
Maintainable, Shareable and Easily Creatable & Updateable toolbar, menubar, statusbar -

pillars of any GUI application.

Tarun Goyal

Abstract – This paper presents a novel approach to efficiently manage, update and share the

toolbar, menubar & statusbar widgets that are integral to any TCL/TK based GUI application.

However, considering that any GUI would have different windows performing variety of tasks

and be dependent on the overall tool state, the solution should effectively support context

sensitivity with respect to windows, selected object in its constituent windows and tool status.

Fig: Typical Menubar/Toolbar in a GUI

Summary - It has been observed that in any GUI application the onus of creating/updating the

widgets inside the toolbar, menubar or statusbar lies with the developer responsible for creating a

component [or window/frame] in the GUI with everyone creating their own “versions”, resulting

in code duplication and raising maintainability issues. However, considering that same widget

[e.g. button, menus etc.] might perform similar function in various windows and/or the same real

estate could be utilized to create different widgets for different windows, necessitates a

functional requirement to have centralized toolbar, menubar & statusbar managers [or smart

widget managers] that helps one to easily register widgets and update them dynamically based

on the current window [or the element therein] in focus. Essentially, following are the desired

features of these centralized “managers”.

1. Each manager should be structured in a way so as to provide a centralized mechanism for

creating/updating [e.g. enabling/disabling/setting a value] the widgets.

2. Ability to create a variety of widgets – e.g. a checkbutton or menu in a menubutton, text-

widget or button in a toolbar or progress-bar or a labelframe in a status-bar.

3. Make the same widgets as reusable as possible – e.g. a “cut” button can be used to cut a

text item in one window whereas could be used to cut a schematic element in another.

The following sections captures the pseudo implementation interface [written in incrTcl] of

various managers, the central repositories that will entertain requests received from any

window/component. Please note that only “major” interface functions have been mentioned here

and the managers may contain some other methods from implementation perspective. For the

complete implementation, please refer the supplied TCL source code.

TOOLBAR MANAGER

 itcl::class ToolBarManager {

 #variable list

 set dock_bars(std, tree, browser, schematic, dataview) ## dockbars of tool-bar

 set dock_bar_widgets (copy, cut, paste, find) ## widgets in the dock-bar

 ## widget_prop store the properties of the widget - e.g. label, underlying index etc.

 set widget_prop[std, copy] = { icon_name, default_callback}

 ## default_callback is the method to call on “invoking” this widget

 # Tool Bar associated with a window:

 set windowToolBar(windowName) = {toolBarObject}

 # this will store the global tool-bar object of the main framework

 private variable globalToolBarObject

 # Register_Window:: This function enables a window to register associated docbar and

 # the widget

 private method Register_Window { windowName, docName, widgetName }

 # Unregister_Window:: This function deregisters the given window from relevant dockbar

 # lists

 private method Unregister_Window {windowName }

 # Update_ToolBar :: This proc is the updates the respective toolbar based on the window

 private method Update_ToolBar { windowName }

 ## Update_DocBar :: This function updates the requested dock-bar, with the latest-status

 ## of the widgets residing inside the dock-bar.

 private method Update_DocBar { docBar_Name }

 # Create_DocBar :: Create a dock-bar with a given doc-bar-name..

 private method Create_DocBar { docBarName }

 # Create_Widget :: Create a widget in the specified doc-bar, with the given widget-name

 private method Create_Widget { docBarName buttonName }

 # this will handle the call-backs, smartly finds the current window object and calls it

 # method.

 public method CallBackHandler { widgetName docBarName}

 # this method changes the state of buttons depending upon the current selection inside

 # a window

 public method updateState { windowName docBarName widgetName }

 }

The Toolbar manager is instantiated in the constructor as follows-

set globalToolBarObject [mtiwidgets::dockbar $_vars(debug_win).$toolBarName -relief sunken

-borderwidth 1]

Some of the salient features, among others, of the toolbar manager are as follows-

1. Only those dockbars [dockbar is a subunit of a “toolbar”] that are registered with current

set of visible windows shall be shown and the widgets inside these dockbars are

enabled/disabled as per the window requirements. Further the dockbars are added/deleted

incrementally as windows are shown/hidden in the tool.

