Lifecycle Object
Generators (LOG)

Presented to the 19th Annual Tcl Developer’s Conference (Tcl'2012)
Chicago, IL
November 12-14, 2012

Sean Deely Woods

Senior Developer

Test and Evaluation Solutions, LLC
400 Holiday Court

Suite 204

Warrenton, VA 22185

Email: yoda@etoyoc.com
Website: http://www.etoyoc.com

Abstract:

This paper describes a design concept call "Lifecycle Object Generators", or LOG for
short. It involves a combination of coroutines, TclOO, and basic data structures to
create objects that can readily transition from one class to another throughout the
course of an application. This paper will describe the basic mechanisms required, and
how this architecture can be applied to any complex problem from GUI design to
Artificial Intelligence.

This paper is based on experience developing the Integrated Recovery Model for
T&E Solutions.

mailto:yoda@etoyoc.com
mailto:yoda@etoyoc.com
http://www.etoyoc.com
http://www.etoyoc.com

Introduction

Most interesting computer models try to
describe the actions and interactions of living,
or at the very least animate, things. (The
study of most dead an inanimate objects
requiring a bit less computer power.) Living
things have a tendency to change behavior.
Until now modeling that change in behavior
has required keeping track of state as
variables and encoding every method with a
patchwork of if/then/switch statements.

This paper will describe a new technique
that exploits the ability of an object in TclOO
to change class dynamically. TclOO is
available as a package for Tcl 8.5, and is
integrated into the core of the upcoming Tcl
8.6.

Style Guide

In this paper, I will be using the following
style conventions:

Built in Tcl command/ 0o::class
keyword
Name of an class, class_bar
object, or variable
Block of example code | # comment

set foo bar

Nickel Tour of TclOO

This paper exploits many advanced features
of TclOO. But before we play with the
advanced features, it may be helpful to go
back over the basic ones.

A new class is declared with the oo: :class

command:

00::class create classname {
superclasses ancestor ancestor ...

method methodname arguments {
Body of method

}

}

Within the body, one declares the structure
of the class. The keywords we’ll be focusing
on in this paper are:

constructor | Defines the constructor

destructor | Defines the destructor

forward Forward calls for a
method to another
command

method Define a method

superclass | Define the ancestors of
this class

Once created, a class is a command. A
command with several methods, the most
important is create.

Create a new object with a known name
classname create objectname

Create a new object with a
dynamically generated name
set obj [classname new]

And once an object is created, it lives as a
command. To call a method:

objectname method $argl arg2 [arg3]
Save a value returned from a method
set var [objectname method $arg]

If methods look and act a lot like
procedures, that is by design. They can return
a value, just like a standard Tcl proc. They
can also call several built in commands,
specific to the TclOO environment:

my Exercise a method of the current
object

next | Call on an ancestor’s
implementation of this class

self | Returns the fully qualified name
of this object

The my command is an unambiguous way

for the Tcl parser to discern what commands
are local to the object, and what commands
should be resolved globally. It also makes for
easier reading on the part of the programmer.
proc noop {string} {

puts “global - $string”
}

00::class create noop {
method noop string {
puts “[self] - $string”

}
method test {} {

my noop “Hello World”
noop “Hello World”

}
¥

noop create testobj
testobj test

testobj - Hello World
global - Hello World

In addtion to the oo: :class command,
TclOO provides oo: :define and
00: :0objdefine. 0o: :define is used to
modify a class dynamically. oo::objdefine

is used to modify an object dynamically.
TclOO also enhances the info command with

two new methods: info class and info
object, As you can imagine, info class
provides introspection for classes, and info
object provides introspection for objects.

Destroying a class

Classes in TclOO are implemented as
objects, with their own constructors,
destructors, and methods.

If you destroy a class, you automatically
destroy any classes or objects derived from
that class. And of course for every class that
is destroyed as a result of destroying a class
you destroy all of its derivatives, and so on.
Taking our example from above:
info command obj*
obja objb objc objd obje objf
a destroy
info command obj*

~ Empty ~

Be careful though, destroying objects by
destroying their class prevents the object
destructor from being called.

Multiple Inheritance

One matter that will come up as we develop
complex hierarchies of classes will be
multiple inheritance. Given a choice between
method implementations, TclOO will always
choose the latest one defined.

