
1

Brush: A New Tcl-like LanguageBrush: A New Tcl-like Language

Presented by Andy Goth

19th Annual Tcl/Tk Conference

November 2012

Chicago, IL

2

History of BrushHistory of Brush

● My Wibble web server uses deeply nested lists
and dictionaries
– Powerful data design
– Clumsy to access

● Frédéric Bonnet proposed the Cloverfield
project to investigate radical designs for Tcl 9
– Some of Cloverfield’s ideas would benefit Wibble
– Common goals, but divergent approaches

3

Design GoalsDesign Goals

● Brush has four primary design goals
– Everything is a string
– Streamline best practices
– Enhance data structure access
– Facilitate functional programming

● Tcl compatibility
– Break syntax-level compatibility when necessary
– Respect the Tcl design philosophies

4

Everything is a StringEverything is a String

● Tcl’s great strength is its EIAS philosophy
– Trivial serialization
– Maximal compatibility
– Easy introspection

● Brush embraces EIAS
– EIAS guides the design of Brush’s new features

5

Dict/List UnificationDict/List Unification

● Brush’s dicts are lists with hash table indexes
– Can freely read dicts using list methods

– Don’t have to worry about shimmering

– Hash table is automatically created, updated, and
removed according to the way data is accessed

● New [lot] command for sets
– No dummy elements in value

– Constant-time index lookup given key

6

[[lotlot] Examples] Examples

● lot contains (a b c) a # 1
lot difference (a b) (b c) # a c
lot equal (a b c) (b a c) # 1
lot exclude (a b c) b c # a
lot intersect (a b c) (b c d) # b c
lot search (a b c d) c # 2
lot size (a a b a c) # 3
lot superset (a b c) (b c) # 1
lot union (a b) (b c) # a b c

● set &x (a b c)
lot set &x d # a b c d
lot unset &x b c # a d

7

Enhanced SyntaxEnhanced Syntax

● Tcl’s simple syntax isn’t always simple to use
– [expr] unsafe and slow without brace quoting
– [list] inconvenient for complex tree structures
– Comments and braces can be surprising
– Many [proc]s need to parse $args

● Brush builds on Tcl’s syntax
– Make the right thing be the easy thing
– Be more accessible to new programmers

8

[[::] Pass-Through Command] Pass-Through Command

● In places where a command is expected, often
only need substitution

● Pass-through command [:] simply returns its
first argument

● Used in examples throughout this presentation
● : x # x
: $var # value of var
: a b c # a
: #
lmap f (y reas) {: And$f} # Andy Andreas

9

““$(...)$(...)”” Math Substitution Math Substitution

● [expr] unsafe and slow if argument not braced
– Injection attacks
– No bytecoding
– Common mistake

● Brush adds “$(...)” notation, equivalent to but
easier to type than “[expr {...}]”

● “$” before variables optional for simple cases
● $(cos(x * 2))

10

““(...)(...)” List Constructors” List Constructors

● [list] is clumsy but essential
– New or lazy programmers use double quotes instead

● Brush adds parentheses as a new quoting style
– “(...)” equivalent to “[list ...]”
– Similar rules as double quotes and braces
– Substitution, nesting, comments, line breaks, “{*}”

● Also adds parentheses to expression notation
● : (a (b c) $var) # a {b c} {x y z}
: $((1, (("b c",), 2))) # 1 {{{b c}} 2}

11

CommentsComments

● Brush comments can start at any word
– No need for semicolons

– Can be used inside “(...)” lists

● Extend to line end even through closing braces
● “#{...}#” block comments support nesting
● switch $value (
 # first check option-*
 option-1 {puts #{value}# >>$value<<}
 #{ commented out... }}}}{}{}}{
 option-2 {putz oops #{bug}#}}#
)