Fig: Tool in 2 different states on opening a new window

2. As per our present tool requirements, the currently supported widgets are – buttons, entry,

combobox, checkbutton, radiobutton. The manager can easily be enhanced to support

more widgets.

3. The manager also supports placing the window specific widgets in the undocked state i.e.

in case user undocks [i.e. does a “toplevel .$windowName”] the window from the tool,

only the widgets that are registered with that window comes in the undocked toplevel

window. A separate instantiation happens for the toolbar inside the undocked window.

set windowToolBar($windowName) [mtiwidgets::dockbar "[$frameworkHandle

getPaneManager].$windowName.toolbar" -relief sunken -borderwidth 1]

MENUBAR MANAGER

Similarly, the Menubar manager looks as follows:

 itcl::class MenuBarManager {

 # Following data-structures are maintained by Task-Manager internally storing the dock-button

 # related properties

 private variable globalMenuButtons, menuButtonMenus, menuProps, menuButtonProps

 # List of created menu-buttons are maintained as ::

 # createdMenuButtons {} = { std, }

 private variable createdMenuButtons {}

 # Array which tells us about the status of a menu-button ::

 # menuButtonStatus (std) = { "Enable" }

 private variable menuButtonStatus

 # Global list of registered menu-buttons and menus ::

 # Reg_WindowMenuButton (docName) = { windowName,}

 # Reg_WindowMenu (docName, ButtonName) = { windowName,}

 # Reg_WindMenuCallback(docName, ButtonName) = { CallbackFunction , }

 # this list will store the menus that you want to create dynamically

 # at each update. e.g. display->marking menu (format = [list "menubutton,menu" ..])

New dockbar for the

additional window

 private variable menuIsDynamic

 private variable windowMenuBar ; # windowMenuBar(windowName) = {menuBarObject}

 # Register_Window:This function enables a window to register associated doc-Name and

 # button-Name

 public method Register_Window { windowName menuButtonName menuName

callBackFunc }

 # Unregister_Window:: This function deregisters the given window from the

 # both the lists :: Reg_WindowMenuButton and Reg_WindowMenu.

 public method Unregister_Window {windowName }

 # Update_MenuBar :: This proc is called from a centric place and depending on the

 # “windowName” updates the respective menu-bar. Showing/hiding the menu-bar is also

 # handled here.

 public method Update_MenuBar { windowName Docked {forceTag "no"}}

 # Update_MenuButton :: This function updates the requested menu-button, with the latest-

 # status of the menus residing inside the menu-button.

 private method Update_MenuButton { menuButtonName object windowName

menuBarObjState {forceTag "no"}}

 # Create_MenuButton :: Create a menu-button with a given menuButtonName..

 private method Create_MenuButton { menuButtonName menuBarObj Docked {enterTag 0} }

 # getUndockedMenuBarObj : This proc creates the object for undocked menu-bar with all the

 # contents that goes into the Undocked Window. This proc is called as soon as the window is

 # undocked.

 public method GetUndockedMenuBarObj { windowName }

 # this will handle the call-backs

 public method CallBackHandler { menuName menuButtonName }

 # this method changes the state of menus depending upon the current selection inside a

 # window

 public method UpdateState { state windowName menuButtonName { menuName "" } }

 # this method handles tool-bars when a window is maximized

 public method maximizeWindowMenuBars { windowName }

 # method creates deleted menu-item

 private method Create_DeletedMenuItem { menuButtonName menuName menuObj \

insertIndex Docked windowName {enterTag 0}}

 # function to test for the validity of menu-item in "data" menu-button for "design & debug"

 public method MenuItemValidForData { args }

 # this function sets the widget value to the instructed "value"

 public method setWidgetVal { windowName menuButtonName menuName value }

 # this function returns the value stored in widget

 public method getWidgetVal { windowName menuButtonName menuName }

 # this function sets the key index array

 public method setKeyIndex {menuNameList }

 # this function returns the key Index

 public method getKeyIndex { menuName }

}

The Menubar manager is instantiated in the constructor as follows-

 set globalMenuBarManager [iwidgets::menubar $_vars(debug_win).$menuBarName –font

 $_fonts(helvB:12) -helpvariable helpstr]