00::class create a {

method noop {} { return a }

3

00::class create b {

superclass a

method noop {} { return b }

3

00::class create c {superclass a b}
00::class create d {superclass b a}
00::class create e {

superclass c

method noop {} { return e }

3
00::class create f {superclass a b e}
00::class create g {superclass a b c d e}
00::class create h {superclass a b d c e}
00::class create i {superclass e d c b a}

a is a common ancestor to the rest, and it

provides an basic implementation of a method
called noop. b is a descendent of a that

provides its own implementation of noop. ¢
and d inherit both a and b explicitly, but in a
different order. e is a descendent of b that
provides its own implementation of noop. f
is a descendent of all of the classes a-e. g-1i
demonstrate various combinations of a-e.

foreach class {a b cde f} {

$class create obj$class

puts [list obj$class [obj$class noop]]
}
obja
objb
objc
objd
obje
objf
objg
objh
obji

™ ®Mm®Mm®M®OTOCOC o

You will see that in every example, the
latest version of the noop that is defined is the

one that is used. Since b is a descendent of a,
given a choice between b’s implementation of
a method and a’s implementation of a
method, b will always be preferred. Likewise,
e is a descendent of b. e’s version of a
method will always be preferred to b’s.

If we do the example differently, sans b
inheriting a and e inheriting b, we would get a
different results, and the order in which
classes are specified in the superclasses
keyword becomes more important:

00::class create a {

method noop {} { return a }
¥
00::class create b {

method noop {} { return b }
}
00::class create c {
superclass a b

¥
00::class create d {
superclass b a

}
00::class create e {

method noop {} { return e }

}

00::class create f {superclass a b e}
00::class create g {superclass a b c d e}
00::class create h {superclass a b d c e}
00::class create i {superclass e d c b a}

foreach class {abcdefghi} {
$class create obj$class

puts [list obj$class [obj$class noop]]
}
obja
objb
objc
objd
obje
objf
objg
objh
obji

™ Q9 LW MO L T L

Objects Changing Classes

Within the oo: :objdefine command is the
ability for an object to change class:

}oo::objdefine $object class $newclass !

An object can even alter it’s own class from
within a method:

00::class create moac {
method morph newclass {
00::0bjdefine [self] class $newclass

}

}

To demonstrate this process in action,
imagine two classes, classa and classb:

00::class create classa {
superclass moac
method testfunc {} {
return “I am a classa object”

}
}

00::class create classb {
superclass classa
method testfunc {} {
return “I am a classb object”
}
}

Both classes have their own
implementation of testfunc. The value that
testfunc returns isn’t as important as the fact
that the values returned are different for the
two different classes. Now with the help of a
sufficiently rigged demo:

classb create test

test testfunc

I am a classb object

Change class with oo::objdefine
00::0objdefine testfunc class classa
test testfunc

I am a classa object

Ask the system what class test is
info object class test

::classa

Change class with the morph method
test morph classb

test testfunc

I am a classb object

Ask the system what class test is
info object class test

::classb

You can see that oo: :objdefine $object class

takes effect immediately. And it doesn’t
matter whether the call to change class occurs
from within the object or externally. We can
even change class several times during the
execution of a method:

00: :define classb {
method confusing demo {} {
Store our present class
set myclass [info object [self] \
class]

puts “Start”
puts “1 - [my testfunc]”
Become a different class
my morph classa
puts “2 - [my testfunc]”
Return to our original class
my morph $myclass
puts “3 - [my testfunc]”
puts “Done”

The classb class now has an additional
method, confusing_demo. Note, that through
the miracle of modern science, changes to the
class automatically apply to all objects that
are instances of that class. So we can now call
on this new method from our existing fest
object.

test confusing demo
Start

1 - I am a classb object
2 - I am a classa object
3 - I am a classb object
Done

The body of confusing_demo is simply calling
the same method three times. In between the
calls, we change the class of the object with
the morph method. The different
implementations of testfunc give different
output.

Beware of Disappearing Methods

There are plenty of ways to confuse matters
by swapping an object’s class. In this
scenario, we have an event that is
programmed to go off when an object
changes class.

