
KineTcl

Andreas Kupries ActiveState Software Inc. 409 Granville Vancouver, BC CA

andreask@ActiveState.com

ABSTRACT
This paper describes a package enabling Tcl scripts to talk
to Microsoft’s Kinect and related devices.

Technically KineTcl is a binding to the OpenNI framework
and thus provides access to all depth sensor devices for which
a sensor plugin exists. The best known device so far in that
category is the Kinect.

The paper will describe the internal structure of the pack-
age (i.e. how it matches to the OpenNI API, and weaves
both C and Tcl [12] together to make use of each others
strengths) and point to supporting packages and tools used
in the implementation.

1. OVERVIEW
KineTcl [2] is a new Tcl package providing a binding to

Microsoft’s Kinect [9], and related devices.
The project was started at the behest of the National

Museum of Health and Medicine, Chicago[1] (short: NMHMC)
for use in its exhibition space as one of the pieces of software
linking real world activities and actions to interactive virtual
displays.

Research into existing open source software for Kinect lo-
cated two existing projects, OpenKinect [5] (aka libfreenect),
and Open Natural Interaction (OpenNI [6]).
OpenKinect was created by the OSS and OSH communi-

ties through reverse engineering the Kinect’s USB protocol.
It is a low-level library providing access to the device without
having to care about this USB protocol and the like. While
not quite as low-level as a driver, it is not much higher. The
developers have planned an analysis library for higher level
operations (e.g. user detection and gesture recognition) but
this was not yet implemented at the time of the research.
OpenNI, is a framework abstracting away from hardware

devices and image processing for particular tasks (like user-,
hand-, and skeleton-tracking). It was created and is main-
tained by PrimeSense [8], the developer and manufacturer
of the depth sensor used in the Kinect. OpenNI is also
“an industry-led, not-for-profit organization formed to cer-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Tcl ’2012 Chicago, IL, USA
.

tify and promote the compatibility and interoperability of
Natural Interaction (NI) devices, applications and middle-
ware.”[6]. Both the framework itself and a generic sensor
driver “node” for the PrimeSense sensor are available in
source, under the LGPL. A derivative of the latter, special-
ized to the Kinect is available on github[10].

At this point of the research both possibilities were seen
as roughly equivalent.
OpenNI was chosen because of the existence of the

NITE [11] extensions, encapsulating all of the necessary higher
level algorithms (i.e user detection, skeleton/joint tracking,
gesture recognition, etc).

Given the time frame of the project (started in January
2012, a working system needed by May) it was considered
difficult or impossible to invent and write such algorithms
from scratch, as would be needed when using libfreenect.
Having access to these through NITE outweighed the con-
sideration that this part of the system is only available in
binary, and not in source.

The next chapter gives a general overview of KineTcl’s
design, implementation, and features. Following that, chap-
ters 3 and 4 discuss limitations, possible applications and
future directions for the package.

2. DESIGN & IMPLEMENTATION

2.1 OpenNI
OpenNI’s API is written in C, with an underlying class hi-

erarchy 1 where the leaves represent the various data streams
coming from a depth sensor, and the higher classes pro-
vide the general functionality and APIs. This is shown in
figure 1. Note that the classes not only represent data
streams from physical sensors, but also data coming out of
higher level algorithms like user detection and tracking (i.e.
virtual sensors).

These APIs contain the mandatory minimum supported
functions for each class. For sensors going beyond these,
OpenNI defines a series of standard “capabilities” they may
provide. From a different point of view these could be called
aspects, or mixins. As an example, figure 2 shows the capa-
bilities which are defined for user detection and tracking.

For full details, see OpenNI’s reference documentation[7].

2.2 Basic Design
Generally all OpenNI classes and instances are represented

as classes and instances to the Tcl script as well. Whenever

1Underneath the C API is actually C++

Figure 1: OpenNI class hierarchy

Figure 2: OpenNI User Tracking Capabilities

we mention a class in the future, we will also specify which
of the three layers (OpenNI, C, or Tcl) we are talking about
if it is not clear from the context.

Following the spirit of Poli-C [13] the binding is written
using layers, with a low-level C layer implementing only the
bare necessities which are then glued by the Tcl layer into
the final user-visible API.

As mentioned, the C layer wraps each OpenNI “class”
(which includes capabilities) into a Tcl class command whose
methods map pretty much directly to OpenNI API functions.
This is very much like Tk widgets. However, these classes do
not know about the class hierarchy and superclasses. Each
C class implements a binding to just the methods of their
OpenNI class without regard for inherited methods.

