
A Guided debugging of EDA software with various

components of Tcl/Tk GUI

Roshni Lalwani Amarpal Singh

roshni_lalwani@mentor.com amarpal_singh@mentor.com

Abstract

EDA software has various hardware design rule checks that can be debugged easily using
schematic widget. The main objective of design rule checking (DRC) is to achieve a high overall
yield and reliability for a hardware design. If design rules are violated the design may not be
functional at all. This paper presents a flow of using some enhanced Tcl/Tk widgets in an
innovate manner that can facilitate hardware designers in debugging various design issues of
EDA tools.

1. Introduction

Our Tcl/Tk based GUI software provides a debugging environment to various EDA tools. It is
built upon various widgets like schematic widget, dialog boxes, MTIwidgets etc. A schematic
generator widget (Nlview) is a visualization software component that helps electronic design
engineers to easily understand, debug, optimize and document electronic designs. A schematic
window in a Tcl/Tk GUI is a simplified graphical representation of an electrical circuit .The
schematic diagram consists of instances, pins and nets that are graphical representation of
hardware design netlist. The schematic widget supports a number of features to navigate the user
to interesting parts of the logic and to present engineering information in relation to the
schematic. The Schematic Generator is not intended to extract any engineering data from the
netlist - but is designed to generate a schematic as a “skeleton” for presenting these data. This
implies the need of an engineering system that "feeds" Nlview with data. The data is provided by
various EDA tools via our GUI interface. The interface between Schematic Generator and Our
Tcl/Tk based GUI is defined by string based API (Application Programming Interface). These
APIs provides a simple set of commands, callbacks and configuration properties and makes it
easy to visualize and debug the EDA software backend data.

There are certain attributes associated with each HDL components/objects like instances, pins
and nets. The idea here is to display this information in the callout box on various objects of the
schematic window, in such a way that it will help the user in debugging the problematic design
issues. A callout box in schematic window is sticky tag visually associated with each object in
the schematic window. A callout box is a nothing but a pixmap formed by few rendering shape
and text rendering APIs, so it is very fast and efficient. The call out box is a light weight object

mailto:amarpal_singh@mentor.com
mailto:roshni_lalwani@mentor.com

that can be displayed on any object in the schematic. It displays the text that gives a user a way
to solve the DRCs and other design issues. The callout box is integrated in our Tcl/Tk GUI using
Tcl/Tk interface provided by NLview widget.

Section 2 below covers callout box, highlighting how callout box helps in debugging design
rules checks and Section 3 outlines the enhanced dialogue box and its integration with the
callout box functionality.

2. Guided debugging using Callout Box

A design rule error is often associated with one or two instances. There is an error instance
where rule error occurs and there is source instance that is starting pointing for the error. For
example, there is design rule error which reports a wrong simulation value at the input pin of
error instance. The incorrect simulation value is because the source instance and error
instance are clocked by same clock. The tool also displays callout box on source and error
instance. The message displayed in callout box is an intuitive step to debug and resolve the
design rule error. There are also attributes associated with source and error instances. This
information is also displayed on the source and error instances in the same callout box.

For example the schematic view with callout box is as follows.

2.1. Callout box Integration in with GUI tool

The schematic generator component integrated with our GUI tool provides an API based
mechanism to attach various kinds of attributes with Schematic objects like instances,
pins nets. These attributes can be visual or only non-visual in nature. The various kind of
visual attributes are like object’s display name, object’s border color, object’s fill color

and object’s line style (solid/dashed/thick/thin etc). Outbox is also one special kind of
visual attribute attached to Nlview objects where application can along with specifying
the text to be shown in an outbox, configure the outbox for its background color,
foreground color and color of its various regions. Mostly, this whole configuration
information about how an outbox should be rendered is provided via some options during
setting outbox on an object.

Here is a simple API interface to demonstrate how an outbox is attached to a Schematic
object and its configuration mechanism.

The add_outbox command allows user to add one or more outbox on objects.

add_outbox object_id -name n? ?-value value? ?-bgcolor n? ?-textcolor n? ?- -colorlist
<string>? ?-separatorcolor n? ?-crosscolor n? ?-deltaX x? \
 ?-deltaY y?

The object_id addresses the data base object, one of:inst, net, netBundle,port,
portBus,pin, pinBus, hierPin or hierPinBus.
Please note:

Option -bgcolor <number> option specifies the color of outbox region. (default value is
1)
For ex : -bgcolor 2 specifies that the color of outbox region will be taken from the
property outboxcolor2.