Some of the salient features of the menubar manager are:

1. The menus are created/deleted on the fly and are dynamic in nature in that they can be

created at run time. This is accomplished by various functions talking to each other in

parallel - Create_DeletedMenuItem is called from UpdateMenuButton for each registered

menu with the window with Create_DeletedMenuItem checking the validity of the menu

by calling MenuItemValidForData. The “runtime” menus are stored in a special variable

called menuIsDynamic, which is checked every time a menu-item is created.

2. Menubar manager supports widgets such as menubutton, menuitem, “cascade” [no limit],

checkbutton, radiobutton, sepators and can be enhanced to support more widgets easily.

3. As with toolbar manager, menu-bar manager has also been implemented in a way so as to

show the registered menubuttons with the undocked window in the toplevel window.

Each window gets its own menubar manager object as follows-

set windowMenuBar($windowName) [iwidgets::menubar "[$frameworkHandle

getPaneManager].$windowName.menubar" -font $_fonts(helvB:12) -helpvariable

helpstr]

STATUSBAR MANAGER

itcl::class StatusBarManager {

 # Following data-structures are maintained by Task-Manager internally

 private variable statusBarWidgets ; ## all the widgets in the status bar

 private variable widgetProps ; ## widget related properties

 # Global list of registered doc-bars and buttons ::

 # Reg_WindowWidgets = { windowName,}

 # Reg_WindowWidgetCallback(widgetName) = { CallbackFunction , }

 private variable Reg_WindowWidgets

 private variable Reg_WindowWidgetCallback

 # public methods

 # Methods that will be used by the tool windows

 # Register_Window:: This function enables a window to register associated status bar widget

 public method Register_Window { windowName widgetName {callBackFunc ""}}

 # this method return the value stored in the widget variable

 public method getWidgetVal { windowName widgetName }

 # this method sets the widget's variable value to "value", with "progressBarVal" is an

 # optional argument that will be valid in the case of "progressBar" widget.

 public method setWidgetVal { windowName widgetName value {progressBarText ""}}

 # this method changes the state of widgets depending upon

 # the current selection inside a window

 public method UpdateState { windowName widgetName State}

 # Methods that will be used by framework

 # Update_StatusBar :: This proc is called from a centric place and depending on the

 # windowName updates the status-bar

 public method Update_StatusBar { windowName Docked }

 # getUndockedstatusBarObj : This proc will return object of the statusbar, that goes into the

 # Undocked Window.

 #This proc is called as soon as the window is undocked.

 public method GetUndockedStatusBarObj { windowName }

 # private methods

 # Create_StatusBar :: Create a status-bar with a given status-bar-name..

 private method Create_StatusBar { widgetName windowName }

 # this will handle the call-backs

 public method CallBackHandler { widgetName }

 # this function initializes the various status-bar related Lists

 private method initializeLists {}

}

The Statusbar manager is instantiated in the constructor as:

 set globalStatusBarObj [frame $_vars(debug_win)._bottomFrame]

As can be seen, statusbar is a frame widget and we are packing the widgets it.

Statusbar manager is similar to the above managers [mostly toolbar manager] and works in a

similar fashion. Some salient features are:

1. Statusbar manager supports widgets such as – “progressbar”, entry, label. We have

created our own progress bar and have instantiated it inside the status bar. The function

“setWidgetVal” handles the update process of the progress bar accepting %ages and/or

text as an argument. Including progress bar has helped in creating significant value for

our customers especially for operations that take time to complete.

