
Brush: A New Tcl-like Language
Andy Goth

http://andy.junkdrome.org/
andrew.m.goth@gmail.com

November 20121

This paper proposes a new programming language similar in structure to Tcl2. The new language embeds
several functional programming concepts which are currently awkward or difficult to realize in Tcl. A

reference system serves as the foundation for several other new features. The Tcl object model is refined to
address performance concerns encountered in the Wibble3 project. Syntax is fine-tuned to streamline

preferred usage. Despite similarity to Tcl, backwards compatibility is broken. The paper discusses the
motivation, design, and semantics of the language and provides a preliminary specification. Included code

samples contrast how various tasks are done in Tcl and the new language.

Introduction...
Everything is a String..

Representations and Shimmering.............................
Dict/List Unification...

Nature of the Combined Type.................................
New Capabilities...
Proposed [lot] Subcommands..................................

Enhanced Syntax..
Bridging Substitution and Command Contexts.........
Math Expression Substitution..................................
List Constructors..
Sexagecimal Notation...
Comments...
Brace Counting..
Backslash-Newline..
Formal Argument Lists...
Multiple-Variable [set]..
Enhanced Index Notation..

Substitution..
Dictionary and List Substitutions.............................
List Range Substitutions...
Strided List Range Substitutions.............................
Computed Variable Names......................................
Functional Substitution...
Dereferencing...
Substitution Syntax Comparison..............................

References..

Difficulties with Naming...
Introducing References...
Value of a Reference..
Early and Late Binding...
Building References from References.......................
Three Stages of Reference Processing.....................
References and [set]...
References and [unset]..
Using [ref link] to Link Variables to References........
Comparison with Tcl..
Reference Syntax Summary.....................................

Garbage Collection..
References and Shimmering....................................
Circular References...
Performance..
Alternatives...

Command Dispatch..
Lambda Commands..
Native Commands..
Curried Commands...
Prefix Commands...
Channel Commands..
Interpreter, Coroutine, and Namespace Commands. .
Ensemble Commands..
Object Commands..
Extension and Reflected Commands........................

Conclusion..

1 This is version 1 of this document.
2 http://wiki.tcl.tk/tcl Index of information on the Tcl programming language.
3 http://wiki.tcl.tk/wibble Wibble is a small, pure-Tcl web server.

http://andy.junkdrome.org/
http://wiki.tcl.tk/wibble
http://wiki.tcl.tk/tcl
mailto:andrew.m.goth@gmail.com

Introduction
Tcl is a vastly powerful scripting language which blends deceptive simplicity with surprising
functionality. Its minimal nature inspires programmer creativity, encouraging innovative
designs difficult to imagine in more regimented languages. However, years of experience with
Tcl have revealed its limitations, rough edges, and pitfalls which, while by no means fatal,
could stand to be improved in order to empower programmers both experienced and new.

In the Cloverfield4 project, Frédéric Bonnet5 and I investigated possibilities for the next
generation of Tcl. Though we shared many goals, we reached incompatible conclusions about
the nature of the new language and decided to separately pursue our designs. As such, I
cannot claim the Cloverfield name. For the time being, I will call my new language “Brush”.

Brush has four primary design goals:

• Everything is a string.

• Streamline best practices.

• Enhance data structure access.

• Facilitate functional programming.

Brush does not attempt to maintain complete backward compatibility with Tcl. Several of its
changes break existing scripts by subtly altering existing syntax and by defining new syntax
using symbols and constructs not currently reserved.

This paper assumes a strong familiarity with Tcl script programming and a basic
understanding of how Tcl is implemented.

At time of writing, Brush is proposed but not implemented or formally specified.

Everything is a String
One of Tcl’s defining characteristics is its “everything is a string” philosophy, EIAS 6 for short.
Brush embraces the Tcl EIAS philosophy without modification. EIAS informs the design of
all new features in Brush. During previous iterations of Brush I considered and rejected
features that conflicted with EIAS, and I redesigned others until they complied with this
fundamental goal.

From the perspective of the programmer, EIAS means exactly what it says: Every value
accessible within the Tcl interpreter is a string of text characters. This design offers a
refreshingly natural way to program; the data is formatted in the same way it is described.

4 http://wiki.tcl.tk/cloverfield Cloverfield seeks to improve Tcl syntax and add missing features.
5 http://wiki.tcl.tk/fb Tcl Wiki page for Frédéric Bonnet.
6 http://wiki.tcl.tk/eias Discussion of the “everything is a string” concept and implementation.

http://wiki.tcl.tk/eias
http://wiki.tcl.tk/fb
http://wiki.tcl.tk/cloverfield

EIAS offers many benefits:

• Trivial serialization. Strings are always suitable for transmission and archival.

• Maximal compatibility. Strings are a useful common denominator for all data types.

• Easy introspection. Displaying strings is effortless.

When a string follows a defined format, it can be said to be of the type described by that
format. The important thing to notice about this definition is its fluidity: Types may exist
within the imagination of the programmer, and strings can freely conform to many formats
(therefore types) simultaneously. There is no need to declare types within the script. Typing
is not an explicit activity; it is merely a convention, and type conventions may coexist.

Within a typical script, many types can be found: number, list, dictionary, script, math
expression, regular expression, and of course string. These types all have distinct internal
representations, as discussed below, but they are by no means the only types that can exist.
Scripts may freely define new types built on top of existing ones; these are application-specific
data structures. The definition is purely implicit in how the script chooses to access the data.

This is known as duck typing. If something walks like a duck and quacks like a duck, then
it’s a duck, even though it may also be a bird or a robot or a cartoon or a paranormal
manifestation. Similarly, if values can be added together, they are numbers, though they are
also valid as strings, byte arrays, regular expressions, and single-element lists.

Representations and Shimmering
Tcl and Brush use dual-ported values, meaning that at the C level they cache string and
internal representations to avoid incessant conversions. Whenever a given representation is
needed, it is either retrieved from the cache or generated from the other representation. For
example, the first time a numeric value is printed, a string of ASCII digits 0-9 is generated
and cached in preparation for the next time it is needed.

The dual representation design is invisible at the script level, except in rare usage patterns
which induce a phenomenon known as shimmering7. Shimmering means frequently discarding
and regenerating the string and internal representations, and it can sharply reduce
performance, though it has no impact on correctness.

Shimmering becomes possible when the script repeatedly alternates its interpretation of a
value’s type. If the script switches between treating a value as a string and (say) a list, each
time it modifies the value using one interpretation it invalidates the other cached
representation, which must later be regenerated. Shimmering is possible even with purely
read-only operations: When the script cycles between two or more non-string representations,
e.g. between list and dictionary, each access displaces the previous internal representation
since there is room for only one at a time.

7 http://wiki.tcl.tk/shimmering Shimmering is repetitive changing of the internal representation for some data.

http://wiki.tcl.tk/shimmering

Dict/List Unification
That last point touches on the first change Brush proposes to make to Tcl. No, Brush does
not seek to add more internal representation cache slots; Brush retains the existing Tcl_Obj8
structure which Tcl uses to store values. Brush’s change is to unify the internal
representations of lists and dictionaries. This avoids shimmering in the case of cycling
between treating a value as a list and a dictionary, which is a legitimate use case experienced
by the Wibble web server.

Wibble converts HTTP headers, queries, and POSTs to alternating key/value lists, which
would be dictionaries if not for the possibility of duplicate keys. Tcl’s [dict] dictionary
commands ignore duplicates, so they are convenient when the website code does not expect
duplicates, but in situations where duplicates are valid, the website code can instead use list-
oriented commands such as [foreach].

EIAS requires a string representation to be generated when making a dictionary from a pure
key/value list containing duplicates, since having only the dictionary representation would
cause the duplicates to be lost. This duplication is very wasteful in the case of HTTP POSTs
which may be megabytes in size. Having two representations doubles memory utilization.

Even in the case of canonical dictionaries (i.e. no duplicate keys), EIAS preservation incurs a
performance penalty. Dictionaries are internally represented as hash tables for constant-time
access, but standard hash tables are unordered, so converting a string to a dictionary and
back scrambles the element order, thereby violating EIAS and the transparency of dual-
ported values. Early versions of [dict] indeed had this problem. To correct it, the dictionary
maintains a doubly linked list9 chaining together the hash table entries in insertion order.

Tcl’s implementation of dictionary values employs both hash tables and lists, yet it is not
compatible with the implementation of list values. As mentioned before, alternating between
[dict] and list commands results in shimmering, even when no write accesses are being done.
It would make sense to combine the two to avoid shimmering and duplicate representations in
the event of duplicate keys.

Nature of the Combined Type
The combined type is a list with an optional hash table index. The list component works just
like current Tcl lists10: it is a linearly allocated array of Tcl_Obj pointers. The one change to
the list structure is the addition of a pointer to an indexing hash table; if there is no index,
this pointer is NULL. The hash table maps from keys (which, like everything else, are strings)
to the indices of their corresponding values within the backing list. In this way, elements can
be located in constant time either by index or by key.

8 http://wiki.tcl.tk/tcl_obj Tcl_Obj is the underlying data structure for all Tcl values.
9 http://core.tcl.tk/tcl/artifact/e62fccab713b5753edf37486f0947fa76bea265a Search for “struct ChainEntry”.
10 http://core.tcl.tk/tcl/artifact/b3feb25636989d0d7d6b98f7814c01fac7e41b42 Search for “struct List”.

http://core.tcl.tk/tcl/artifact/b3feb25636989d0d7d6b98f7814c01fac7e41b42
http://core.tcl.tk/tcl/artifact/e62fccab713b5753edf37486f0947fa76bea265a
http://wiki.tcl.tk/tcl_obj

In current Tcl, performing dictionary operations on a value causes its dictionary
representation to be created if it does not already exist. In Brush, dictionary operations
create a list representation (if needed) and construct a hash table index (if needed). One
advantage is not having to discard an existing list representation; it is only necessary to
augment it. Read-only list operations on a dictionary value do not need to do anything
special, since it is also a list value. Using list operations to modify a dictionary value causes
the index to be discarded, but the list representation need not be regenerated.

If a list value has duplicate keys, and its value is read via dictionary commands, the hash
table index will simply omit all but the last of each duplicate. This results in the hash table
index containing fewer than half as many elements as the list. (For canonical dictionaries,
there is exactly one hash table index element for each pair of list elements.) Using dictionary
commands to modify a non-canonical dictionary results in the duplicates being stripped;
duplicates can be identified by not being present in the hash table index.

One drawback worth noting: Because the Tcl_Obj pointers are stored in a linear array,
dictionary element removal takes linear time in Brush, as opposed to constant time in Tcl.

New Capabilities
Not all applications require dictionary keys to have values. Sometimes all that matters is
whether or not a key is in the dictionary. This kind of data structure is called a set.

The usual Tcl implementation of a set is to make the keys map to dummy values, for example
empty string. Lookup, insert, and delete all take constant time to complete, so the
performance beats unsorted lists (linear time) and sorted lists (logarithmic time). The
downside is that the string representation is littered with dummy values.

If the hash table index structure permits variable stride between key elements, it becomes
possible to create a high-performance set structure with no need for dummy values. When
the stride is two, the structure is a traditional key/value dictionary. With unit stride, the
structure is a set.

Brush permits these two options, with the choice determined by which command is used to
access the value. For key/value access, the traditional [dict] command is used. For sets, the
new [lot] command is used.

A note on the name: [set] is taken, so I chose [lot] because it is a synonym of set and has
similar pronunciation and spelling. Other possible names include: [ring], [field], [group],
and [corpus], but I prefer [lot] because it does not abuse existing terminology. I am open to
suggestions on the name.

