
An Efficient Method for Rendering Design Schematics Using Tcl/Tk, and Distributed
Relational Databases.

Manu Goel(manu_goel@mentor.com), Antara Ghosh(Antara_ghosh@mentor.com)

Mentor Graphics Corporation

Abstract:

Debugging a design in EDA is always a challenging and time consuming process.
Designers need to have access to an efficient tool which can provide them the design
connectivity in a logical and efficient manner. This paper discusses various challenges
faced while writing such a tool for debugging a design and how were they handled to
provide a fast and efficient solution. Schematic browser is a Tcl/Tk based GUI
application, which user can use interactively to debug and understand the design.

Glossary:

Description of terms used in the paper:

Schematic Browser – Widget to view/trace the RTL level connectivity of a signal in a
design
Incremental Mode – Browse the connectivity incrementally based on need
Full View Mode – View the connectivity of a particular segment of design in one go
Waveform Viewer – Widget to view the signal waveforms

Introduction:

The widget being discussed here is the schematic widget, which is a part of GUI
provided with a typical simulator. The GUI is used to run simulation, view waveforms
and then debug user design in case of any issues, using Schematic window/Wave
window. Typically, user needs to compile the design with flags to turn on debugging and
then use the GUI to verify/debug the design.

Schematic browser shows a graphical representation of a user’s design. The tool
converts the RTL constructs of user design, to their equivalent graphical symbols and
presents them. The tool should be easy to use interactively to debug or understand the
design. Viewing the design graphically, results into much faster debugging and clear
insight in the design, making it easy for the user to correlate quickly about how his chip
is going to behave.

Schematic window has two modes –

mailto:manu_goel@mentor.com�
mailto:Antara_ghosh@mentor.com�

1. Interactive Design Mode: The purpose of this mode is to debug the design
incrementally. For example, if the user finds any mismatch in his design
output, they will start tracing the design in schematic window starting with the
first signal which shows mismatch. User can then select any net and can
choose to see the drivers or readers of the selected net to see the
connectivity between various constructs around the net of interest. This
mechanism can help him in identifying any misconnection or any
unconnected logic.

2. Full Design mode: This mode is used to create full understanding of the
design and it shows one full module at a time. This mode provides a compact
view initially. User can expand to see more details on their area of interest
and can compact that again whenever needed.

3. Batch Mode: There is a mode in this tool, where user can use the tool even
without bringing up the GUI. This is called batch mode. In this mode, user
gets an interactive prompt at the terminal itself, where user can perform
certain operations. User can still use some of the above mentioned features
in this mode. For example, they can request certain details through command
and the details will be provided in text format.
Even when the GUI is up, user still has access to the prompt, and from there
as well user can perform certain operations without actually opening up the
Schematic browser GUI.

The GUI and the Schematic widget in discussion here are based on Tcl/Tk and the
debug information is stored in a database software tool. User has the flexibility to open
multiple instances of the Schematic browser and can perform independent operations in
all of them in parallel.

Problem Statement:

As discussed, schematic viewer should be a intuitive tool for debugging any design. The
Schematic viewer must give absolute clarity and maximum insight in the design to user,
in real time. However, when the design is big, so is the netlist debug database. To
manage such huge amount of data, fetch relevant information and drawing it in real time
is a daunting task. To achieve that one must make sure there is as little as possible
database interaction. That is, same query should not go to the database again and
again.

So in one hand, the data access should be managed in a way, so that user can open
debug netlist in multiple windows separately. These windows should be completely
modular in behavior. Any change in one window, should not affect other windows in any
manner. Consider a typical schematic rendering flow. Whenever logic is drawn in

schematic window, there are safeguards to avoid painting same logic again. The
scenario of repeated rendering can occur in two cases. One case is, the design has
some looped logic, and while path browsing and incrementally drawing, the tool might
go through same logic repeatedly. Second case is, the user has issued command to
draw same logic more than once. To avoid these, there should be information present
against every window, about what logic is already present in Schematic window. These
caches of information is checked before drawing any logic, so that for an already drawn
logic, the whole process of data fetching, processing and drawing is not repeated. Every
netlist object must be processed (processing being the cycle from data fetching to netlist
rendering) only once. However the tool must make sure, if the same net is drawn in
different schematic window, which should be allowed. This is needed to maintain the
window functional modularity as mentioned above.

On the other hand the tool needs to keep database interaction minimum. For example,
as mentioned above, same logic should not be drawn in single Schematic window more
than once, but same logic can be drawn in different schematic window. However, the
effort of information fetching and processing should not be repeated for same logic. This
is cardinal as, multiple accesses to debug database is costly and should be strictly
guarded against.

