tclcommunityassociation.org/wub/proceedings/Proceedings-2010/WillDuquette/Statecontroller.pdf
http://tcllib.sourceforge.net/doc/uri.html
http://tcllib.sourceforge.net/doc/uri.html

	1. Background
	The Problem
	The Solution

	2. The Desktop REST Architecture
	REST: A Summary
	Why Not a Web App?
	Adapting REST to the Desktop

	3. Displaying HTML/CSS
	4. The URI Scheme
	The my:// Scheme
	The gui:// Scheme

	5. Content Types
	The tk/image Content Type
	The tk/widget Content Type
	The tcl/enumlist Content Type
	The tcl/enumdict Content Type
	The tcl/linkdict Content Type

	6. Software Components
	The myagent Component
	The myserver Component
	The mybrowser Component
	The myhtmlpane Component
	The linktree Component
	The htmlframe Component

	7. Status and Future Work
	8. A Bit of Advocacy
	9. References
	10. Acknowledgements