This layering and the connections between the parts in the
different layers is shown in figure 3, using the stack of classes
for “depth image generator” nodes as example. We see not
only the classes, but also the inheritance relationships (in
blue), including the fact that KineTcl’s C layer does not
use inheritance, and the use of instances (in red). The Tcl
level depth image instances contain the C level instances of
their class and all the required superclasses, which share the
OpenNI handle for the node. This last point will be explained
further in section 2.3.

This, and the mixin of the supported capabilities, is all
handled in the Tcl layer. Here all the underlying classes
are wrapped by TclOO [14] classes which instantiate all the
required C classes so that the user may have access to the
full set of methods, direct and inherited. The connection
from the externally visible methods to the C methods is
done through TclOO forwards, which also allows us to hide

Figure 3: Package Layering

all special C methods needed by the Tcl layer which are
irrelevant from the user’s perspective. This includes, for
example, the various introspection methods used to manage
callbacks/events and capability mixing.

2.3 Object Construction
One tricky point in all this is that the various C instances

constructed for the Tcl instance all have to operate on a sin-
gle OpenNI handle for the object in question (see
figure 3). How do we disseminate this information?

First, only the leaf C classes can create a new handle, a
property the binding inherits directly from OpenNI. Know-
ing that the Tcl glue will construct the leaf first then walk
up the Tcl class hierarchy to construct the required C level
superclass instances, the code for a leaf class saves the ob-
tained handle into a per-interpreter structure of the package.
The superclasses’ code then retrieves the handle from there.
Doing things in this manner avoids having to expose and
pass a C level pointer through the Tcl layer.

It should be further noted that the C base class provides
a special method (@unmark) to explicitly clear this handle
store. This is not done automatically by the C base class
during its construction, because of the capabilities. The
handle storage has to be kept around until the Tcl glue has
mixed them in, thus the responsibility to signal its release
falls to the Tcl layer.

2.4 Object to Handle Conversion
Another issue which has to be solved in the cooperation

of C and Tcl layers is that various OpenNI (and thus C)
methods take a second handle as input, requiring us to con-
vert from a Tcl object command to the underlying OpenNI

handle.
At the C level, this is managed by calling out to the Tcl

procedure ::kinetcl::Valid which performs both valida-
tion of a Tcl Obj∗ as a proper Tcl object (command) and
its conversion, leaving the resulting OpenNI handle in the
same storage area as used during object construction. The

caller can retrieve it from there after the procedure returns.
At the Tcl level, ::kinetcl::Valid uses a dictionary of

the active instances managed by the base class to validate
the argument as a Kinetcl object. For the arguments passing
this test ::kinetcl::Valid then uses its knowledge of the
Tcl object internals, namely the existence and name of the
C base class instance in the object to directly access it and
invoke the special C method (@mark) which will store the
desired handle in the storage area for the C level to pick it
up from.

Figure 4: Object to Handle validation and conver-
sion

Figure 4 shows all of the above in a UML sequence dia-
gram.

2.5 Events and Callbacks
The last area of cooperation to talk about are the 34

OpenNI callbacks. Unfortunately, they are invoked from
OpenNI’s internal threads, making it impossible to use them
”as is” (i.e. let them directly call up into Tcl).

This issue was mainly solved by converting the callbacks
into events, for which we have Tcl API functions to safely en-
queue them regardless of which thread they come from and
are going to. However, even with that we had two problems
left.

First, one of the callbacks is very high-rate, generated
several times per second. I am talking about the ’new frame’
event for all the map generators, signaling the presence of
a new image frame (image, depth, IR, ...). Because a single
such signal is good enough this event is throttled by allowing
only one per object into the event queue and discarding the
remainder until the event in the queue has been processed.

The other remaining issue arises again from the fact that
events are generated by threads outside of Tcl’s control. It
means that new events not only can, but will arrive while
Tcl is processing the queued events. Without safeguards
Tcl’s event queue will never be empty, and the processing
loop will never end, starving out idle-events processing.

While a solution was found for this, it doesn’t look very
nice. Readers of the example applications will see code
like that shown in listing 1. This is essentially an emula-
tion of Tcl’s event loop using while and update, and in-
serting the necessary calls to (a) drive OpenNI’s processing
(waitUpdate) and (b) safeguard (estart, estop) Tcl’s event
loop while processing events. estop causes the system to de-
fer incoming events into a spill-over queue, whereas estart

restores regular processing and moves all defered events into
the main Tcl event queue.

With the pressure for getting a working system now gone,

Listing 1: Event loop
while {1} {

k i n e t c l waitUpdate
k i n e t c l e s top
update
k i n e t c l e s t a r t

}

better solutions for the event integration should be investi-
gated (e.g. Tcl’s API for “Event Sources”).