2. As with other managers, statusbar manager created a separate instantiation for all the

undocked windows and places the registered widgets inside that window. Each window

has its own “status bar manager frame” in which the widgets are packed.

USAGE

A single object of each of the managers is instantiated inside the constructor of the respective

class . This object could then be accessed and used by various windows to manage their dockbar,

menubar & statusbar items, as captured in some ways below.

1. Register a variable: registering any widget with the toolbar [or statusbar] manager is easy. The

client needs to call the following:

$toolBarManObject Register_Window $windowName $dockBarName $widgetName

“CALLBACK FUNCTION”

Above has the syntax as – {Window/Component Name registered with widget, DockBar

within the toolbar, Widget Name, method that will be called on “invoking” the widget}

In the toolbar manager, the following would be done for initializing it.

widgetProps($dockBarName,$widgetName) { “Print ….” , “print.gif”, “Print”, “button” }

Above has the following syntax – {Widget ToolTip, Icon, Widget text,Type of Widget (e.g.

button, entry etc)}

As for menubars, the cascading menuitems within a menu-button would be supported as follows:

$toolBarManObject Register_Window $windowName $menuButtonName \

“$firstlevelMenubuton,$secondlevelMenubutton, $menuItem” “CALLBACK FUNCTION”

 ## there is no limit to upper the number of levels of cascading

For a normal menu-item that is not cascaded should be captured while specifying the widget

properties.

set widgetProps($menuButtonName,$widgetName) {“Test-Setup….”, “0”, “normal”,

“MenuItemValidfor Data Test_Setup”}

Above has the following syntax – { Widget Text, Underlying Alphabet Index, State[normal,

cascade], Function to be called for widget validity [optional]}

In order to support dynamic creation widgets the widgetProps has special item that checks

whether the widget needs to be created under the present set of conditions.

2. APIs provided to return/set the current value in the widget [GetWidgetVal/SetWidgetVal] ::

The onus is on managers to set the value/return the current value residing inside a widget. That

will save the various windows the burden of managing the variables themselves. Here you just

need to pass the "dock-bar-name" [or menubutton-name for menubar manager], "window-name"

and "widget-name" to get the value.

 set Val [$toolBarManObject getWidgetVal $windowName $dockBarName $buttonName]

 set Val [$toolBarManObject setWidgetVal $windowName $dockBarName $buttonName

Value]

It is important to mention here that the managers first find the state of the window and set or get

the value of the widget associated with that window appropriately. So the “text” widget, for

example, that is registered to the particular docked window(s) [or global text widget] can take

values independently of the “text” widget that is registered to another window but in undocked

state [or local text widget]. However, when this undocked window is docked, the local “text”

widget is destroyed and the undocked window starts using the global text widget. We can see a

good example here as to how sharing helps in managing the widgets better and in better

utilization of precious GUI real estate.

3. Initializing the value: The widget can be initialized to some set values based on the

window/context while invoking an application. An example could be a checkbutton that is

“registered” to 2 different windows. One component wants the state of this "checkbutton" as "1"

whereas the other as "0". So, we read in this initial value in "ToolBarManager" and set the state

of the widget accordingly. It shall be handled in ToolBarManager as

 set internVar ::$windowName::$widgetVal

4. Dynamically updating the “managers” on the fly: The “managers” provide methods that can

be called on the fly to update the state of various widgets that are present inside the toolbar,

menubar or statusbar, including creation of new widgets dynamically. Such an operation would

enable/disable certain widgets and/or create new widgets such as menu items for certain

menubuttons are created if it is valid under the present situations. These optimal-ties help in the

maximum utilization of the real estate, avoiding clutter, and share-ability among the various

component of the GUI.

It is important to mention here that the managers have been written modularly in that they could

be adopted easily by any GUI application, with minor modifications. Further, such “managers”

can be added into the existing set of TK widgets, in case of need.

Bibliography

TCL/TK wiki, http://wiki.tcl.tk

http://wiki.tcl.tk/