Using a linear array to back a dictionary means that each element has a numeric index
corresponding to insertion order. Classical sets are not ordered, but this feature is there in
case a script needs it.

As with dictionaries, lots (sets) cannot contain duplicate keys, even though their backing lists
can. Accessing a noncanonical lot with [lot] subcommands (described below) results in the
duplicate keys being ignored, but they are visible to the list commands and are in the string
representation. Any command that creates or returns a lot always produces a canonical lot,
i.e. there are no duplicate keys.

One sample usage is in implementing enumerated types, whereby strings map bidirectionally
to non-negative integers. Taking this a step further, a dense tabular data structure can be
efficiently implemented as a list of rows, each being a list of cells, coupled with a lot mapping
between column names and indices. The string representation would avoid the redundancy
encountered when each row is a dictionary mapping from column names to cell values.

Proposed [lot] Subcommands
A functional programming style is more flexible and elegant than an imperative programming
style; it frequently avoids the need for temporary variables which can clutter a program or
collide with each other if not carefully named. Therefore most [lot] subcommands in Brush
operate on values (as opposed to variables), return their results, and have no side effects.

The proposed functional commands are as follows:

Functional Commands Operating on Values

lot contains lot key True if lot contains key

lot create ?key ...? Construct a lot given its keys

lot difference ?lot ...? Symmetric difference of lots

lot empty ?lot ...? True if all lots are empty

lot equal ?lot ...? True if all lots are equal

lot exclude lot ?key ...? Remove some keys from lot

lot include lot ?key ...? Add some keys to lot

lot index lot index Return index’th key in lot

lot info lot Hash table statistics for lot

lot intersect ?lot ...? Intersection of all lots

lot search lot key Return index of key in lot, or -1

lot size lot Number of keys in lot

lot subset lot1 lot2 True if lot1 is a subset of lot2

lot subset -proper lot1 lot2 True if lot1 is a proper subset of lot2

lot subtract lot1 ?lot ...? lot1 sans keys in subsequent lots

lot superset lot1 lot2 True if lot1 is a superset of lot2

lot superset -proper lot1 lot2 True if lot1 is a proper superset of lot2

lot union ?lot ...? Union of all lots

For the sake of convenience, a few imperative commands are proposed which operate on
variables given their references:

Imperative Commands Operating on Variables
lot set lotref ?key ...? Add some keys to lot named by lot ref

lot unset lotref ?key ...? Remove some keys from lot named by lot ref

The organization of the [lot] subcommands may inspire a refactoring of the [dict] command,
but that is not yet defined.

Enhanced Syntax
Tcl’s syntax is simple, but that does not mean it’s always simple to use. There are several
situations where the simplicity of the syntax actually discourages safe, correct programming
and instead leads novice programmers into bad habits. In other cases, the simplicity of the
syntax leads to seeming inconsistencies which can only be deciphered once the programmer
has developed an in-depth understanding of the language and its commands.

Brush proposes to give the Tcl syntax a face lift. The changes described below are not merely
syntax sugar; they are intended to encourage the programmer to follow best practices11 by
making the right thing also be the easy thing. Other changes make the language less
surprising in light of expectations established by other programming languages, plus there are
a few neat experimental ideas.

Bridging Substitution and Command Contexts
The interpreter’s goal is not to perform substitutions, it’s to execute commands, and it only
performs substitutions in order to assemble command lines. However, there are situations
where substitution alone provides all the functionality needed, so the programmer wants a
pass-through command whose sole purpose is to return its argument.

One such case is Tcl’s new [lmap] command12 which works like [foreach] except its return
value is a list of results from each iteration of the script body. If the output list elements are
to be made using substitutions, math expressions, or lists, it is necessary to use [subst], [expr]
or [list], respectively.

However, [subst] and [expr] are dangerous if their argument is not brace-quoted to prevent
double substitution. Also, Brush renames [list] to [list create] which takes longer to type.

The Tcl interpreter has long known how to do variable and script substitution and
concatenation without the aid of a command, and Brush adds math expression and list
constructor substitution (described below). Now that all these tasks can be done directly by

11 http://wiki.tcl.tk/best+practices List of some best practices in Tcl.
12 http://tip.tcl.tk/405 The [lmap] command is a collecting loop with the semantics of [foreach].

http://tip.tcl.tk/405
http://wiki.tcl.tk/best+practices

the interpreter, it makes sense to offer a straightforward way to glue interpreter-driven
substitution to commands such as [lmap].

Brush meets this need by providing a command that simply returns its first argument. The
command is simply called [:] (a single colon), or the “pass-through command”.

In this example, “$(...)” performs math substitution, and “(...)” constructs lists.

lmap (x y) (1 2 3 4) {: $(x + y)} # 3 7
lmap f (y reas) {: And$f} # Andy Andreas
lmap f (y reas) l (G K) {: (And$f $l)} # {Andy G} {Andreas K}

For comparison, here is how the above is written in current Tcl:

lmap {x y} {1 2 3 4} {expr {$x + $y}}
lmap f {y reas} {subst {And$f}}
lmap f {y reas} l {G K} {list And$f $l}

The [:] pass-through command directly implements the K combinator13, which returns its first
argument and ignores its second, though scripts typically rely on side effects from computing
the second argument. For example, here is postincrement. (The “&”’s in front of variable
names will be explained in the section on references.)

set &x 5 # 5
set &y [: $x [incr &x]] # 5

The return value of [:] is $x, which is substituted before Brush tries substituting [incr &x].
The return value of the latter is ignored, but that’s fine since evaluating it had the desired
side effect of incrementing the variable. In this example, “$x”’s final value is 6 and “$y” is 5.

For interactive use, [puts] and [:] have the same effect, though the mechanism is different.
[puts] prints its argument to stdout and returns nothing, whereas [:] returns its argument to
the shell which prints it to stdout. [:] is shorter to type and will be used in later examples.

Also to benefit interactive use, [:] returns empty string if given no arguments. This helps
when running a command that will return a very large amount of data that would overwhelm
the display. For example, typing the following line into a Brush shell will display nothing:

set &data [chan read [open hugefile]]; :

Math Expression Substitution
One of the secrets to Tcl’s simplicity and flexibility is that it delegates nearly everything to
commands. Like Lisp and Unix shell scripts, Tcl is command-oriented, not expression-
oriented, and its operators (quoting, delimiting, substitution, expansion) exist to construct
command arguments. Therefore, math is not a part of Tcl proper, but rather something that
is done by the [expr], [if], [while], and [for] commands.

13 http://wiki.tcl.tk/k The surprisingly useful K combinator returns its first argument and discards its second.

http://wiki.tcl.tk/k

This is a good example of a little language14 significantly extending the capabilities of the Tcl
base language, which otherwise can only divide scripts into commands and words, performing
substitutions along the way.

Yet, though this may be an interesting and consistent philosophical orientation, it has proven
to be inconvenient for many practical programs. Math is needed very frequently, and in most
programming languages math is “instantly” available: simply write the expression, and it’s
done. In Tcl, it takes an extra nine characters per math expression (“[expr {...}]”), plus a
dollar sign for each variable usage.

One common shortcut is to omit the braces, saving two shifted keystrokes. In most cases this
appears to give correct results, so programmers use it. However, it also creates serious
performance and security problems. It hurts performance because there is no single Tcl_Obj
in which to store the math expression internal representation, and it is insecure because
double substitution15 opens the door to injection attacks16.

Brush improves the situation by making the safe, fast, correct programming style be the
easiest to type. It introduces a shorthand for math expression substitution: “$(...)” is
equivalent to “[expr {...}]”, where “...” is any legal math expression. This reduces the per-
expression overhead from nine characters to three.

The Brush interpreter performs no substitution on the text between the parentheses of
“$(...)”; all it concerns itself with is locating the final close parenthesis. All math, including
variable substitution, is performed by the math runtime, and there is no danger of double
substitution.

This breaks compatibility with Tcl which interprets “$(...)” to be a directive to substitute
an array element value, where the array variable name is empty string. (STOOOP17 famously
stores class and instance data in the empty-string array local to the object’s namespace.)
Consequently, Brush forbids using empty string as a variable name.

Brush retains the [expr] command for rare situations where the math expression (as opposed
to any variables contained within) is legitimately dynamic, such as in a calculator application.
To discourage abuse, automatic concatenation is removed; [expr] takes exactly one argument.

In addition to shortening the preferred syntax for performing math substitutions, in limited
(but common) circumstances Brush relaxes the requirement to precede variable names with a
“$” dollar sign.

If the variable name consists of only alphanumerics and underscores, and it does not start
with a numeral, the dollar sign is optional. When using this shortcut, the variable must be

14 http://wiki.tcl.tk/little+language In effect, each Tcl command defines its own domain-specific little language.
15 http://wiki.tcl.tk/double+substitution It is dangerous to reparse substitution results and do further substitution.
16 http://wiki.tcl.tk/injection+attack An injection attack is the substitution of executable code into an expression.
17 http://wiki.tcl.tk/stooop Simple Tcl-Only Object-Oriented Programming. Newer Tcl OOP systems exist.

http://wiki.tcl.tk/stooop
http://wiki.tcl.tk/injection+attack
http://wiki.tcl.tk/double+substitution
http://wiki.tcl.tk/little+language

named literally (i.e., no nested substitutions), and no indexing or dereferencing can be used.
(See the section on substitution for details.)

These restrictions avoid ambiguity between variable substitutions, literals, function calls,
array element names, and the ternary operator’s “:” case separator. Any sequence of two or
more “:”’s within or adjoining a variable name is treated as a namespace separator, not a
ternary operator case separator.

Here are some examples and side-by-side comparisons:

Tcl Brush Description
expr {cos($x * 2)} : $(cos(x * 2)) Cosine of two times $x
expr {cos($arr(x) * 2)} : $(cos($arr(x) * 2)) Literal array index/dict key
expr {cos($arr($x) * 2)} : $(cos($arr($x) * 2)) Index/key comes from $x
expr $formula expr $formula Dynamic math expression

List Constructors
In Tcl, the preferred way to construct a list from non-constant elements is with the [list]
command. Each argument to [list] is an element in the returned list. The [list] command
is crucial to any well-written Tcl program, but it is clumsy and therefore is avoided by
novices who discover that double quotes are easier to type and give deceptively similar effects.
Double quotes actually behave like [concat] which concatenates its arguments, collapsing one
level of nested list structures, and corrupting the results when the elements contain spaces.

Even though I have coded Tcl for over a decade, I still sometimes look for ways to avoid
[list]. Recently I had some deeply nested list containing almost entirely static data, but
some buried element was variadic. Rather than code the whole thing using [list] so I could
use a normal substitution, I used braces then applied [string map] to inject the element I
needed. This is certainly not the most efficient implementation, but it is more readable
despite its complexity.

Brush introduces a shorthand for [list]: parentheses. Parentheses at the beginning of a word
behave like a new quoting mechanism. They nest like braces, but interior word boundaries
are respected and substitutions are performed. There is no need for backslashes at the end of
every line. The result is a pure list18.

This shorthand provides an interesting possibility: reclaiming the [list] command for use as
an ensemble. The [lindex], [lrange], etc. commands become [list index], [list range], etc.
subcommands, organized the same as [string], [dict], and others. (The full complement of
new [list] subcommands is not defined at this time.) The drawback is longer command
names for common operations, but Brush also offers streamlined notation for list and
dictionary access, discussed later.