While OpenNI’s C API for callbacks allows the registration
of an arbitrary number of actual callbacks for a specific event
the C classes were kept simpler, handling only one actual
callback per specific event, managed by associated set and
unset methods.

The distribution of events to many observers is then again
handled by the Tcl glue code, in two TclOO classes which
are superclasses to the nomimal Tcl base class for OpenNI in-
stances (see figure 3). These two classes, kinetcl::eventbase
and kinetcl::nodeevents, provide a more event-like API,
where users can bind to and unbind from events. The var-
ious Tcl sub-classes register the events they support with
them, after using the C classes’ method introspection facili-
ties to determine this set. A small detail of the implementa-
tion is that a C level callback is set if and only if observers
have been bound to the event it will be invoked for. This
part of the functionality relies on a feature of the internally
used uevent [15] package. That is, its ability to watch for
and invoke commands when event bindings are set and re-
moved (available since version 0.3.1).

2.6 Implementation
Now, how do we implement 39 C classes (14 core, 25 ca-

pabilities) quickly yet safely, especially in light of the large
amount of virtually identical boilerplate needed to manage
the class and instance commands and associated data struc-
tures?

By automating as much as possible.
Thus, a significant part of the time was not spent on writ-

ing the binding directly, but on writing the critcl::class

generator package to encapsulate all the boilerplate and its
templating. Having this generator in place, writing the bind-
ing became almost trivial, at least in most places. An only
slighly abbreviated example is shown in listing 2.

Please note that the code in this listing represents the
state of the Kinetcl head and of the critcl::class head
officially released with critcl 3.1 [4], which also makes
use of the additional features for custom argument and result
type processing.

The code currently in use by the NMHMC, found at the
tag “nmhmc” in the KineTcl and critcl repositories is
less streamlined, containing various argument- and result-
processing C code fragments multiple times. For the class
shown, the difference is only about half a kilobyte (4 versus
4.5 KB). This class gets converted into roughly 25 KB of
C code. From this we can estimate that about 84% of the
result is boilerplate code, generated, instead of manually
written.

This was further simplified by agressively using Tcl’s meta
coding abilities to factor out the common parts of the various
classes (leaf vs inner classes, the integer capability classes),

Listing 2: kinetcl::map implementation excerpt
c r i t c l : : c l a s s de f : : k i n e t c l : :Map {

: : k t a b s t r a c t c l a s s

method bytes−per−pixel proc {} int {
return xnGetBytesPerPixel (instance−>handle) ;

}

method modes proc {} ok {
XnStatus s ;
int l c ;
Tcl Obj∗∗ l v = NULL;
XnMapOutputMode∗ modes ;

l c = xnGetSupportedMapOutputModesCount (instance−>handle) ;
i f (l c) {

int i ;

modes = (XnMapOutputMode∗) c k a l l o c (l c ∗ s i z e o f (XnMapOutputMode)) ;
s = xnGetSupportedMapOutputModes (instance−>hand l e , modes, &lc) ;
CHECK STATUS GOTO;

lv = (Tcl Obj∗∗) c k a l l o c (l c ∗ s i z e o f (Tcl Obj∗)) ;
for (i = 0 ; i < l c ; i++) {

. . .
}

c k f r e e ((char∗) modes) ;
}

Tcl SetObjResult (i n t e r p , Tcl NewListObj (l c , l v)) ;

i f (l c) {
c k f r e e ((char∗) l v) ;

}

return TCL OK;
e r r o r :

c k f r e e ((char∗) modes) ;
return TCL ERROR;

}

method @mode? proc {} ok {
XnStatus s ;
XnMapOutputMode mode ;
Tcl Obj∗ mv [3] ;

s = xnGetMapOutputMode (instance−>hand l e , &mode) ;
CHECK STATUS RETURN;

. . .

Tc l SetObjResult (i n t e r p , Tcl NewListObj (3 , mv)) ;
return TCL OK;

}

method @mode: proc { int xre s int yre s int f p s } XnStatus {
XnMapOutputMode mode ;

mode.nXRes = xre s ;
. . .

return xnSetMapOutputMode (instance−>hand l e , &mode) ;
}

: : k t c a l l b a c k mode \
xnRegisterToMapOutputModeChange \
xnUnregisterFromMapOutputModeChange \
{} {}

support {
#de f ine kinetcl NUM PIXELFORMATS (5)

. . .
}

}

and generating the whole of the callback support from short
descriptions as seen in listing 3.