The solution for this is to keep the data pool common among different Schematic
window. Database access and initial data processing, which is same for all logic,
regardless of which schematic window needs the information, should be done in a way
so that the effort is not repeated. This is a must for good performance.

So the system has two apparently clashing goals. One is to keep the data model as
mutually exclusive as possible to have correct functionality of multiple schematic
viewers. The other is to have a common data pool and data processing algorithm.

Added to this is, another use of the system is working of Batch mode. As discussed in
the introduction, this mode does not need any GUI window, so the system of information
caching needed for schematic windows are not needed here. However this mode can
also use the common data pool.

Lastly one must understand, as design gets bigger, DB size also gets bigger impacting
the performance in multiple ways –

- Loading the whole DB may take a lot of time
- If full DB is loaded in memory, then memory footprint will increase causing the

system to slow down.
- Fetching the required information will be slower

So handling of database also have to be clever. Creating a monolithic database for
whole design, and loading the whole database in memory, irrespective of user debug
interest locality is wasteful and will harm netlist drawer’s performance.

So to sum up, for schematic to be truly useful, it must have correct functionality, it must
be reentrant and fast. The performance (time and memory) is almost as important as
functionality is, for schematic debugging.

Solution

In order to create such a tool, the basic requirements are

- Tool should support multiple windows, which can provide similar functionality, but
should be completely independent

- It should provide a clear interface to database from where all the necessary
information can be fetched

- Whatever information is once processed should not be processed again.
- Non-GUI mode should also work

In order to provide the above functionality, advantage of object oriented Tcl/Tk is
taken to create the main Schematic window widget. All common functionality that has to
be provided and needed to be localized to a single window can be encapsulated inside
a class. This class should have functionality of both, incremental and full view mode.
Information, once loaded in a window needs to be cached, so that it can be brought
back very quickly if user performs the same operation in that particular window. Such
information is dependent on context of the window. So a localized caching is a must for
such operations. This caching data structure, resides in the class created for the
window. The class will also store all the user specified preferences for that particular
window.

Second part of the problem is, to fetch the necessary information from the database to
show the required functionality in GUI windows, as well as in non-GUI mode. Since a lot
of information may be shared among various windows, keeping the code to fetch and
store the information separate is a good idea. Since this information may be needed for
non-GUI mode as well, it has to be outside the scope of main class creating the widget.
Apart from this, since the design connectivity information will be same irrespective of the
window from where the information is being requested, all information fetched for this is
cached and can cater to future requests without having to go to debug database. So
Namespace feature of Tcl/Tk came very handy here.

All interface APIs were protected inside the name space. The caching arrays were also
protected inside the name space avoiding any misuse of these caches. Further, keeping
these interfaces and caching outside the main class also helps batch mode, because
that is not associated to any window, so the tool does not need to create any window
object for non-GUI mode. It can simply work through fetching the information directly
from these name space APIs.

Since the tool uses a lot of caching and the advantage of cache can be fully achieved
only if the cached information can be fetched real quickly. The associative arrays of

Tcl were of great help for such a purpose. The logic of interest automatically became
the key for such an array to store the information in the cache, and to fetch. One simply
needs to check if such an entry exists in the concerned cache or not, and if it exists then
the information is available very quickly. It does not require any hashing function
implementation to store or retrieve the information form cache.

The information to be cached in these arrays is of the form of
Readers_of_net(/top/mid/in1) {/top/mid/o1 /top/mid/o2…}

Figure 1: Window widget and debug data pool database

This is how the GUI side problem was solved, now comes the problem of managing the
big database. Once that problem is solved, one can achieve a real efficient functionality
that is needed. For this, again, Tcl came in very handy. The handling of a big database
is divided into two parts. One, database should be modeled in such a way that data can
be accessed efficiently. Two the data already fetched into memory should be cached
and shared in judicious way among the different processes can access it independently.

 Local cache

Window object 2

Widget
functionality

 Local cache

Window object 1

Widget
functionality

 Local cache

Window object 3

Widget
functionality

Common debug
data pool

Debug Database

Query to
database

Info from
database

The usual size of designs that simulator handle is hundreds of million gates. The debug
database size can easily run into several hundred gigabytes. To keep a single
monolithic database of that size and fetching information from it is time consuming. So
instead of keeping single large design database, GUI should have several small
databases for different parts of design.