18 http://wiki.tcl.tk/pure+list A pure list is a value with list internal representation and no string representation.

http://wiki.tcl.tk/pure+list

Parentheses have no special meaning inside double-quoted and braced words, only at the “top
level” of interpretation and nested within other parenthesized words.

The “{*}” expansion operator can be used to selectively force individual list elements to be
split into multiple elements on embedded word boundaries. When “{*}” is used with every
element in a parenthesized list, the effect is the same as if [concat] were used instead.

I envision this new notation being used for nearly all list construction. Brace quoting will be
relegated to nested code (e.g., [proc] bodies and regular expressions) and for the interpreter-
generated canonical representation of strings and lists requiring quoting.

Brace-quoted lists conflict with variadic elements, and the [list] command is a chore to type
and visually clutters the code. The beginner temptation is to surround the list with double
quotes, but this breaks when the substituted elements contain whitespace, mismatched braces,
etc. Parentheses provide an attractive and sensible alternative.

Brush adds parenthesized lists not only to the main interpreter, but also to the math
expression syntax. Within the context of a math expression, a list is constructed by
surrounding it with parentheses and separating the elements (which are themselves general
math expressions) with commas. To resolve the ambiguity between a single-element list and
a simple parenthesized expression, a single-element list has a comma immediately before the
closing parenthesis. The “{*}” operator is supported.

set &var (\$var value) # {$var} value
: (a b c) # a b c
: (a (b c) { d e } \{ ((
)) " f g " $var) # a {b c} { d e } \{ {{}} { f g } {$var value}
: ($var {*}$var) # {$var value} {$var} value
: $("a" in ("a", "b", "c")}) # 1
: $(($var, (1, 2), (3,), (),
"x y", ("x y",), {*}$var)) # {$var value} {1 2} 3 {} {x y} {{x y}} {$var} value

Sexagecimal Notation
For my work in geographic information systems, I frequently use sexagecimal (base-60)
notation to express latitude and longitude. To date, I have not found any languages with
direct or library support, so I have to implement it myself. It occurs to me that it might be a
useful feature to have in Brush, serving as an alternate way of expressing a floating-point
value. Sexagecimal is useful not only for GIS but also for timekeeping, since minutes and
seconds are base-60 for time as well as angles.

Brush sexagecimal values are two or three nonempty strings of decimal digits separated by
apostrophes “'”. The value may have an optional “+” or “-” sign prefix. An optional fraction
suffix may be supplied, consisting of a period “.” and zero or more decimal digits.

The apostrophes divide the value into two or three fields, each of which is interpreted as
decimal. The last field may have a fractional component. All fields except the first must be
strictly less than 60.

When Brush encounters a sexagecimal value, it converts it to a real number by summing its
fields. The second field is divided by 60, and the third field (if present) is divided by 3600. If
the value has a “-” sign prefix, the sum is negated to get the final value.

Brush’s [format] command gains a new “%D” conversion type which formats the value as
sexagecimal. By default, or with the “h” (short) size modifier, the output has two fields
(degrees and minutes). With the “l” (long) size modifier, the output has three fields (degrees,
minutes, and seconds). The second and third fields are zero-padded to two digits. The
precision specifies how many decimal places to give following the final field.

[scan] also gets “%D”. With no size modifier, it autodetects the presence or absence of a
seconds field. The optional “h” or “l” size modifiers explicitly specify the number of fields.

The mnemonic for “%D” is “degrees”. It is chosen because it’s adjacent to the sequence “%e”,
“%E”, “%f”, “%g”, and “%G” which are Tcl’s real number formats. Please do not confuse “%D” with
“%d” which formats decimal integers.

Here are some examples demonstrating the various formats:

: $(1'02) # 1.0333333333333334 %D or %hD
: $(-5'02.300) # -5.038333333333333 %.3D or %.3hD
: $(+10'02'03) # 10.034166666666666 %+lD
: $(-89'02'03.45) # -89.03429166666666 %.2lD

Comments
Tcl comments are quite different than those found in other languages. Most of the time they
resemble Python, Perl, and Unix shell comments, but there are some subtle discrepancies:

• Even though Tcl comments continue until the end of the line, a closing brace will end
the line, even if it appears to be inside the comment. (Syntax highlighters usually
handle this incorrectly.)

• A comment can only start where a command could start, so it cannot go on the same
line as another command without an intervening semicolon, and it cannot be placed
inside a list.

Brush comments are designed to more closely match user expectations for scripting languages.

Brush’s line comments continue to the end of the line, even if there are closing braces. This
requires a major change to the brace counting mechanism, described in the next section.

There are situations where it is desirable to have both a comment and a closing brace on the
same line, so Brush adds block comments which are akin to C’s “/*...*/” mechanism. The
notation for Brush’s block comments is “#{...}#”. Block comments nest, so they can be used
to comment out large sections of code, even if they already contain block comments.

Brush offers more flexible comment placement than Tcl. Line and block comments can start
wherever any word of a command can begin, not just the first word, so it is no longer

necessary to precede the pound sign with a semicolon when the comment is on the same line
as the code it documents. Comments can be embedded in parenthesized lists, not just scripts.

Comments are only stripped from parenthesized lists, not from lists quoted with braces,
backslashes, or double quotes. This ensures two things:

• Comments are handled only by the parser, not the string-to-list conversion function.

• Braces, double quotes, or backslashes can quote a pound sign in a parenthesized list.

Here is an example showing how Brush comments can fit inside the last argument to [switch],
which is a list alternating between patterns and scripts19. In Tcl, the comments can only go
inside the scripts, but Brush also lets them go between the scripts when the list is constructed
using parentheses.

switch $value (
 # first check option-*
 option-1 {puts something #{print something}#}
 option-2 {puts #{print the value}# $value}
 #{ comment this out until it's debugged...
 option-3 {putz oops #{mysterious error?}#}}#
 # now handle everything else
 default {puts "don't know what to do!"}
)

Block comments behave a lot like quoted words. The opening sequence “#{” is only
recognized if it appears at the very start of the word, and it is illegal for any word characters
to follow the closing “}#”. Of course, the major difference between a block comment and any
other kind of word is that it produces no output. In that sense, block comments are like
empty string preceded by “{*}”.

Brace Counting
Tcl novices are frequently surprised by brace counting. The current Tcl behavior is very
simple: count any brace that is not preceded by an odd number of backslashes. While this
works in most cases, it clashes with the C-inspired user expectation that braces in double
quotes and comments do not count. Brush has a more sophisticated brace counting scheme
that skips braces in quotes and comments.

Here is some faulty Tcl code that looks like it should work fine:

proc test {x} {
 if {$x} {
 puts "{"
 } else {
 puts "}"
 }
}

19 Thanks to duck typing, such an alternating list can also be thought of and processed as a dictionary.

Calling [test 0] produces no output because there is actually no else argument to [if]. This
is because the braces within double quotes effectively “quote” the else. Calling [test 1]
prints an open brace, then fails with “extra characters after close-brace”, referring to the
close quote following the close brace.

Within Tcl, the fix is to precede the quoted braces with backslashes. However, the need for
extra quoting goes against user expectations and is therefore a common source of errors.

In Brush, braces do not count toward the open/close count when they appear inside double
quotes. This corrects the specific problem experienced by the above code. The brace counter
maintains a state machine tracking how each character and word it encounters will be
interpreted during execution20. For example, if the first character of a word is a quote: start
quote mode, so the word extends to the matching quote; in the interval, do not count braces.

Backslash-Newline
In Tcl, there is one surprising instance in which brace quoting modifies the word: backslash-
newline. Within braces, if a newline is preceded by an odd number of backslashes, the
backslash-newline and any subsequent spaces and tabs are replaced with a single space.

To date, I have not been able to find any justification for this behavior. At the top level
(outside of any braces) the Tcl interpreter already knows to treat backslash-newline as a word
separator rather than a command separator.

Brush removes this oddity in order to simplify line number counting and to ensure the return
value of [info body] matches the actual source code.

Formal Argument Lists
A Tcl formal argument list binds actual arguments to variables inside [proc] and lambda21
scripts. In addition to simply giving a name for each argument, it can supply default values
for omitted arguments and store excess arguments in a catchall variable. These features are
useful but have some restrictions:

• The catchall argument must be named “args” and can only be the last argument.

• Arguments with default values cannot occur before normal, non-default arguments.

• It is very difficult to tell if an argument was omitted or explicitly set to its default.

Brush removes these restrictions. Formal arguments can be placed in any order, the catchall
argument can have any name, and an argument can be optional yet have no default value.

The syntax for Brush formal argument lists is a little different than used by Tcl. Optional
arguments have a question mark “?” appended to their name, and the catchall argument
(which does not have to be called “args”) has an asterisk “*” appended to its name. These
extra characters are not part of the variable name; they are notation for the argument list.

20 http://wiki.tcl.tk/cloverfield+-+parser Partial implementation of a similar parser made for the Cloverfield project.
21 http://wiki.tcl.tk/apply Tcl lambdas are anonymous procs and are executed using the [apply] command.

http://wiki.tcl.tk/apply
http://wiki.tcl.tk/cloverfield+-+parser

Brush adds another style of argument not found in Tcl, called a bound argument. Its value is
hard-coded into the formal argument list and is unaffected by the actual arguments. In fact,
the caller will never know the bound arguments are even there. Bound arguments are
specified in the same way as defaulted arguments, except equal sign “=” is used instead of “?”.
Bound arguments are useful when programmatically generating procs that need to capture
some of their environment at creation time.

Optional formal arguments may (not must) be specified as two-element lists, the first element
being the name (with trailing “?”) and the second the default value. If the formal argument is
instead a single-element list, and the caller omits the actual argument when calling the
procedure, the variable is not created. The procedure can check if the variable exists to
ascertain whether the actual argument was supplied or omitted.

It is an error for there to be fewer actual arguments than there are non-optional formal
arguments. It is also an error for there to be more actual arguments than formal arguments
when there is no catchall formal argument.

Brush binds actual arguments to variables by simultaneously iterating through the formal and
actual argument lists, considering them in pairs. The iterators are not always in lockstep.

The algorithm is as follows:

• Non-optional arguments are directly assigned to local variables with the same name as
the formal argument, advancing both iterators.

• Optional arguments are assigned only if the number of remaining actual arguments
exceeds the number of remaining required formal arguments. If they are skipped, the
formal iterator advances but the actual iterator stays put.

• Bound arguments are assigned using the values in the formal argument list. Just like
defaulted arguments, the formal iterator advances and the actual iterator is untouched.

• The catchall formal argument collects however many remaining actual arguments are
in excess of the number of remaining formal arguments. If the argument counts match
or if at least one optional argument is omitted, the local variable is set empty.

• At the end of the actual argument list, if any formal argument remain, they must be
optional or catchall. They are set to default values or empty list, respectively.

These rules ensure all required arguments are assigned, then allots extra actual arguments to
optional formal arguments (giving preference to earlier arguments in the list), then finally
gives whatever is left to the catchall argument.

Many Tcl core commands (e.g., [lsearch]) take options at the beginning of the argument list,
rather than the end. Brush’s expanded formal argument list specification makes this easy to
implement, plus it allows for the catchall argument to be called “options” rather than “args”

if that makes more sense. Other commands take variadic arguments in the middle, for
example [lset], which might choose to name its catchall argument “indices”.

Not all Tcl core commands map nicely to the Brush model. For example, [puts] would be
better served by assigning arguments right-to-left rather than left-to-right. In situations like
these, the command can simply fall back on letting the catchall collect most arguments, then
processing them however it wishes.

I conjecture that this new feature will improve performance since it reduces how much work
the script must do to implement more complex argument schemes.