Option -textcolor <number> option specifies the color of text for that particular outbox.
(default value is 0)
For ex : -textcolor 1 specifies that the color of text for outbox will be taken from the
property outboxcolor1.

Option -crosscolor <number> option specifies the color of cross for that particular
outbox. (default value is 4)
For ex : -crosscolor 1 specifies that the color of cross for outbox will be taken from the
property outboxcolor1.

Option -colorlist <string> option specifies the in order list of colors of regions for that
particular outbox. (by default colorlist is empty string)
For ex : -colorlist "3 5 4" specifies that the color of the first region of the outbox will be
taken from the property outboxcolor3, color of second region from property outboxcolor5
and color of third region from property outboxcolor4.

Option -deltaX <number> specifies the horizontal shift.

Option -deltaY <number> specifies the vertical shift.

http://teams/sites/schematic_generator/Shared%20Documents/doc/multiple_outbox.html#Outbox_Region
http://teams/sites/schematic_generator/Shared%20Documents/doc/nlviewCore.html#IDENTIFICATION

The text displayed in the callout box guides the user to resolve the problematic area of
EDA design.

2.2.Algorithm for schematic view with callout box

The following pseudo code depicts the example usage of Nlview TCL API for displaying
the instances in schematic window with callout box.

 proc analyzeDrc { } {

• Add objects to schematic window

• Add callout specific attributes to same objects

• Display the objects and its associated attributes in the schematic window.

 }

3. Section2 : Enhance TCL/TK dialogue box

There is an enhanced TCL/TK dialogue box that is used to modify the background color
of the text displayed in the callout box. The user can add/delete the text from the callout box
using this dialogue box. The dialog box and mainly consist of a combo box, two list boxes,
an option menu and Add/Remove button.

 Figure2: An innovative dialogue box

3.1. Creation of Enhanced Dialogue box

The dialog box is also enhanced and mainly consists of a Combo-box, two list boxes, an
option menu and Add/Remove buttons.

3.1.1. Combo box

The combo-box box is constructed using IWidgets combo-box .The user can select
the category from Instances/Pins/Nets by using combo box and the respective
attributes gets displayed in left /right list box.

3.1.2. Two list boxes

The two list boxes are scrolled list boxes and are constructed using list box and
scroll bar of Tk widget.

3.1.3. Option menu

The Option menu is constructed using tk_Option Menu.

3.1.4. Text Message

The text message area is constructed using text widget of TK.

3.1.5. Add/Remove button

3.1.6. OK/Cancel button

The Add/Remove OK and Cancel buttons are constructed using button widgets of
TK.

All the items are arranged in the grid using grid of TK.

3.2. Integration of Enhanced Dialogue box with Callout box functionality.

The user can select the category from Instances/Pins/Nets by using combo box and the
respective attributes gets displayed in left /right list box. The attributes which are
displayed in right list box gets displayed in callout box. The remaining attributes,
displayed in the left list box are associated with the object type but are not displayed in
the callout box .The user can add/remove attributes from left/right list using Add/Remove
buttons. The respective changes will get applied to the callout box. The user can also
modify the background color of the text displayed in the callout box by selecting a color
in the option menu. These changes will also get applied to the callout box displayed in
the schematic window.

3.3. Pseudo code for Integration of Dialogue Box with Callout Box

proc modifyCalloutBoxMessage { } {

1. Creating individual widgets like combo box, scrolled listboxes and buttons
and arranging them in grid.

2. The user can select an item from Pin/Instances/Nets from Combo-box ,
and the attributes of the same will be displayed in left and right list box

3. The user can also modify the background color of the attribute by
selecting the appropriate color from the tk_option menu

 OR

The user can add/delete the attributes from left to right list box to
display/remove the attributes from callout box.

 OR

The user can execute both the steps.

4. When the user press Ok button , these changes will be reflected in the
callout box

 }

4. Glossary

GUI: Graphical User Interface.

HDL: Hardware description language.

DRC: Design Rule Checks.

5. Summary

Thus we display the DRC error information to user in an intuitive way. We can also modify
the background color of the callout box using enhanced TCL/Tk dialogue. Thus we provide

a guided debugging environment to the user by implementing and using the enhanced TCL/
Tk widgets.

6. Bibliography
 TCL wiki, http://wiki.tcl.tk