Listing 3: Callback definition
: : k t c a l l b a c k user−enter \

xnRegisterToUserReEnter \
xnUnregisterFromUserReEnter \
{{XnUserID u}} {

CB DETAIL (” user ” , Tcl NewIntObj (u)) ;
}

This last was made relatively simple by the very regular
nature of OpenNI’s API for the (de)registration of callbacks,
including the callback signatures. Even the places where
two or even three callbacks were managed by a single pair
of (de)registration functions could be fitted in.

3. LIMITATIONS
A number of OpenNI’s features were not given full atten-

tion, or not implemented at all, because KineTcl’s intended
use in the NMHMC did not require them. These are:

1. The audio, player, recorder, and script classes are mainly
shells without full implementation. They are certainly
not tested.

2. Instances are constructed using only default arguments.
OpenNI actually has an API allowing the user to con-
figure a query object/structure to limit the search for
the type of instance to specific vendors, versions, and
the like. None of this is used.

Create a “user generator”, for example, and the system
will simply provide a handle it believes is the best.

3. Similarly OpenNI has functionality to query it for the
set of installed modules, their vendors, versions, pro-
vided node types, etc. This also includes the ability
to query what node stacks exist (i.e. coherent col-
lections of nodes able to perform a task). For exam-
ple, a “hands tracker” may need a “user generator”
and if multiple modules provide implementations of
either, OpenNI can construct different processing net-
works (node stacks) by mixing and matching them.

None of this functionality is exposed by KineTcl.

4. FUTURE DIRECTIONS
Some of the things we can/may do in the future of KineTcl

are obvious. Just look at the limitations listed in the previ-
ous chapter.

Another relatively obvious direction is to write additional
processing classes directly in Tcl (e.g. implement various
types of gesture recognition). Some work on this has actu-
ally been done, but is not complete (and buggy). See the
files stance.tcl and examples/dance for the experiment
with a FAAST [16] inspired system.

Finally, there is the currently used hack for the final in-
tegration of events. Better solutions for this, such as Tcl’s
API for “Event Sources”, should be investigated.

APPENDIX
A. REFERENCES
[1] National Museum of Health and Medicine, Chicago

http://www.nmhmchicago.org/

[2] Andreas Kupries, KineTcl. https://chiselapp.com/
user/andreas_kupries/repository/KineTcl

[3] Andreas Kupries, CRIMP.
http://wiki.tcl.tk/crimp

[4] Andreas Kupries, Steve Landers, Jean-Claude
Wippler, CriTcl. http://jcw.github.com/critcl/

[5] Various. OpenKinect, libfreenect.
http://openkinect.org/wiki/Main_Page

[6] PrimeSense. OpenNI organization and framework.
http://www.openni.org

[7] PrimeSense. OpenNI API Reference. http://openni.
org/Documentation/Reference/index.html

[8] PrimeSense. http://www.primesense.com

[9] Microsoft. Kinect.
http://www.xbox.com/en-US/kinect/

[10] Avin. SensorKinect.
https://github.com/avin2/SensorKinect

[11] PrimeSense. NITE.
http://www.primesense.com/technology/nite3

[12] Various, Tcl. https://tcl.sourceforge.net

[13] Jean-Claude Wippler, Poli-C.
http://wiki.tcl.tk/polic

[14] Donal Fellows, TclOO http://core.tcl.tk/tcloo

[15] Various, Tcllib. https://tcllib.sourceforge.net

[16] ICT, Flexible Action & Articulated Skeleton Toolkit
http://projects.ict.usc.edu/mxr/faast/

http://www.nmhmchicago.org/
https://chiselapp.com/user/andreas_kupries/repository/KineTcl
https://chiselapp.com/user/andreas_kupries/repository/KineTcl
http://wiki.tcl.tk/crimp
http://jcw.github.com/critcl/
http://openkinect.org/wiki/Main_Page
http://www.openni.org
http://openni.org/Documentation/Reference/index.html
http://openni.org/Documentation/Reference/index.html
http://www.primesense.com
http://www.xbox.com/en-US/kinect/
https://github.com/avin2/SensorKinect
http://www.primesense.com/technology/nite3
https://tcl.sourceforge.net
http://wiki.tcl.tk/polic
http://core.tcl.tk/tcloo
https://tcllib.sourceforge.net
http://projects.ict.usc.edu/mxr/faast/

	Overview
	Design & Implementation
	OpenNI
	Basic Design
	Object Construction
	Object to Handle Conversion
	Events and Callbacks
	Implementation

	Limitations
	Future Directions
	REFERENCES -9pt