This table demonstrates the various types of formal arguments and how actual arguments are
mapped to formal arguments:

Proc Definition proc &p (a b? (c? xxx) d (e= yyy) f* g? h) {...}

Proc Invocation
Argument Value; “∅” If Variable Unset

a b c d e f g h

p 1 2 wrong # args: should be "p a ?b? ?c? e ?f ...? ?g? h"

p 1 2 3 1 ∅ xxx 2 yyy ∅ 3

p 1 2 3 4 1 2 xxx 3 yyy ∅ 4

p 1 2 3 4 5 1 2 3 4 yyy ∅ 5

p 1 2 3 4 5 6 1 2 3 4 yyy 5 6

p 1 2 3 4 5 6 7 1 2 3 4 yyy 5 6 7

p 1 2 3 4 5 6 7 8 1 2 3 4 yyy 5 6 7 8

P 1 2 3 4 5 6 7 8 9 1 2 3 4 yyy 5 6 7 8 9

Multiple-Variable [set]
The first argument to [set] will always be a reference, which is distinct from any multi-
element list. This makes it possible for [set] to also accept a list of references as its first
argument, in which case it assigns to multiple variables at the same time. If [set]’s first
argument has length greater than one, its second argument is treated as a list of values to be
assigned in the manner of [foreach].

set (&a &b) (1 2) #
: ($a $b) # 1 2

Like Tcl’s [lassign] command, Brush’s multiple-variable [set] returns a list of extra values
that were not assigned to variables. If all values were assigned, it returns an empty list.

set (&a &b) (1 2) #
set (&a &b) (1 2 3) # 3
set (&a &b) (1 2 3 4) # 3 4

This is useful for shifting one or more elements from a list into variables, such as when
processing command-line arguments.

set &args (1 2 3 4)
set &args [set (&a &b) $args]
: ($a $b $args) # 1 2 {3 4}

To get this shift behavior for only one variable, use empty string as a dummy second variable:

set (&a ()) () # not enough arguments
set (&a ()) (1) #
set (&a ()) (1 2) # 2
set (&a ()) (1 2 3) # 2 3

Unlike Tcl’s [lassign], multiple-variable [set] throws an error when there are not enough
values to assign to all variables.

Enhanced Index Notation
Classic Tcl string and list indexes are integers or “end” optionally followed by a negative
integer22. TIP #17623 adds support for “end+” followed by an integer and for two integers
connected with “+” or “-”. These new forms are intended to simplify basic arithmetic in
situations where it would have been necessary to use “[expr {...}]”.

Brush replaces this plethora of supported formats with the original three options, yet it meets
the goal of TIP #176 with an alternate, more flexible approach: In indexes, integers are
generalized to instead be arbitrary integer-valued expressions.

If “end” is used as a prefix, the expression must begin with “+” or “-”, and the expression’s
value is added to the end index to get the normalized index.

Since it is an expression, the index must be brace-quoted if it contains substitutions or
whitespace. However, Brush expressions do not always require variables to be preceded by
“$”, so braces can be omitted in many common situations.

set (&x &str) (2 abcdef)
string index $str 0 # a
string index $str end # f
string index $str end-1 # e
string index $str x # c
string index $str end-2*x # b
string index $str end-1+1 # f

Substitution
One major goal for Brush is to provide the ability to name not only variables, but also
individual dictionary or list elements within a variable’s value. This minimizes the need for

22 http://www.tcl.tk/man/tcl8.4/TclCmd/string.htm#M9 String and list indexes have the same format.
23 http://tip.tcl.tk/176 This TIP adds simple index arithmetic capabilities to TclGetIntForIndex().

http://tip.tcl.tk/176
http://www.tcl.tk/man/tcl8.4/TclCmd/string.htm#M9

accessor commands. $-substitution is empowered to do the job directly, even for complex,
nested, hybrid data structures.

Dictionary and List Substitutions
Brush borrows and extends the Tcl array notation, though it drops the underlying concept of
a Tcl array, that being a collection of variables.

Dictionaries in Brush can be accessed using Tcl array notation, yet they otherwise work like
Tcl dictionaries and are first-class objects. In addition to dictionary indexing, Brush offers
list indexing, using braces instead of parentheses to surround the zero-based numerical index.

set &var (a b c d)
: $var # a b c d
: $var(a) # b
: $var{3} # d

Indexing can be cascaded to navigate nested data structures, and the two styles of indexing
can be mixed for hybrid data structures.

set &nums (en (zero one two) fr (zéro un deux))
: $nums # en {zero one two} fr {zéro un deux}
: $nums(en) # zero one two
: $nums(en){1} # one
: $nums(fr){2} # deux

Substitutions can be nested for indirection.

set &lang fr
: $nums($lang) # zéro un deux
: $nums($lang){0} # zéro

Indexed substitutions can be nested arbitrarily.

set &prefs (color blue lang en style classic)
set &rev (cero 0 uno 1 dos 2)
: $nums($prefs(lang)){$rev(dos)} # two

Consecutive uses of a single style of indexing can be expressed either with multiple
applications of the basic index notation or by giving an index “path” as a list within a single
pair of parentheses or braces.

set &matrix ((0 5) (-5 0))
: $matrix{1}{0} # -5
: $matrix{1 0} # -5
set &contacts (bob (phone 555-1235 email bob@heaven.af.mil))
: $contacts(bob)(phone) # 555-0216
: $contacts(bob phone) # 555-0216

If such an index path comes from a substitution, it must be preceded by the “{*}” expansion
operator, or it will be interpreted as a single index. As when constructing command
arguments or a parenthesized list, “{*}” is equivalent to explicitly substituting in each list
element in sequence.

set &rowcol (1 0)
: $matrix{$rowcol{0} $rowcol{1}} # -5
: $matrix{{*}$rowcol} # -5
set &lookup (bob phone)
: $contacts($lookup{0} $lookup{1}) # 555-0216
: $contacts({*}$lookup) # 555-0216

The text between list index braces and dictionary index parentheses is treated as a list. Care
must be taken when performing dictionary indexing using a literally specified key which is a
list with non-unit length or is not a well-formed list. Such keys must be quoted with double
quotes, braces, backslashes, or parentheses. If the key is the result of substitution, there is no
danger; it is a single index by default, unless “{*}” is used.

set &flatmatrix ((0 0) 0 (0 1) 5 (1 0) -5 (1 1) 0)
: $flatmatrix((1 0)) # -5
set &contacts ("andy g" (email andrew.m.goth@gmail.com) "andreas k" (email ...))
: $contacts("andy g" email) # andrew.m.goth@gmail.com

When a Brush list index substitution goes out of bounds, an error is generated. This is in
contrast to Tcl [lindex] which returns empty string. Like Tcl [dict get], dictionary index
substitution produces an error when the requested keys are not found.

If a programmer wants to follow a variable substitution with a literal “(“, “{“, or “@”, he or
she must use a backslash “\” to prevent the interpreter from interpreting the metacharacter.
(“@” will be discussed later.)

set &user andygoth
set &host facebook.com
: $user\@$host # andygoth@facebook.com

One feature not provided is the ability for a single path value to contain both dictionary and
list indices. I cannot see a practical reason to build this into the language. If this feature is
desired, a script can implement its own traversal mechanism:

proc &index (value path*) {
 foreach (&type &subpath) $path {
 switch $type (
 dict {set &value $value({*}$subpath)}
 list {set &value $value{{*}$subpath}}
)
 }
 return $value
}
set &value (
 a (b ((x _) (y *) (z @ w ?)))
 c (d ((x \$)) e ((z \# w !) (z ~ w `)))
)
index $value dict (a b) list (2) dict (z) # @
index $value list (1 0) # b
index $value dict (c d) list (0) dict (x) # $
index $value list (3 3 0) dict (w) # !

List Range Substitutions
Brush has a special form of list indexing which yields a list range rather than a single
element. In this form, a colon is used to separate the start and end indices.

Conceptually, the indices refer not to the elements but rather to the spaces between them.
The first index gives the space before the indicated element, and the second index gives the
space after. The returned list range subtends all the elements between the selected spaces.

If the second index comes before the first, the range is empty; it refers only to the space
preceding the first element. If the second index is omitted (but there is still a colon), it
defaults to “-1”. Since the second index refers to the space after the indicated element, “-1”
corresponds to the space before the first element of the list. Consequently, omitting the
second index always results in an empty range.

In range substitution, indexes before or after the end of the list are clamped to the list length.

set &data (a b c d e f g h)
: $data{0:end} # a b c d e f g h
: $data{0:0} # a
: $data{-5:2} # a b c
: $data{end:end} # h
: $data{1:end-1} # b c d e f g
: $data{end-4:4} # d e
: $data{3:3} # d
: $data{3:} #

A list range substitution may not have any further indexes applied to it. This is because it
does not refer to any one element of the variable; instead it constructs a new value.

Python has a similar feature, though it is called slices instead of ranges. Python end-relative
indexing works differently than Tcl or Brush indexing.

Strided List Range Substitutions
The second index may be followed by another colon and a nonzero integer expression giving
the stride. The default stride is “1”, but this can be overridden to skip elements and/or
reverse the list.

If the stride is negative, the before/after space convention is reversed, and the second index
defaults to “end+1” if not explicitly specified. For negative stride, the first index denotes the
space following the element, and the second index denotes the space preceding the element.

set &data (a b c d e f g h)
: $data(0:end:2} # a c e g
: $data(1:end:2} # b d f h
: $data{end:0:-1} # h g f e d c b a
: $data{end:end:-1} # h
: $data{end::-1} #
: $data{end:0:-2} # h f d b
: $data{end-1:0:-2} # g e c a

A stride of “2” is useful for getting a list of all keys or values in a dictionary. “-1” stride
provides an easy way to invert a dictionary such that its former values map back to its
former keys.

Computed Variable Names
Tcl $-substitution only allows indirection inside array element names. The [set] command is
required if the base variable name is computed, i.e. involves a substitution. Looked at
another way, variable substitutions cannot be nested in Tcl.

Brush changes this by adding more variable name quoting styles. Tcl supports “$var” for
literal names consisting of alphanumerics, underscores, and “::” namespace separators. Tcl
also supports “${var}” for arbitrary literal names. Brush additionally supports “$"var"”
wherein “var” can involve any kind of nested substitution.

A simple example would be one variable containing the name of another: “$"$x"”. The value
of variable “x” names the variable whose value is the overall result of the substitution. In Tcl,
this can be done only by “[set $x]”, short of [eval] and quoting hell24.

“$"var"” notation nests. There is no ambiguity between the opening and closing double
quotes since only the opening double quote has a leading dollar sign. I do not expect this to
be needed often, but it exists for the sake of generality. For example, “$"$"xy"$z"” means:

1. Concatenate the values of variables “x” and “y” to get “xy”.

2. Get the value of the variable named “xy”, which is called “$"$x$y"”.

3. Concatenate that value “$"$x$y"” with the value of variable “z” to get “$"$x$y"$z”.

4. The result is the value of the variable named “$"$x$y"$z”, called “$"$"xy"$z"”.

Written in Tcl, this would be “[set [set xy]$z]”; swap “$"” for “[set ” and “"” for “]”.
This notation remains valid in Brush; it is just no longer required.

It is important to note that looking up variables with single-argument [set] precludes using
the list and dictionary indexing described above. This is because element indexing is not a
general-purpose operator operating on values, but rather is a directive to $-substitution
operating on variables. (However, “$[set ...](index)” notation can be used; see below.)

Brush does not have a “$$var” notation, which presumably would be shorthand for “$"$var"”.
This is done to avoid ambiguity. Without the double quotes, it would not be clear whether
any subsequent indexes apply to the nested variable substitution or the outer variable
substitution. Would “$$foo(bar)” mean “$"$foo(bar)"” or “$"$foo"(bar)”?

set (&xyz &v1 &v2) (abc x z)
: $"${v1}y${v2}" # abc

24 http://wiki.tcl.tk/quoting+hell Complicated quoting means you are overlooking an easier approach.

http://wiki.tcl.tk/quoting+hell

Functional Substitution
In many functional contexts, the value being indexed is not stored in a variable, but is
returned by a command. [dict] and [list] can certainly be used to index such a value, but
$-substitution is extended to make its compact notation directly usable even in the absence of
a variable. The syntax is “$[script]”, and the result of [script] is the value being indexed.

Functional substitution only makes sense in combination with indexing. “$[script]” with no
indexing is equivalent to “[script]”.

For example,

some_command # a b c d e f g h
: $[some_command] # a b c d e f g h
: $[some_command]{0:end:2} # a c e g
: $[some_command](c) # d

Be careful not to confuse “$[script]” with “$"[script]"”, which is ordinary variable
substitution where the variable name determined by script substitution.

Dereferencing
In addition to dictionary and list indexing, $-substitution supports one additional directive:
the “@” dereference operator. The precise meaning of references will be discussed shortly.

In a $-substitution, “@”’s can follow the variable name and may be freely mixed with
dictionary and list indexes. “@” takes the value in the variable (or element thereof), treats it
as a reference, and tries to obtain the referenced value. Further indexing and dereferencing
can follow “@” if the referenced value is a dictionary, list, or reference.

This example shows how to get a variable’s value, given a reference to that variable:

set &x data # data
set &ref &x # &123
: $ref@ # data

Dereferencing can be used repeatedly and in combination with other methods of indexing:

set &x (a 1 b 2) # a 1 b 2
set &y (a 10 b 20) # a 10 b 20
set &rx &x # &123
set &ry &y # &124
set &rrx &rx # &125
set &rry &ry # &126
set &rlist (&rrx &rry) # &125 &126
: $rlist{1} # &126
: $rlist{1}@ # &124
: $rlist{1}@@ # a 10 b 20
: $rlist{1}@@(b) # 20

You may wish to revisit these examples after reading the section on references.

Substitution Syntax Comparison
The following table summarizes all the valid forms of substitution by comparing the Tcl and
Brush notations side-by-side.

Substitution Type Tcl Brush

Simple name $simple_n ame $simple_ name

Verbatim name ${name_ with_metachars } ${name_ with_metachar s }

Computed name [set name_with_substitution] $"name_ with_substitution "

Functional [script] $[script]

Single list index [lindex $name index] $name{index}

Multiple list index [lindex $name i1 i2 ...] $name{i1 i2 ...}

Pathed list index [lindex $name path] $name{{*}path}

List range [lrange $name first last] $name{first:last}

Empty list range [list] $name{first:}

Strided list range Not Easily Available $name{first:last:stride}

Empty strided list range [list] $name{first::stride}

Array index $simple_name(index) Not Available

Single dict index [dict get $name key] $name(key)

Explicit single dict index [dict get $name key] $name((key))

Multiple dict index [dict get $name k 1 k2 ...] $name(k1 k2 ...)

Pathed dict index [dict get $name {*}path] $name({*}path)

Dereference [upvar 1 $name var; set var] $name@

Notes:

• “simple_name” is a string of one or more alphanumerics, underscores, or “::” namespace
separators.

• “name_with_metachars” is a string consisting of any characters except closing brace.

• “name_with_substitution” is any sequence of characters on which the interpreter will
perform variable, backslash, and script substitution to determine the variable name.

• “$name” is any valid $-substitution except for list ranging. This definition is recursive.

• Functional substitution is only useful in combination with indexing.

• Pathed and multiple list/dictionary indexing can be combined in a single operation.

• The Tcl dereference example is approximate. Many possible implementations exist.

References
Brush’s powerful new $-substitution mechanism is only half of the equation. What good is
reading a variable if it can’t be written in the first place? To create or modify a variable or
element, it is necessary to name it without taking its value, then to pass that name to [set].

In Tcl this is very simple: write the variable name, and it’s done. Like everything else, a
variable name is nothing more than a string.

I wanted to do the same in Brush, but I also wanted to be able to name elements in the same
way as in $-substitution. Sadly, these goals conflict. Brush’s variable and element names are
not limited to simple literals but are an expression language which the interpreter does not
always try to parse correctly. To correct this problem, Brush has a special reference syntax
used for naming variables and elements.

Difficulties with Naming
Much like unbraced [expr], simply writing the variable name (no leading “$”) has numerous
problems when indexing is applied:

• Syntax errors. “matrix{2 3}” is actually parsed as two words since the interpreter
splits the word on whitespace. Remember, a word is only brace-quoted if its first
character is “{“25.

• Security holes. “contacts($name)” can delete all your files if “$name” came from some
untrustworthy source who maliciously set it to “[exec rm -rf ~]”26.

• Impaired performance. With “data{$index}”, there is no single Tcl_Obj in which it is
possible to cache the parsed form of the variable name; string concatenation and
parsing must be done every time.

• Surprising results. Put that first example in context: “[set matrix{2 3}]”. This is
actually legal Tcl. It means to set the value of variable “matrix{2” to “3}”, which is
surely not what was intended.

Tcl array variables are similarly afflicted, though to a much lesser degree. When preceded by
“$” they work without issue; otherwise quoting is required when the key contains whitespace.

These issues arise due to the interpreter’s lack of support for variable names when not
performing substitution. Without “$”, the interpreter treats a variable name like any other
word, even though that means processing whitespace in a way that appears inconsistent with
variable substitution.

25 http://www.tcl.tk/man/tcl8.6/TclCmd/Tcl.htm#M10 If the first character of a word is open brace (“{”), ...
26 http://xkcd.com/327/ Humorous but cautionary depiction of such an injection attack coming from an unlikely

source. However, I disagree with the moral (“sanitize your inputs”), since it is a band-aid for a problem that can
be fixed more efficiently and thoroughly by never reparsing substitution results.

http://xkcd.com/327/
http://www.tcl.tk/man/tcl8.6/TclCmd/Tcl.htm#M10

What’s more, the interpreter does its own substitution, as with any other word, then [set]
reparses the substitution results, performing another round of substitution in the process.
This opens up the same security hole experienced by [expr] when its arguments were already
substituted by the interpreter.

Introducing References
The similarities with [expr] are instructive. Brush could adopt Tcl [expr]’s solution and
strongly recommend that the user brace-quote any variable names. However, this would
likely lead to another problem experienced by Tcl [expr]: Because the consequences are not
immediately apparent, programmers forget to use braces. Worse, substitutions embedded
within names will not always be performed at the right times or in the right stack frames.

Taking a cue from its own solution to the [expr] problem, Brush instead defines a streamlined
notation for declaring that a word is a variable name. The interpreter knows how to handle
variable substitutions, so it is more than adequately equipped to handle variable names. All
that is needed is a hint from the programmer to enable variable name mode. The interpreter,
seeing this hint, knows that the word is a value that names a variable or an element thereof.
Such a value is called a reference.

Brush prefixes a word with an “&” ampersand to indicate that it is a reference. “&” is chosen
for this purpose because C++ already associates that symbol with the term “reference.” This
behaves like a quoting mechanism in several ways:

• It tells the interpreter to apply parenthesis matching and other variable naming rules,
rather than merely looking for the next whitespace, to identify the word boundary.

• Only a whole word can be a reference, and the first character of the word (“&” in this
case) determines how that word is treated.

• The output word, a.k.a. the value or the string representation, is not necessarily
identical to the literal text of the script.

&-references support indexing, same as for $-substitution. The notation is obtained simply by
writing “&” instead of “$”, though “&” only has special meaning as the word’s first character.

Brush forbids the use of a “bare” string where a variable reference is expected. This is done
for consistency and to avoid the problems described in the previous section. To convert a
variable name (itself contained in a variable) to a reference, simply use “&"$name"”. As
mentioned in the section on substitution with computed variable names, the double quotes
are required to avoid ambiguous cases.

Since a reference is a value, it can be returned; passed as an argument; or stored in a variable,
list, or dictionary. References do not always have to be typed literally; they can be the
product of substitution. Whereas Tcl requires [upvar] or [uplevel] to access the caller’s
variables, in Brush they can be reached simply by using a reference passed from the caller.

Unlike C++ references, Brush references must be created explicitly, like C pointers.

Value of a Reference
A reference’s value is “&” followed by the referent variable’s interpreter-wide unique ID. If the
reference has any indexing, it follows the ID using the same notation used in the script, albeit
with embedded substitutions already performed.

References are strings, but that is not all they are. Let’s compare references to Tcl I/O
channels to illustrate by analogy.

In Tcl, an I/O channel is a string, e.g. “file5”, but it is also a key in a hash table mapping to
the internal data structure that actually implements the channel. Likewise, references index
into an interpreter-wide variable table, e.g. “&123” for variable #123.

Tcl I/O channels are created using the [open] command which does two things: create the
internal structures, and generate a unique string which maps to said structures. Similarly,
when Brush executes a command line containing an &-reference, it creates a variable and an
associated reference value.

Not all references are given unique values. If multiple references within a single stack frame
refer to the same-named variable, the interpreter gives them all the same value, assuming
they have the same element indexing. Contrast with Tcl I/O channels, where opening one file
multiple times yields distinct channels.

Early and Late Binding
At the moment a reference is created, all embedded substitutions are immediately performed.
In this way, references capture a snapshot of the interpreter state. At the time the reference
is created, it decides forever which variable or elements thereof are being referenced. This is
early binding.

In this example, a reference to a variable’s list element is created. Two methods are used to
make the reference, but the same reference, with the same index, is obtained each time. “&r1”
uses direct substitution, whereas “&r2” uses the “@” dereference operator on a reference to the
index variable. Because of early binding, changing the index variable after creating the
references does not affect them.

set (&x &i &j) ((a b c) 1 &i)
set &r1 &x{$i} # &123(1)
set &r2 &x{$j@} # &123(1)
: ($r1@ $r2@) # b b
set &i 2
: ($r1@ $r2@) # b b

A reference can contain late-bound indexes which are not decided until it is dereferenced.
This is done by using the “^” late-binding dereference operator when constructing the
reference. This operator causes a normal “@” dereference operator to be placed in the
reference value, and the “@” will not be processed until the reference itself is dereferenced.

Modifying the previous example to use “^” instead of “@” or bare “$” causes $r1 and $r2 to
contain embedded references with “@”’s to be applied at dereference time. This defers
indexing, so changing the value of $i does have an effect. Notice that $r1 and $r2 each
contain references to not only the “x” variable but also the “i” variable.

set (&x &i) ((a b c) 1)
set &j &i # &124
set &r1 &x{&i^} # &123(&124@)
set &r2 &x{$j^} # &123(&124@)
: ($r1@ $r2@) # b b
set &i 2
: ($r1@ $r2@) # c c

Late binding can only be applied to indexes, not to the variable name. This restriction is
necessary because the referenced variable must be clearly identified in order for garbage
collection to work. If an existing reference value could be coerced to reference any variable,
no variables could ever be finalized.

The “^” late binding operator is only recognized when constructing a reference, and even then
only inside list and dictionary indexing. In every other context, it has no special meaning.

Building References from References
Given a reference stored in a variable “$ref”, the value of the referent variable (or element) is
obtained by “$ref@”. To make a new reference to an element of that result, the notation is
“&$ref@” followed by the additional indexing operators, for example “&$ref@{$i}”.

To understand this, start with “&name{$i}” and recognize that “name” can be computed. Now
use “$ref@” in place of “name” to get “&$ref@{$i}”. This works even if “$ref” already contains
element indexing or dereference operators. Such a thing is called an additive reference.

You may recall that $-substitution does not support “$$name”, only “$"$name"”. Therefore
this “&$ref@” notation is an exception to the rule that references are constructed by writing
the substitution that would yield the desired element, only with “&” instead of “$” up front.

Another way of looking at it is that the entire substitution (everything but the leading “&”) is
performed, though not to get the value, but rather to locate the element to which the
reference will point.

set &var (a (1 2 3) b (4 5 6))
set &ref1 &var # &123
set &ref2 &var(b) # &123(b)
set &ref3 &$ref1@(b) # &123(b)
set &ref4 &$ref2@{1} # &123(b){1}
: $ref3@ # 4 5 6
: $ref3@{1} # 5
: $ref4@ # 5

Just like with normal references, the “^” late-binding dereference can be used in the index
components of an additive reference. It will be replaced with an “@” dereference operator in
the output reference value.

set &var (a (1 2 3) b (4 5 6))
set (&k &i) (b 1)
set &ref1 &var(&k^) # &123(&124@)
set &ref2 &$ref1@{&i^} # &123(&124@){&125@}
: $ref2@ # 5
set (&k &i) (a 2)
: $ref2@ # 3

“&$name” is illegal because references point to variables or elements, not anonymous values,
and “$name” yields a value. However, “&"$name"” is valid for creating a reference given a
variable name.

The [ref link] command, described later, provides another way to create additive references.

The inverse operation, removing indexing from an existing reference, is not defined at this
time. A [ref] command ensemble could facilitate reference examination and manipulation.

Three Stages of Reference Processing
Compilation. When a script containing &-references is submitted to the interpreter for
compilation, the &-references are transformed into bytecodes that will produce a reference
value upon execution. The bytecodes may use substitution and concatenation to determine
the variable name and/or the indexing. Nesting and dereferencing may also be employed.

Execution. Given the bytecodes emitted by the compiler, the bytecode execution engine
makes a reference value. The engine checks if the reference names a variable already present
in the local stack frame. If not, a new variable is created in the global variable table, and its
name and ID are put in the local stack frame. The reference value consists of the variable ID
and any indexing instructions.

Dereferencing. When the reference value is given to a C function that needs to access the
variable, it passes the reference Tcl_Obj to functions that read, modify, or unset the variable
or an element of its value. This canbe done immediately after the reference is created, or it
can happen some time later, maybe even after the variable’s stack frame has exited.

References and [set]
As shown by examples throughout this paper, &-references are used as the first argument to
[set] in order to create variables or modify their values. Naturally, [set] supports not only
simple references to variables, but also references to variable elements. In this way, [set] can
be used in place of Tcl’s [lset] or [dict set].

set &x (a 1 b 2) # a 1 b 2
set &x(a) 0; : $x # a 0 b 2
set &x(c) 4; : $x # a 0 b 2 c 4
set &x{1} 1; : $x # a 1 b 2 c 4

As “&x(c)” shows in the above example, references can be constructed to nonexistent
elements. [set]’ing them creates the element. This mirrors how variables are created
initially: the reference exists before the variable is made.

Creating list elements is limited by the requirement that the index numbering have no gaps.
Only indices “0” through “end+1” can be assigned. When assigning to “end+1” (or the
equivalent absolute index), the element is appended to the list, so [lappend] is not needed.

set &x{end+1} a; : $x # a
set &x{end+1} b; : $x # a b
set &x{2} c ; : $x # a b c

Assigning to list ranges works like [lreplace]: the indicated range is replaced with the new
value, which is treated as a list of elements. [linsert]’s behavior is made possible by
assigning to zero-width ranges; the empty range is “replaced” with the new list. Empty ranges
are constructed when the second element comes before the first, which is the default when a
colon is used with no second index.

set &x (a b c)
set &x{0:} _ ; : $x # _ a b c
set &x{1:} (1 2) ; : $x # _ 1 2 a b c
set &x{3:4} () ; : $x # _ 1 2 c
set &x{end:} ((x y)); : $x # _ 1 2 {x y} c
set &x{end+1:} z ; : $x # _ 1 2 {x y} c z

When the list range has a negative stride, the inserted element order is reversed.

set &x{0::-1} (a b c) ; : $x # c b a
set &x{1:2:-1} (x y z); : $x # c z y x
set &x{end::-1} (1 2) ; : $x # c z y x 2 1
set &x{-1::-1} (3 4) ; : $x # 4 3 c z y x 2 1

Be cautious of negative stride. An above example shows that assigning to “&x{end:}” puts
elements before the current last element, which may seem surprising but is consistent with
non-range list indexing. Negative stride reverses the before/after space convention, so
“&x{end::-1}” references the space after the last element, and “&x{-1::-1}” references the
space before the first element.

Assigning to a range with non-unit stride is tricky. The concept is that only the elements
included in the range are replaced with new elements. For the sake of sanity, Brush requires
the replacement list to be empty or to have the same element count as the range.

set &x (a 1 b 2) # a 1 b 2
set &x{0:end:2} (A B) ; : $x # A 1 B 2
set &x{end:0:-2} (3 4); : $x # A 4 B 3
set &x{0:end:2} () ; : $x # 4 3

References and [unset]
In Tcl, variables are created by [set]. Brush is slightly different; variables are created by
&-reference constructors, and [set] gives them their initial value.

[unset], likewise, works a little differently. Tcl’s [unset] destroys the variable, and it is no
longer accessible. Brush’s [unset] removes the variable’s value, as if [set] had never been
called. [unset] does not remove the variable name from the local stack frame, so newly
created references to the same-named variable will have the same value as existing references.

After being [unset], the variable can be given a value again by passing its reference to [set].
So long as it has extant references, the variable remains in the interpreter’s variable table,
even though it might not always have a value. All references continue to point to the same
variable; [unset] does not break this link. In this way, an unset variable (or reference
thereto) can be used as a “null” distinct from empty string.

[unset] works not only with references to variables, but also references to elements of
variables. [unset]’ing an element means to remove it, so [unset] obsoletes [dict unset] and
zero-element [lreplace].

Applying [unset] to a list index removes the element, causing higher-indexed elements to be
shifted down one slot. [unset] on list ranges behaves similarly. For strided list ranges, the
indicated elements are all removed as if they had been [unset] one-by-one.

set &x (a b c d e f g) # a b c d e f g
unset &x{0} ; : $x # b c d e f g
unset &x{end-1:end} ; : $x # b c d e
unset &x{1:end:2} ; : $x # b d
unset &x(b) ; : $x #
unset &x ; : $x # can't read "x": variable is unset

It’s instructive to look at the error messages caused by unset variables.

: $z # can't read "z": no such variable
: &z # &123
: $z # can't read "z": variable is unset
set &z # can't dereference "&123": variable is unset

1. The first line attempts $-substitution on a never-before-seen variable, so the error says
“no such variable.”

2. Next, a reference is created, though its value is not saved anywhere. The variable’s
reference count is momentarily two, then it drops to one when the result is ignored.
The remaining reference is from the local stack frame which now maps “z” to “&123”.

3. The third line again tries to get the value, but this time the variable reference is found
in the local stack frame. However, the substitution still fails because the variable has
never been given a value.

4. Last, $-substitution is eschewed in favor of single-argument [set]. Like “$”, [set] sees
that the variable has no value. Unlike “$”, the error message does not contain the
variable name. This is because [set]’s argument is a reference value “&123”, which does
not embed a variable name.

Using [ref link] to Link Variables to References
The new [ref link] command links a referent variable or element into the local stack frame.
The result appears to work like a local variable, but all accesses to it forward to the original
variable. Similarly, any attempts to create references to this new linked variable actually end
up creating references to the original variable.

[ref link] takes two arguments: the existing reference and the new variable name. It is
important to stress that the second argument is a name, not a reference. This is not so
unusual; recall that [proc]’s second argument is also a list of names, not references.

ref link &old new
: &old # &123
: &new # &123
ref link &old(x) elem
: &elem(y z) # &123(x y z)

[ref link] takes the place of [upvar]. Unlike [upvar], [ref link] has no need of a stack frame
level argument. This is because all variables are effectively global; it is their names that are
only recognized locally.

Brush retains [upvar] for symmetry with [uplevel] which is still required.

If more than two arguments are passed to [ref link], they are used as additional
reference/variable name pairs, in the same manner as [upvar].

If [ref link] is given the name of an existing variable, the variable name is retargeted to the
new reference, decrementing the reference count of the old variable, likely triggering its
finalization. If the reference argument is empty string, the variable name is simply removed
from the local stack frame.

[ref link] may be part of a larger [ref] ensemble featuring commands to examine and
manipulate references.

Comparison with Tcl
Despite not being formally recognized by the interpreter, Tcl has references too; they are
simply variable names. Names are values that can be passed around and used in stack frames
other than the one in which they were created. However, for them to be used elsewhere, the
relative or absolute stack frame must be known, e.g. “this is my caller’s variable” or “this is a
global variable”, and then [upvar] or [global] can link the variable into the local stack frame.

In addition to the requirement that the stack level be passed around out-of-band, the
referenced variable cannot outlive its stack frame. If this is a problem, the variable must be
created globally, perhaps in a namespace.

This leads to a new problem: the variable’s lifetime becomes indefinite, and the script must be
careful to finalize it when it is no longer conceptually reachable. Also, the script is
responsible for generating unique names for the global variables.

Tcl “references” can only name variables, not elements. (Tcl arrays are collections of
variables, not values.) An element reference scheme could be devised, but it would have to be
implemented using custom accessor commands; basic $-substitution would be unavailable,
short of elaborate variable traces.

Brush’s references eliminate the need for [upvar] and [global] in the case of commands
accepting variable references (names) as arguments. The identity of the originating stack
frame is irrelevant because references are indexes into an interpreter-wide variable table.

Brush retains [upvar] and [global] unmodified, plus it adds a [ref link] command to link a
local variable to any variable or element thereof given its reference.

Since Brush variables are kept in a global table, they can survive their stack frame for as long
as they are reachable through references. This makes it easier to create anonymous mutable
data objects accessible only to parts of the code which have been given the reference.

Brush references can name elements as well as entire variables, and indexed and unindexed
references can be used interchangeably. This design largely obsoletes Tcl arrays, which are
collections of variables that can be managed individually or as a group.

Brush retains Tcl’s variable traces, though it loses out on array traces. An alternative to
array traces may yet be defined, but it would face difficulties due to the element traces being
on values rather than entire variables.

Reference Syntax Summary
The same notes apply to this table as for the substitution syntax summary.

Reference Type Syntax

Simple name & simple_ name

Verbatim name &{name_ with_metachars }

Computed name &"name_ with_substitution "

Additive &$name@

Single list index & name {index}

Multiple list index & name {i1 i2 ...}

Pathed list index & name {{*}path}

List range & name {first:last}

Empty list range & name {first:}

Strided list range & name {first:last:stride}

Empty strided list range & name {first::stride}

Single dict index & name (key)

Explicit single dict index & name ((key))

Multiple dict index & name (k1 k2 ...)