Dividing databases into several parts also gives GUI the flexibility of generating different
amount of debug information for different parts of the design, depending on the user’s
requirement. The simulator tool’s debug database is arranged in a way that the tool
maintains several databases for different parts of the design. These databases may
have different amount of granularity of information on the parts of design it represents.
This depth of the information for each part is dictated by the user. There is always one
top node database that does the book keeping for the whole design. It would keep
record of what part of design resides in which database. Also it keeps all the global
information of the database.

Figure 2: Debug database structure

The above picture shows flow of handling debug database by GUI rendering tool. The
design is partitioned into Despart1, Despart2 and Despart3. The segregated parts of
design produces separate debug databases. Different colors on the databases indicate
that the debug data dumped for that part of the design are different. User has flexibility
to modulate amount of database that will be dumped for different parts of design. This is
the structure of database that the tool needs to handle.

DesPart1 DB
DesPart2 DB

DesPart3 DB

Global
info

GUI rendering tool

Any standard database tool allows the user to access multiple databases through the
handles they supply to user. The user must request the database tool to open a
particular database (say db1) for information access; the tool does that and returns a
handle (db1_handle). The user then must interact (execute queries to fetch relevant
information) with the database (db1) through this handle (db1_handle).

The database structure for debugging as described above will have several databases
and thus database handles for each. The top (or global) database will supply the
databases with the path to each of these databases; however GUI must handle
opening, accessing right database and closing them on its own. For this purpose the
associative array of Tcl language comes in very handy once again. One can easily
create an associative array for database handles. For example, for the above case
discussed, the Tcl storage would be –

array set db_handle_array {}
set db_handle_array(db1) db1_handle

Now, one can simply find out which queries should be carried out on which database
(say db1) through the global database, and execute the queries on the database handle
($db_handle_array(db1) stored in the associative array. Because the array is
associative, the worst time complexity to pick the correct handle is constant.

The second requirement of having a multiple database in a flexible GUI tool is, one
opens a database only when that part of the design is accessed. So the database
handles are created on the fly while drawing the part of the design that database holds.
This again needs to be a fast (preferably in constant time) action for GUI. The GUI must
in constant time determine if a database is already opened and handle is available if not
then create that handle. Tcl gives a solution through where one can check if there is any
value stored in an associative array against a particular key. So the algorithm of
handling this flow would be -

If { [info exists db_handle_array(db1)] } {
 Use existing db handle
} else {
 Open db handle for db1
 Set db_handle_array(db1) db1_handle
}

The last requirement of handling multiple databases is, one must close all these
handles before exiting GUI. Any database on which handle is kept open, might not
behave correctly if a subsequent process tries to access it. However the flexibility that
Tcl offers while accessing associative array fixes this problem. One can easily traverse
an associative array like a list. The “array names” functionality brings all the keys of an
associative array for the database handle arrays. The flow of closing all databases is –

foreach key [array names db_handle_array] {
 Close database whose handle is stored in
$db_handle_array($key)
}

Conclusion:

Using the above described approaches made as develop an efficient schematic widget
tool. IncrTcl helped us in creating the main window providing the needed functionality
and storing window specific information locally. Name spaced helped us in providing
well defined interface to fetch the required data and to manage a common cache of
data. This also helped in keeping the GUI side clean and clear from code to interact with
database and keeping the GUI code thin. Associative arrays helped significantly in
managing multiple databases parallel and at also helped in caching and retrieving the
data quickly and easily.
When all of these constructs of Tcl gets combined, then comes the real power of Tcl
through which, however complex the widget is, looks easy and trivial to create and
maintain.

Bibliography:

[1] An Object Oriented Mega-Widget Set, Mark L. Ulferts,
http://incrtcl.sourceforge.net/iwidgets/paper/paper.html

[2] TCL wiki, http://wiki.tcl.tk

[3] Can Distributed DB Provide An Effective Means Of Speeding Web Access Times,
Christopher G. Brown, http://jitm.ubalt.edu/XVIII-1/article1.pdf

[4] Using [incr Tcl] to improve stability of a GUI – A Case Study
http://www.tclcommunityassociation.org/wub/proceedings/Proceedings-
2009/proceedings/guis/incrtcl-emulation-debug-gui.pdf

http://incrtcl.sourceforge.net/iwidgets/paper/paper.html�
http://wiki.tcl.tk/�
http://jitm.ubalt.edu/XVIII-1/article1.pdf�
http://www.tclcommunityassociation.org/wub/proceedings/Proceedings-2009/proceedings/guis/incrtcl-emulation-debug-gui.pdf�
http://www.tclcommunityassociation.org/wub/proceedings/Proceedings-2009/proceedings/guis/incrtcl-emulation-debug-gui.pdf�

