Brush: A New Tcl-like Language

Presented by Andy Goth
19" Annual Tcl/Tk Conference
November 2012

Chicago, IL

History of Brush

« My Wibble web server uses deeply nested lists
and dictionaries

- Powerful data design
— Clumsy to access

 Frédéric Bonnet proposed the Cloverfield
project to investigate radical designs for T'cl 9

— Some of Cloverfield’s ideas would benefit Wibble

— Common goals, but divergent approaches

Design Goals

e Brush has four primary design goals
- BEverything is a string
- Streamline best practices
— Enhance data structure access
— Facilitate functional programming
e T'cl compatibility
— Break syntax-level compatibility when necessary

— Respect the Tcl design philosophies

Everything is a String

e T'cl’'s great strength 1s its EIAS philosophy

— Trivial serialization
- Maximal compatibility
— Hasy introspection

 Brush embraces EIAS
— BEIAS guides the design of Brush’s new features

Dict/List Unification

e Brush’s dicts are lists with hash table indexes

— Can freely read dicts using list methods
— Don’t have to worry about shimmering

— Hash table 1s automatically created, updated, and
removed according to the way data 1s accessed

e New [lot| command for sets

— No dummy elements in value

— Constant-time index lookup given key

[1lot] Examples

e lot contains (abc) a
lot difference (a b) (b c)

lot equal (abe) (bac)
lot exclude (abe)be

lot intersect (a b ec) (b c d)
lot search (abed)ec

lot size (a abac)

lot superset (a b ec) (b c)
lot union (a b) (b c)

e set &x (a b)
lot set &x d
lot unset &x b c

R R e -t AR - e - R S
.8 G it € 0 B DO B U PRI @ TR o T @ B e

H
Q

g
Q

Enhanced Syntax

e T'cl’'s simple syntax 1sn’t always simple to use

expr

list

unsafe and slow without brace quoting

inconvenient for complex tree structures

Comments and braces can be surprising

Many [proc|s need to parse $args

 Brush builds on Tcl’'s syntax

— Make the right thing be the easy thing

— Be more accessible to new programmers

[:] Pass-Through Command

e In places where a command 1s expected, often

only need substitution

e Pass-through command [:] simply returns its

first argument

 Used 1in examples throughout this presentation

s X
: $var
S o ol o T o

imqp f (y reas) {: And$f}

=

R T -

X
value of var
a

Andy Andreas

“$(...)" Math Substitution

* [expr] unsafe and slow if argument not braced

— Injection attacks
- No bytecoding

— Common mistake

 Brush adds “$(...)"” notation, equivalent to but
easier to type than “[expr {...}]”

* “$” before variables optional for simple cases
e $(cos(x * 2))

“C...)" List Constructors

[list| is clumsy but essential

— New or lazy programmers use double quotes instead

Brush adds parentheses as a new quoting style

- “C...)" equivalent to “[list ...]"
— Similar rules as double quotes and braces

— Substitution, nesting, comments, line breaks, “{*}”
Also adds parentheses to expression notation

(a (bc) $var) e bl iz}
SHSIEE (b e 2) asns bl el o)

10

Comments

Brush comments can start at any word

— No need for semicolons

— Can be used inside “(...)” lists

Eixtend to line end even through closing braces

‘“{...}#" block comments support nesting

switch $value (
first check option-*
option-1 {puts #{value}# >>$value<<}
#{ commented out... }}}}{}{}}{
option-2 {putz oops #{bug}#}}#

11

Brace Counting

e proc test {x} {

if {$x} {
puts "{"

} else {
pUtS ||}||

}
}

« Above code broken in Tcl, works in Brush

— Braces i1gnored inside double quotes or comments

— Brace counter maintains state machine to figure out
how characters will be interpreted at execution

12

Formal Argument Lists

e Brush enhances formal argument list notation

— Reduce workload for common argument schemes
— Increase flexibility
— Support bound arguments
e proc &p (a b? (e? xxx) d (e= yyy) f* g? h)
— High priority: required arguments
— Medium priority: “?” optional arguments
— Low priority: ‘*” catchall argument

— Assigned in advance: “=" bound arguments

13

Other Features

Sexagecimal (base-60) notation: “-89'02'@3.45”
— Alternative way to express floating-point numbers
Backslash-newline inside braces

— Tcl replaces with single space

— Brush leaves unmodified

Eixpression indexes

— Instead of integer literals, allow integer expressions

Multiple-variable [set]

— set (&a &b) (1 2) #
setiCR ar @)D CT =20 3 d)0 3d

14

Substitution

e New forms of substitution minimize need for

accessor commands
Computed Name

List Index

List Range

Dictionary Index
Dereference
Combination

Functional

$"nhame_with_substitution'
$name{index}
$name{first:last}
$name(key)

$namel

$name{idxl idx2}@(key)

$ [command] {index}

155

References

e Brush adds variable references

— References point to variables, not values

— Can include indexing, same as substitution
 Variables are garbage collected

— Circular references supported but expensive
 References are constructed using “&name”

- Works like $-substitution with “&” instead of “$”

— References are values

16

References and [set]

* [set| now takes a reference instead of a name

— References can be passed around freely without
regard for what stack frame they were created in

- [set] can now access dictionary and list elements

—set & (a1 b 2) Aot b n F
set &x(a) @ s ¢+ $x ¥ a @b 2
set &x(c) 4 s : $x # a@b 2c 4
set &x{1} 1 sl Gscis dg il b 2 e d
set &x{end+1:} (d 5), S P o gt B e e L (el
set &x{end+1l} x L S e ST LR o st b o ke

1.

Command Dispatch

e Brush commands are list values

— First word 1s command type

 lambda, native, curry, prefix, chan, ensemble

e interp, coroutine, namespace, object

- Remaining words vary by command type

e Command value comes from variable with same
name as command

- “¢” implied at beginning of every command

— Can use advanced substitution syntax with or
without the leading “$”

18

Command Examples

* [proc]| can be implemented using [set]

— set &::proc (lambda (nameref arglist body) {
set $nameref (lambda $arglist $body); :
})

 Paul Graham'’s accumulator generator in Brush

— proc &accum_gen ((val? @)) {
: (lambda ((valref= &val) (inc? 0)) {

set $valref $($valref@ + inc)
1)
}

set &accum [accum_gen 12]

accum 9 # 17
accum -2.5 # 14.5

19

More Command Examples

e Currying 1s particularly easy in Brush

— proc &sum (x y) {: $(x + y)}
set &inc (curry $sum 1)
: $inc # curry {lambda {x y} {: $(x + y)}} 1
inc 9 # 6

 Channels close automatically

— When refcount drops below one, channel command
finalizer routine is invoked

— set &data [[open file] read]; :

20

Bringing It All Together

A generator proc can return a command value
or a list or dictionary of command values

— Commands are first-class objects

e The command values can be lambdas with some
arguments bound to references to variables local
to the generator proc

— Variables persist as long as references to them exist
— Multiple procs can be given the same reference

— This establishes closures and an object system

2}

Summary

Brush defines more flexible substitutions to
improve data structure access

Brush defines references to make writing variable
elements work the same as reading

Brush defines garbage collection to make
references be more generally useful

Brush redefines commands to be values

Putting references to anonymous, GC’ed variables
into command values opens wide the door to

functional programming

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