Pathed dict index &name({*}path)

Early-binding dereference &name{$name2@} or $name($name2@)

Late-binding dereference &name{$name2^} or $name($name2^)

Garbage Collection
Garbage collection in Brush is only preliminarily specified. It is a work in progress, and I
enthusiastically invite suggestions to refine or replace the scheme defined here.

Tcl I/O channels must be explicitly destroyed using the [chan close] command. This is very
different from Brush references (actually, variables), which are garbage-collected. When a
Brush reference value’s refcount27 drops below one, it is finalized, and its referent variable’s
reference count is decremented, triggering cascading destruction whenever the value or
variable does not have multiple referrers.

This simple scheme is defeated by circular references which prevent otherwise unreachable
variables from ever being cleaned up. I am not well-versed in advanced garbage collection
algorithms, but Frédéric Bonnet’s Colibri28 implements an exact, generational, copying, mark-
and-sweep, garbage collector, so perhaps Colibri can be used to store values in Brush.

References and Shimmering
Reference tracking challenges EIAS semantics. If a reference shimmers away from its
reference internal representation, despite keeping the same string representation, should the
referent variable’s refcount be decremented? Answering “yes” breaks EIAS, but handling this
corner case will be costly.

One possible solution is to not decrement when the value is not actually changing, merely
shimmering, but that leads to another question: when should the variable’s refcount
eventually be decremented?

In order to check if a value object contains references, it is necessary to attempt to convert it
to a reference or list of references. Clearly, this is an expensive operation which should be
done as infrequently as possible:

• This check is only done when the value is being destroyed.

• Type conversion is only attempted if the value is flagged as possibly being a reference.

• If the value’s internal representation is a list, its contents are recursively scanned to
find flagged values or nested lists. (Remember, a dictionary is a list.)

Value objects with internal type of reference, such as those generated by an &-reference
constructor, have their reference flag set, as do any values made by concatenating a flagged
value. Lists and dictionaries containing flagged values are not themselves flagged, at least not
until they shimmer to pure string, at which point their values are made via concatenation
with flagged values. Shimmering back to list or dictionary clears the flag, since it is
transferred to any of the contained values which fit the reference schema.

27 http://www.tcl.tk/man/tcl8.6/TclLib/Object.htm Official documentation of Tcl_Objs and their refcounts.
http://wiki.tcl.tk/tcl_obj+refcount+howto Description of how to properly manage Tcl_Obj refcounts in C code.

28 http://wiki.tcl.tk/colibri Colibri is the string and data type infrastructure implemented by FB for Cloverfield.

http://wiki.tcl.tk/colibri
http://wiki.tcl.tk/tcl_obj+refcount+howto
http://www.tcl.tk/man/tcl8.6/TclLib/Object.htm

Unshared string values can be modified in-place, possibly adding or removing a reference in
the process. (This is not typical usage; the list and dictionary commands are preferred, and
they have no need of flags since their elements are distinct values.) When C code modifies a
string value in such a way that could add or remove a reference, it must call a function to
check the modified string or substring for references and to update the flag accordingly.

Regarding “reference or list of references”: This phrase interacts badly with EIAS. It collides
with a limitation of duck typing, being that the interpreter only knows the type of a value
when the script tells it the type. Here, the interpreter is forced to guess types. Its algorithm
is as follows:

1. A value is a reference if it has reference internal type or can be converted to one.

2. Else, if a value has list (which includes dictionary) internal type or can be converted to
a list with length not equal to one, it is a list. In this case, recursively apply this
algorithm to each element.

Circular References
The scheme described above is vulnerable to circular references, e.g. [set &x &x]. Since its
value refers to itself, the “x” variable’s reference count will never drop below one and will
never be destroyed. Flushing out circular references requires expensive reachability analysis.

When a stack frame is destroyed, the refcounts of all its variables are decremented. The
frame’s surviving variables are checked for reachability from any active stack frames,
including those of all coroutines, within the current interpreter. This test is also done when a
variable is removed from the stack frame using [ref link] but it still has positive refcount.

The reachability search is performed in an order designed to check the most likely places first:

1. Current stack frame, in the [ref link] case.

2. Late stack frame’s returned value, in the [return] case.

3. Global stack frame, including all namespaces.

4. Current coroutine’s stack frames, if in a coroutine.

5. Main routine stack frames.

6. All inactive coroutine stack frames.

7. Additional object stores registered by extensions with data “outside” of the interpreter.

Any variables found to be unreachable are destroyed. Reachability is defined as being
referenced by a value object within, or reachable from, a stack frame. Only values flagged as
possibly containing references are checked for references. The process of checking causes
shimmering to reference or list.

The reachability search may be optimized by maintaining an interpreter-wide list of value
objects contained within any of the searched stack frames.

Performance
The foregoing may sound extremely expensive, but it is made necessary by two corner cases:

• References embedded in strings that could be lists.

• Circular references.

I expect these cases to be rare in practice, so I designed this preliminary garbage collection
algorithm to minimize cost in common cases.

If the script avoids shimmering away from reference or list-of-references, the only reference-
flagged objects will in fact have internal type of reference, and the interpreter will never try
to shimmer values back to reference or list-of-references.

[proc] bodies legitimately using circular references can significantly improve performance by
breaking the reference prior to using [ref link] or [return].

Circular reference reachability analysis is only done when variables outlive their stack frames
or survive [ref link]. This happens when a procedure returns a reference to a local variable,
or if it puts a local reference inside a [proc] or other such object. The variable lives on, but
after being separated from its stack frame, it can only be accessed via pre-made references.

In the course of shimmering a reference-flagged value to list, its reference flag is cleared, so
the shimmering is a one-time thing. Basically the interpreter allows the script to shimmer
from reference or list-of-references, but it forces the type back when the value is being
destroyed or a reachability analysis is being done. Due to EIAS, this shimmering does not
result in any values being changed, and the only cost of shimmering is CPU time.

Alternatives
As mentioned above, Colibri may provide some solutions, and it may be directly usable by
Brush. I have not delved into its implementation to see precisely how it works.

Jim references29 track values, not variables. Values persist so long as references to them exist,
and references are values. Brush’s design depends on references naming variables rather than
values, so this is a fundamental difference.

Jim does not attempt to clean up circular references. Brush could adopt this as a design
constraint, since Jim is successful despite this limitation.

Jim scans all existing value objects, including those not reachable from any stack frame, for
the sake of simplicity and to avoid prematurely destroying references contained only “inside”
an extension not fully exposed to the interpreter. Brush could do the same, at the expense of
not being able to detect circular references.

Jim skips values that are not pure strings because they cannot be references. However, this
assumption is invalidated by regular expressions and possibly other types. This limitation

29 http://wiki.tcl.tk/jim Jim is a small-footprint reimplementation of Tcl with some advanced features.
http://wiki.tcl.tk/jim+references Description, demonstration, and discussion of the Jim references system.

http://wiki.tcl.tk/13847
http://wiki.tcl.tk/13847
http://wiki.tcl.tk/13693
http://wiki.tcl.tk/13693

may be acceptable because there is no legitimate reason for a script to treat a value as both a
reference and a regular expression.

Jim is documented to skip strings that are not exactly references, e.g. they have the wrong
string length (Jim references are always 42 characters long, for performance and cosmic
reasons.) This does not match the current implementation: Jim checks all pure strings to see
if they contain substrings that are valid references. This is done to handle the case of
reference lists shimmering to string. Brush probably can’t do the same, since Brush
references are harder to detect than Jim references.

Command Dispatch
To support its functional programming goal, Brush redefines command dispatch in a way that
makes commands be values. A variable containing a command value is directly executable, or
an anonymous command value can be invoked. Since command values are stored in
variables, they enjoy the scoping and lifetime rules of variables, plus they can be passed
around by value or reference as well as by name, or can be put inside data structures.

This design eliminates the value/command dichotomy30 present since Tcl’s inception. Tcl’s
[apply] command does this as well, but it must be used explicitly. Brush makes it automatic,
plus it opens the door for more types of commands.

Unlike Tcl, Brush command and variable names can collide; they compete for the same
“namespace”. This is a drawback for some scripts that use a variable named the same as a
proc to store the proc’s static data31. However, as will be discussed later, it is possible to
instead keep the data inside the proc itself, persisting from one invocation to the next.

$-substitution is implied for the first word of each command. This has two consequences.
One, a command name is actually the name of a variable containing the command. Two, the
command name can use any of the indexing notations valid for $-substitution. If the
command is named via explicit $-substitution, the automatic $-substitution is inhibited.

When a command is invoked, the local stack frame is searched, just like ordinary
$-substitution. If that search fails, the local stack’s home namespace is searched, then the
global namespace “::”. As a last resort, the interpreter’s [unknown] command is called.

The value of a command is a list. The first element of this list is the command type, and
subsequent elements vary from type to type. The command type word is not the name of a
command; it is handled internally by the bytecode compiler and/or execution engine. It is
possible for a command to have the same name as a command type.

In addition to the string/list representation, command values have an internal representation
containing executable bytecodes and/or type-specific configuration data. Beware that

30 http://wiki.tcl.tk/getting+rid+of+the+value/command+dichotomy+for+tcl+9 Commands are not first-class objects.
31 http://wiki.tcl.tk/gadgets Gadgets are objects with code in a proc and data in a variable, both named the same.

http://wiki.tcl.tk/gadgets
http://wiki.tcl.tk/getting+rid+of+the+value/command+dichotomy+for+tcl+9

performing list commands (even ostensibly read-only list indexing, such as “$cmd{$i}”) will
cause the command value to shimmer away from its compiled command representation. This
does not impact program correctness but does force a time-consuming recompilation.
Nevertheless, it may be useful within debug contexts or for very dynamic coding techniques.

Each command type can have an associated finalizer routine which cleans up any exterior
resources and data structures associated with the command.

One major difficulty for introspection and error message generation is that command values
are anonymous. They only borrow the name of their container variable, but that does not
help in situations where the command value is substituted and/or computed on the spot.

Lambda Commands
A lambda32 is an anonymous proc. Its value is a list with three or four elements:

1. The word “lambda”. This distinguishes between lambdas and other command types.

2. Formal argument list, which can include required, optional, defaulted, catchall, and
bound arguments.

3. Script body. This will be executed in a new stack frame initially containing one
variable for each formal argument.

4. Namespace (optional). When the script invokes a command or calls [variable] to link
a variable into the local stack frame, this namespace is searched before looking in the
global “::” namespace. By default, the namespace is computed from the command
name (if the command is global) or inherited from the local stack frame (if local).

A Tcl-like [proc] command can be implemented simply:

set &::proc (lambda (nameref arglist body) {
 set $nameref (lambda $arglist $body); :
})

This creates a lambda and binds it to the name [proc] in the global namespace “::”. When
[proc] is later executed, it constructs a lambda from its arguments and binds it to the
variable indicated by its first argument.

Bound arguments can be used to capture the procedure’s creation-time environment. If the
bound arguments are set to references33, and the same references are given to other procs, the
procs will be able to share some variables, thereby establishing an object system. The
references can be to variables local to the stack frame that created the procs, so they will be
anonymous and inaccessible outside of the constructor procedure, and they will be finalized
when the procs are destroyed.

32 http://wiki.tcl.tk/lambda Lambdas are anonymous functions, or procs in the Tcl/Brush parlance.
33 http://wiki.tcl.tk/closures Brush implements closures by allowing the programmer to bind arguments to references

to variables local to the stack frame in which the proc is being created.

http://wiki.tcl.tk/closures
http://wiki.tcl.tk/lambda

Reference-bound arguments can be turned into local variables using the [ref link] command
to replace the argument variable with the referent variable. This avoids the constant need for
the “@” dereference operator.