00::class create baz {
method do_something {} {
puts “Meh”
¥
method morph newclass {
00::0bjdefine [self] class $newclass
my do_something
}
}

00::class create fubar {

method event_morph {} {
puts “I have morphed”

}

method morph newclass {
00: :0bjdefine [self] class $newclass
my event_morph

}

}

Now, suppose we convert this object from
fubar tO baz:

fubar create test
test morph baz
error: Unknown method “event_morph”

We get an error! And we get that error
because the object assumes the new class
instantly. We just happened to pick a class
that doesn’t implement the event_morph

method, which the script the object is running
through tries to call on the next line.

Note, even though we encountered an error,
test remains class baz. So if we run the morph
method again:

test morph baz
Meh

It runs successfully. We can even make test
back into a fubar:

info object class test
baz

test morph fubar

Meh

info object class test
fubar

test morph fubar

I have morphed

What Happens [next]

Another interesting wrinkle in changing
classes is how the next keyword resolves
within a method that changes the object’s
class. Lets say we have an class that uses next
to exercise the ancestral implementation of
the same method.

00::class create a {

superclass moac

method testfunc {} {
puts “a - [info object [self] class]”
}

}

00::class create b {
superclass a
method testfunc {} {
next
puts “b - [info object [self] class]”
}
}

00::class create c {
superclass b
method testfunc {} {
my morph a
next
puts “c - [info object [self] class]”

}
}

For interactions between a and b, things are
quite straightforward.

a create test
test testfunc
a - a
test morph b
test testfunc
a-b
b -b

c is our complex case. Its implementation
of testfunc changes the class of the object.

And worse, it changes the class to one in
which there is no ancestor for the next

operator to hop to.

You would expect the system to die horribly
along the lines of:

c create test

test testfunc

no next method implementation
while executing

"next "

Instead we see:

c create test
test testfunc

a-a
b - a
c - a

Note, the object really has changed
class

info object class test

a

The pathway through the next calls is
computed before the method is invoked.

Design Patterns

Now that we have covered the basics, it is
time to start to develop the LOG framework.

Storing Properties

When an object expects to change class,
there is often information specific to that class
that we would like to access. A variable isn’t
a good fit for this purpose as its value doesn’t
change when the class changes. So I like to
employ methods that return hard coded
values.

The simplest way would be to declare a
method for every value we would want to
return:

00::class create a {

method color {} { return green }
method flavor {} { return lime }
¥
00::class create b {

method color {} { return green }
method flavor {} { return apple }
}
00::class create c {

method color {} { return red }
method flavor {} { return cherry }

¥

For the lazy programmer this system has
several drawbacks. First, it is difficult to
distinguish between a method that is a
property and a, shall we say, livelier method.
Second, the notation is verbose. It introduces
the temptation to cut and paste. Third, we
have no fallback mechanism should a part of
the system call for a property that has not
been configured yet, or is simply not
applicable to the object in question.

LOG adds two new methods:
property define and properties.
property_define creates a single value.
properties allow us to specify a key/value
list. We can do this easily within TclOO
because, behind the scenes, classes are merely

a special kind of object. The just happen to be
of class oo::class.

00::define o0o::class {

method property_define {field value} {

00::define [self] method prop_$field \
{} [list return $value]

b

method properties dict {
foreach {var val} $dict {

my property $var $val

b

¥
method property {field args} {

set methods [info object methods [self] \
-all -private]
if {"prop_$field" in $methods } {
return [my prop_$field {*}$args]
}
¥

}

We also need to configure all of our client
classes with a version of the property method.

00::class create moac {
method property {field args} {
set methods [info object methods [self] \
-all -private]
if {"prop_$field" in $methods } {
return [my prop_$field {*}$args]
}
¥
}

So to configure a class:

00::class create a {superclass moac}
a property _define color green

a properties {

flavor lime

}
a create test

test property color
green

At the same time, if I ask for an item that is
not configured (or configured yet), I get back
an empty list instead of an error.

test property speed

~ Empty List ~

And if we are modeling a system worthy of
a Lewis Carroll novel, we can alter the
property of a class on the fly too.

a property define speed very fast
test property speed
very_ fast

http://en.wikipedia.org/wiki/Lewis_Carroll
http://en.wikipedia.org/wiki/Lewis_Carroll

Using Classes to Represent State

State machine code becomes notoriously
complex when there are more than a handful
of states. I am going to introduce an easier
way: create a separate class for each state an
object can be in. Thus, if a method has to
behave differently, we can just define that
change for the particular state.

Let us begin with a few ground rules for
changing an object’s class. Even better, let’s
have a library of base classes that enforce
those rules. All classes that are eligible to
change class will be descendants of a
common baseclass: state_machine.

state_machine provides several methods:

state_change | Change the class (and

this state) of an object.
Takes an additional
argument which can
pass additional data to
event scripts.

00::class create state_machine {
superclass moac ; # For “property” method
constructor {} { my state_enter {} }
Return the current state
method state current {} {
return [info object class \
[self object]]
}
Actions when we exit state
method state exit {} {}
Actions when we enter state
method state_enter {} {}

Returns 1 if state changed
Returns © otherwise
method state_change {newstate} {
if { $newstate eq {} } { return @ }
set oldstate [my state_current]
if { $newstate eq $oldstate } {
In the desired state, do nothing
return 0
b
Run cleanup from old state
my state_exit
00::0bjdefine [self] class $newstate
Run setup from new state
my state_enter
return 1

}

state_current | Return the current class
(thus state) of an object

state_enter Script to run when an

object enters the
configured state

Example: Lifecycle of a Frog

Let is show off our newly developed
state_machine with a demonstration: The

lifecycle of a frog.

state_exit Script to run when and

object exits the current
state

00::class create frog {
superclass state_machine
method state_exit info {
puts "Leaving [my state_current]”
¥
method state_enter info {
puts "Entering [my state_current]"
next $info
¥
}

frog properties {
has_tail ©
respiration lung
state_next {}
color green

The baseclass frog is a series of general
assumptions one could make about any frog,
stored as properties. One of those properties
state_next tells us what developmental state

follows the current state. For an adult frog, Discrete Time Phases
we have no state_next, so we configure an

empty set.

Discrete time simulations are similar to
tabletop games. Actors (or players) take turns.
And the rules of the game govern which
interactions are valid during which part of a
game turn.

To model our frog’s lifecycle, a program
can simply walk from one state to another,
reading the properties as it goes.

00::class create frog.egg {
superclass frog
}
frog.egg properties {
has_tail ©
respiration none
state_next frog.tadpole
¥
00::class create frog.tadpole {
superclass frog.egg
¥
frog.tadpole properties {
has_tail 1
respiration gill
state_next frog

}

frog.egg create hypno

set changed 1
while {$changed} {

foreach fld {

has_tail respiration state_next
A
puts “ * $f1d [hypno property $f1d]”

¥

set newstate [hypno property state next]
set changed [hypno state_change $newstate]
¥
Entering ::frog.egg

* has_tail ©
* respiration none
* state_next frog.tadpole
Leaving ::frog.egg
Entering ::frog.tadpole
* has_tail 1

* respiration gill
* state_next frog.tadpole
Leaving ::frog.tadpole
Entering ::frog
* has_tail o
* respiration lung
* state_next frog

1 Risk™, Trademark Parker Brothers

In 'Risk™ , each turn has three phases:
placing reinforcements, attack, and fortifying.
Players are only allowed to add troops to the
battlefield at a certain time. There is only one
phase in which we would expect troops to be
removed from the battlefield (as casualties.)
And there is only one point in the turn where
troops can move. Phases make the outcome of
a series of events more consistent.

Table games are engineered to have a
definite “winner”. The actor with priority is
allowed to have a significant impact on the
outcome of the scenario.

turn 1
Player 1 - Reinforce Phase
Player Attack Phase
Player 1 - Fortify Phase

=
1

Player 2 - Reinforce Phase
Player 2 - Attack Phase
Player 2 - Fortify Phase

With scientific simulations, we don’t want a
“winner.” We want to devise a series of rules
such that we get the same outcome whether
the actors are run in sorted order, reverse
sorted order, random order, or whatever that
subtle, non-random, but sufficiently
inscrutable order we get from [array names].

We also want to create the illusion that all
of the actions in a given time phase occur
simultaneously. So rather than let one actor
run through all of the phases, followed by
another, we give each actor an opportunity to
act during every phase.

turn 1
Player 1 - Reinforce Phase
Player 2 - Reinforce Phase
Player 1 - Attack Phase
Player 2 - Attack Phase
Player 1 - Fortify Phase
Player 2 - Fortify Phase

turn 2

In simulators which allow objects to change
class, I found it best to restrict any such
changes to a specific phase in the time step.
Preferably one in which nothing else is going
on.

Agent Timestep
phase_physics
phase_observe
phase_plan
phase_action
phase reaction
phase_morph

When an object wants to change state, the
new state is recorded as a local state variable.
The actual change does not take place until
the morph phase comes around.

00::define state_machine_discrete {
method state_change newstate {

if {[my state current] eq $newstate } {

return @

}

my variable next_state

set next_state $newstate

return 1

}

HiH#H

Called by the driver of the simulation
1t

method phase _morph {} {

my variable next_state

if { $next_state eq {} } {

return

}

my state_exit

00::0bjdefine [self] class $next_state

my state_enter

set next_state {}

Example: Agent Based Modeling

The Integrated Recovery Model simulates a
ship and her crew during a shipboard
catastrophe. Part of the simulation entails
crew members changing roles. In the model,
each role is represented by a distinct class.

Any number of events can lead to a crew
member changing role. The most common
role changes are in response to an order.
Some orders are direct. For instance, a leader
telling a crew member under his/her
command “You do this.” Other orders are
indirect. When a crew member hears the call
to go to General Quarters, he/she switches
from whatever they were doing to their
assigned role at GQ.

But the hardest ballet to choreograph by far
was the transitions that occur when a crew
member is assigned to a fire team. Most crew
don’t wear a fire suit as part of their regular
duties. Thus a crew member newly assigned
to a fire team must find a set of gear, put it on,
and connect with a team that may already be
on scene. Those behaviors were complex
enough to merit a separate role.

Crew starts as role human
Crew receives order to join Team

> Crew becomes role team.prospect
Crew member gathers equipment
Crew walks to location of Team leader
Crew joins Team

> Crew becomes role team.member
Team battles fire

Team dissolves

> Crew becomes team.dismissed
Crew returns equipment
Crew walks back to assigned station
> Crew becomes human

In IRM, each agent is configured with a
property that lists what tasks they want to
perform, and in what priority. Each task, in
turn, has criteria that govern when it should
activate, when it should abort, and a coroutine
to carry out once activated.

Our team. prospect class has the following
task list:

action-station | Gather tools, report to
action station

safety-check | Reflexes for fleeing from

danger

join-team Join the team we are
assigned to

go-home Return to action station

(only called if join-team
fails)

Every agent has an action-station task. It

has a method that produces a list of
equipment required for the role assigned. It
checks to see that the agent has a working
version of each. And if a device is missing,
exhausted, or damaged, the agent gets a new
one.

Normally agents produce their own list of
needed equipment, based on information
configured by the model maker. For this

paper, the pseudocode uses a simple property.

agent::class fireteam {
superclasses human
properties {
equipment { nfti scba ppe radio }
member_equipment {scba ppe}

}
}

agent::class rescueteam {
superclasses human
rescueteam properties {
equipment { radio stretcher scba }
member_equipment {scba medkit}

}
¥

One team.prospect class suffices
to join either team
agent::class team.prospect {
superclasses human
method ensemble {} {
my variable team
return [$team property member_equipment]

}

}

Because the team. prospect role is it’s own
class, we can override the standard ensembLe

method with one that queries the team this
agent will join.

agent::class human {
method ensemble {} {
return [my property equipment]
}
method ensemble missing {} {
set result {}
foreach device [my ensemble] {
if {[my device_working $device]!=1} {
lappend result $device
}
¥
return $result
)i
task action-station {
begin {
return [llength [my ensemble missing]]

¥
. # Define the rest of the task ...

One team.prospect class suffices
to join either team
agent::class team.prospect {
superclasses human
method ensemble {} {
set team [my knowledge get team]
return [$team property member_equipment]
}
}

Thus:

fireteam create crewl
rescueteam create crew2
team.prospect create crew3
team.prospect create crew4
crew3 knowledge put team crewl
crew4 knowledge put team crew2
crew3 ensemble_missing

scba ppe

crew4 ensemble_missing

scba medkit

00::0bjdefine crew3 human
crew3 ensemble_missing

~ Empty we are back to the human class

Application State

When designing a GUI, we also wrestle
with state. Whether it be a megawidget, or a
toplevel object that is managing the
application, LOG can help.