12

Brace CountingBrace Counting

● proc test {x} {
 if {$x} {
 puts "{"
 } else {
 puts "}"
 }
}

● Above code broken in Tcl, works in Brush
– Braces ignored inside double quotes or comments
– Brace counter maintains state machine to figure out

how characters will be interpreted at execution

13

Formal Argument ListsFormal Argument Lists

● Brush enhances formal argument list notation
– Reduce workload for common argument schemes
– Increase flexibility
– Support bound arguments

● proc &p (a b? (c? xxx) d (e= yyy) f* g? h)

– High priority: required arguments
– Medium priority: “?” optional arguments
– Low priority: “*” catchall argument
– Assigned in advance: “=” bound arguments

14

Other FeaturesOther Features

● Sexagecimal (base-60) notation: “-89'02'03.45”
– Alternative way to express floating-point numbers

● Backslash-newline inside braces
– Tcl replaces with single space

– Brush leaves unmodified

● Expression indexes
– Instead of integer literals, allow integer expressions

● Multiple-variable [set]
– set (&a &b) (1 2) #
set (&a ()) (1 2 3 4) # 2 3 4

15

SubstitutionSubstitution

● New forms of substitution minimize need for
accessor commands
Computed Name $"name_with_substitution"

List Index $name{index}

List Range $name{first:last}

Dictionary Index $name(key)

Dereference $name@

Combination $name{idx1 idx2}@(key)

Functional $[command]{index}

16

ReferencesReferences

● Brush adds variable references
– References point to variables, not values
– Can include indexing, same as substitution

● Variables are garbage collected
– Circular references supported but expensive

● References are constructed using “&name”
– Works like $-substitution with “&” instead of “$”
– References are values

17

References and [References and [setset]]

● [set] now takes a reference instead of a name
– References can be passed around freely without

regard for what stack frame they were created in
– [set] can now access dictionary and list elements
– set &x (a 1 b 2) # a 1 b 2
set &x(a) 0 ; : $x # a 0 b 2
set &x(c) 4 ; : $x # a 0 b 2 c 4
set &x{1} 1 ; : $x # a 1 b 2 c 4
set &x{end+1:} (d 5); : $x # a 1 b 2 c 4 d 5
set &x{end+1} x ; : $x # a 1 b 2 c 4 d 5 x

18

Command DispatchCommand Dispatch

● Brush commands are list values
– First word is command type

● lambda, native, curry, prefix, chan, ensemble
● interp, coroutine, namespace, object

– Remaining words vary by command type

● Command value comes from variable with same
name as command
– “$” implied at beginning of every command
– Can use advanced substitution syntax with or

without the leading “$”

19

Command ExamplesCommand Examples

● [proc] can be implemented using [set]
– set &::proc (lambda (nameref arglist body) {
 set $nameref (lambda $arglist $body); :
})

● Paul Graham’s accumulator generator in Brush
– proc &accum_gen ((val? 0)) {
 : (lambda ((valref= &val) (inc? 0)) {
 set $valref $($valref@ + inc)
 })
}
set &accum [accum_gen 12]
accum 5 # 17
accum -2.5 # 14.5

20

More Command ExamplesMore Command Examples

● Currying is particularly easy in Brush
– proc &sum (x y) {: $(x + y)}
set &inc (curry $sum 1)
: $inc # curry {lambda {x y} {: $(x + y)}} 1
inc 5 # 6

● Channels close automatically
– When refcount drops below one, channel command

finalizer routine is invoked
– set &data [[open file] read]; :

21

Bringing It All TogetherBringing It All Together

● A generator proc can return a command value
or a list or dictionary of command values
– Commands are first-class objects

● The command values can be lambdas with some
arguments bound to references to variables local
to the generator proc
– Variables persist as long as references to them exist
– Multiple procs can be given the same reference
– This establishes closures and an object system

22

SummarySummary

● Brush defines more flexible substitutions to
improve data structure access

● Brush defines references to make writing variable
elements work the same as reading

● Brush defines garbage collection to make
references be more generally useful

● Brush redefines commands to be values
● Putting references to anonymous, GC’ed variables

into command values opens wide the door to
functional programming

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