To demonstrate, here is a solution for Paul Graham’s accumulator generator problem34. For
the sake of example, this implementation deviates from Paul Graham’s rules by offering
defaults for $value and $increment.

proc &accum_gen ((val? 0)) {
 : (lambda ((valref= &val) (inc? 0)) {
 set $valref $($valref@ + inc)
 })
}

[accum_gen] takes an initial value argument from which it constructs a lambda that returns
the sum of the initial value and its $inc argument. A reference to the initial value is bound
to the lambda’s $valref argument, so the lambda has sole access to a variable whose lifetime
matches that of the lambda itself. The lambda, when executed, gets the value stored in that
variable, adds $inc to it, stores the result into the variable, and returns said result.

set &accums (a [accum_gen 12] b [accum_gen 4])
accums(a) 0 # 12
accums(a) 5 # 17
accums(a) -2.5 # 14.5
accums(b) 6 # 10

Native Commands
Obviously, not all commands can be implemented in script; there must be a basis
implemented in C. Native commands are commands written in C, etc. and compiled to
machine code. Their implementation is opaque to the script, instead replaced by a numeric
identifier. The value of a native command is a two- or three-element list:

1. The first word, “native”, is the command type.

2. Numeric identifier for the command. This is not a pointer to the function; it is an
index into the interpreter’s native command table. This is done to prevent safe
interpreters from calling unauthorized commands.

3. Namespace (optional). This is only necessary if the command accesses namespace
variables, which is vanishingly rare for native commands. If omitted, the namespace is
determined in the same way as for lambdas.

In this example, [set] and [:] are revealed to be the 7th and 9th commands:

: $set # native 7
: ${:} # native 9

34 http://wiki.tcl.tk/accumulator+generator The challenge is to make a function that returns a function which returns
the sum of all values ever passed to it. The accumulator’s initial value is specified when the function is generated.

http://wiki.tcl.tk/accumulator+generator

Curried Commands
Brush allows any command to be curried35, meaning that one or more initial arguments are
bound in advance. For example, a command that adds two numbers could be curried to
make the first number always be “1”, resulting in a command that increments a number.

A curried command’s value is a list with at least two elements:

1. The word “curry” gives the command type tag.

2. Value of the command being curried, e.g. “native 74” or “lambda {x y} {: $(x+y)}”.
Since curried commands are commands, they can be nested.

3. Subsequent arguments serve as initial arguments to the command. A more efficient
way to further curry a curried command is to append argument elements to its value.

The value of the above increment example is “curry {lambda {x y} {: $(x+y)}} 1”, and it is
constructed in a very simple and natural way:

proc &sum (x y) {: $(x+y)}
set &inc (curry $sum 1) # curry {lambda {x y} {: $(x+y)}} 1
inc 5 # 6

Prefix Commands
A prefix command is perhaps better termed a “command prefix36 command”; it is a command
value containing a command prefix. Since command prefixes are themselves commands,
maybe the name could be “command command”, except that’s too confusing.

Prefix commands are almost identical to curry commands, except that the second list element
is a command name instead of a command value.

proc &sum (x y) {: $(x+y)}
set &inc (prefix sum 1) # prefix sum 1
inc 5 # 6

Prefix commands are useful in situations where a command value is expected but you have
only a command name. In that sense, it is the complement of the [apply] command, which
enables execution of a lambda (which Brush generalizes to a command value) in contexts
where a command prefix is expected.

Because the indicated command can be modified after the prefix command value is created,
late binding can be implemented using prefix commands

Channel Commands
Tcl’s I/O channels are represented in the interpreter by strings such as “stdout”, “file5”, or
“sock304”. They are constructed using [open], [socket], [chan create], [chan pipe], or
extension commands, and they must be explicitly finalized using the [chan close] command.

35 http://wiki.tcl.tk/curry Curried functions accept arguments one at a time using nested single-argument functions.
36 http://wiki.tcl.tk/command+prefix A command prefix is a list containing a command name and some or all of its

arguments, with the expectation that zero or more arguments will be appended and the result will be evaluated.

http://wiki.tcl.tk/command+prefix
http://wiki.tcl.tk/curry

Brush I/O channels are constructed in the same way but are channel-type command values.
This gives them several very interesting properties:

• Brush I/O channels function as command ensembles, so the [chan] command is
unnecessary except for [chan names], [chan create], and [chan pipe].

• Values, including command values, are garbage collected. The finalizer for channel
command values closes the channel. This makes explicit [chan close] optional, and
[unset] can be used in its place. Additionally, garbage collection minimizes the need
for [chan names].

The value of a channel is a list, and it is exceptionally simple:

1. The word “chan”.

2. Name of the channel, same as in Tcl. For example, “stdout”, “file5”, or “sock304”.

Global variables called $stdin, $stdout, and $stderr are pre-created, containing the values
“chan stdin”, “chan stdout”, and “chan stderr”, respectively. These variables work like
commands (or objects, if you prefer), and they have subcommands à la [chan].

Here are some examples demonstrating a few usage possibilities:

stdout puts >>[stdin gets]<< # copy from stdin to stdout, adding >> and <<
set &data [[open file] read] # file is automatically closed after the read
set &out $stdout # let stdout be accessed throughh another name
unset &out &stdout # now both must be unset to close stdout

Interpreter, Coroutine, and Namespace Commands
Interpreters, coroutines, and namespaces are given the same treatment as channels; Brush
promotes them all to be command values.

Ensemble Commands
Brush splits ensembles from namespaces because they can now be implemented directly inside
a single value. Aside from the invocation, there is not much difference between an ensemble
and a dictionary of command values,.

For demonstration purposes, here is a dictionary of command values. In this example, the
keys are two-element lists, which is why the indexing is done using double parentheses: The
inner pair is used to construct a list to be used as the key.

set &cmds ((msg 1) (lambda () (: hello))
 (msg 2) (lambda () (: goodbye)))
cmds((msg 1)) # hello
cmds((msg 2)) # goodbye

An ensemble command’s value contains such a dictionary of command values, but it adds
some configuration options. It is formatted as a two- or three-element list:

1. The word “ensemble”.

2. Command dictionary mapping from subcommand names to command values. The
keys are treated as lists to implement multiple-word subcommand names. It is an
error for one key to equal or be a prefix of another key.

3. Configuration dictionary (optional). If omitted, it is treated as if it were empty.

The configuration dictionary supports a subset of Tcl’s [namespace ensemble] options37:

• “parameters”: If present, the length of this list is the number of actual arguments
accepted between the ensemble name and the subcommand name. Normally all
arguments are expected to follow the subcommand name. The list elements are used as
formal argument names to be displayed in error messages.

• “prefixes”: If omitted or logically false, subcommand names must exactly match the
keys in the command dictionary. If logically true, subcommand names can be any
unambiguous prefix of the command dictionary keys.

• “unknown”: If present and non-empty, contains a command value to be invoked
whenever an unrecognized subcommand is called. The arguments to this command are
the fully-qualified ensemble command name (if known, else empty string) and all its
arguments, including the subcommand name(s). A prefix command may be useful here
to use an existing command as the unknown handler, or the unknown handler can be
specified inline and remain anonymous.

A command named [ensemble] may be defined to facilitate and optimize creating, querying,
and reconfiguring ensemble command values. While ensembles can be managed using list and
dictionary access, they have the side effect of shimmering away the ensemble command
value’s internal compiled representation.

Here is the previous example rewritten to use an ensemble command:

set &lookup (ensemble ((msg 1) (lambda () (: hello))
 (msg 2) (lambda () (: goodbye))))
lookup msg 1 # hello
lookup msg 2 # goodbye

Object Commands
I have minimal experience with TclOO38, but it seems likely an OO system can be built on
top of Brush’s command value mechanism. In the section on lambda commands, this paper
already outlined ways to exploit references to share data between procs, such that the procs

37 http://www.tcl.tk/man/tcl8.6/TclCmd/namespace.htm#M34 Official documentation for ensemble options.
38 http://wiki.tcl.tk/tcloo TclOO is the first dedicated object-oriented system included in the official Tcl distribution.

http://wiki.tcl.tk/tcloo
http://www.tcl.tk/man/tcl8.6/TclCmd/namespace.htm#M34

together form an object with hidden data. The ensemble command system can further be
used to neatly group those procs within a single object command value.

Object systems typically do more than just group code and data. They may offer inheritance,
delegation, standardized interfaces, polymorphism, run-time type identification, and
programmable finalization. To that end, Brush proposes (but does not yet specify) to adapt
TclOO or a similar OO mechanism to an object command value.

Being able to customize finalization is the main reason why command values need to be a
distinct command type. As already shown for channel commands, at the C level the
command type registration system provides hooks for supplying a type-specific finalization
routine. An object system would expose that hook at the script level, making it possible to
script object cleanup.

Extension and Reflected Commands
Extensions can add custom command types. For example, Brush/Tk39 may define window,
image, and font command value types.

It may be useful to reflect this extension capability back into the script level so that new
command types can be defined programmatically. In this way, fully custom object systems
can be defined.

Conclusion
Brush offers an exciting palette of functionality designed to encourage programmer creativity
and expression to blossom, as well as to attract new attention to the Tcl universe.

Everything in Brush is founded on the simple-yet-powerful Tcl EIAS philosophy. Within the
framework of EIAS, Brush defines new reference and command values and integrates them
with the interpreter, plus it unifies dictionaries and lists to optimize interchangeability.

Building upon Tcl, Brush streamlines and enhances the syntax to encourage best practices
proven by long experience to promote efficiency and safety. The syntax improvements also
make Brush more familiar to users of other programming languages.

References are exploited to establish a potent and compact data structure access notation
through which even deeply nested, mixed data structures are easy to manipulate with
minimal need for accessor commands.

Elegant functional programming paradigms arise from Brush’s reference and command
value design. References provide excellent control over variable access and lifetime, and
command values are first-class citizens within the interpreter, fully exposed to the same
powerful data manipulation infrastructure as any other kind of value.

39 http://wiki.tcl.tk/tk Tk is the most popular GUI toolkit used with Tcl.
http://wiki.tcl.tk/gnocl Gnocl is an alternative GUI toolkit for Tcl that binds to Gtk+.

http://wiki.tcl.tk/gnocl
http://wiki.tcl.tk/tk

	Introduction
	Everything is a String
	Representations and Shimmering

	Dict/List Unification
	Nature of the Combined Type
	New Capabilities
	Proposed [lot] Subcommands

	Enhanced Syntax
	Bridging Substitution and Command Contexts
	Math Expression Substitution
	List Constructors
	Sexagecimal Notation
	Comments
	Brace Counting
	Backslash-Newline
	Formal Argument Lists
	Multiple-Variable [set]
	Enhanced Index Notation

	Substitution
	Dictionary and List Substitutions
	List Range Substitutions
	Strided List Range Substitutions
	Computed Variable Names
	Functional Substitution
	Dereferencing
	Substitution Syntax Comparison

	References
	Difficulties with Naming
	Introducing References
	Value of a Reference
	Early and Late Binding
	Building References from References
	Three Stages of Reference Processing
	References and [set]
	References and [unset]
	Using [ref link] to Link Variables to References
	Comparison with Tcl
	Reference Syntax Summary

	Garbage Collection
	References and Shimmering
	Circular References
	Performance
	Alternatives

	Command Dispatch
	Lambda Commands
	Native Commands
	Curried Commands
	Prefix Commands
	Channel Commands
	Interpreter, Coroutine, and Namespace Commands
	Ensemble Commands
	Object Commands
	Extension and Reflected Commands

	Conclusion