In IRM our principle display interface is
managed through a Tk canvas. Onto that
canvas, we draw objects, color them, and
respond to mouse gestures.

We divide our model’s world into drawing
layers. There are specific rules for rending a
wall that are different than, say, a piece of
equipment. Likewise, a user double clicking
on a wall expects a different dialog box if
clicking a crew member versus a portal.

Window objects call out which layers are
active and in which state as a method of the
window:

irm::class modelwindow {

superclasses [redacted]

method active_ layers {
return {
wall Ilayer.wall.basic
compt layer.compt.basic
portal layer.portal.basic
egpt layer.eqgpt.basic
crew layer.crew.basic

When devising a set of visuals, I put
together two sets of classes. One is the
application window, the other is a drawing
layer that is modified to produce the visual.

irm::class modelwindow.damage {
superclasses modelwindow
method active_layers {
return {
wall layer.wall.damage
compt layer.compt.damage
egpt layer.egpt.damage
crew layer.crew.damage
portal layer.portal.damage
holes 1layer.holes

In this case we are putting together a special
mode that highlights damaged objects with a
special color.

When applying a new state, the window
object will call forth into being an object to
represent each layer, and configured with the
appropriate class. If the layer already exists it
simply changes class.

In our example, the modified drawing layer
colors all damaged components red.

irm::class layer.eqpt.damage {
superclasses layer.eqgpt.basic
method node_is_damaged nodeid {
test for damage that returns 1 or ©
¥
method node_style {nodeid} {
if {[my node_is damaged $nodeid]} {
return {-fill red -outline -red}
} else {
return {-fill grey -outline grey}
}
¥
3

Application window states can also specify
bindings for the canvas. In the next example,
upon entering the new state the canvas gets
new bindings. Once the user clicks on an
object the window translates motion to drag
actions. When the user releases the dragged
object, the window reverts back to its normal
state.

irm::class modelwindow.drag {
superclasses modelwindow
method active layers {
return {
wall layer.wall.basic
egpt layer.egpt.editor
crew layer.crew.editor

}

}
method state_enter {} {

set canvas [my get canvas]
bind $canvas <B1> \
[list [self] drag_start %x %y]
bind $canvas <B1l-Motion> {}
bind $canvas <Bl-Release> {}
my redraw
¥
method drag_start {x y} {
set obj [my object_at $x $y]
if { $obj eq {} } { bell ; return }
set canvas [my get canvas]
bind $canvas <Bl-Motion> \
[list [self] drag_do $obj %x %y]
bind $canvas <Bl-Release> \
[list [self] drag_done $obj %x %y]
¥
method drag_done {obj x y} {
set layer [my object_layer $obj]
$layer move_to $obj $x $y
my morph modelwindow
¥
s

Conclusion

Lifecycle Object Generators are not the
solution to every problem in Object Oriented
programming. But they are quite useful for
complex state-based logic. I am developing
these concepts into a fully featured toolkit,
which is available for download at:

http://www.etovoc.com/tcl

Image Credits:

Cover Image:

“Entwicklung des Krotenfrosches”, By
Meyers Konversations-Lexikon [Public
domain], via Wikimedia Commons, accessed
17 October 2012, <http://
commons.wikimedia.org/wiki/File

%3 AMetamorphosis frog Meyers.png>

http://www.etoyoc.com/tcl
http://www.etoyoc.com/tcl
http://commons.wikimedia.org/wiki/File%3AMetamorphosis_frog_Meyers.png
http://commons.wikimedia.org/wiki/File%3AMetamorphosis_frog_Meyers.png
http://commons.wikimedia.org/wiki/File%3AMetamorphosis_frog_Meyers.png
http://commons.wikimedia.org/wiki/File%3AMetamorphosis_frog_Meyers.png
http://commons.wikimedia.org/wiki/File%3AMetamorphosis_frog_Meyers.png
http://commons.wikimedia.org/wiki/File%3AMetamorphosis_frog_Meyers.png

