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Abstract

I introduce a method of using a rapidly-converging infinite series to generate integer  
values which, when stored in relational database table rows, act as tags allowing each  
row to be interpreted and queried as a node in a hierarchy.  To overcome integer  
precision limitations, I use Tcl 8.5's Bignum feature and tcllib's math::bigfloat package. I  
use SQLite's ability to store arbitrary binary data in its BLOB data type to manage  
overflow precision digits.  The resulting code provides a fast and efficient way to store  
and query tree-structure data of theoretically unlimited size.

1.  Introduction

It  is  natural  for  beginners  as  well  as  for 
experienced  computer  programmers  to  wish 
to organize and store information in the form 
of  hierarchies,  or  tree  structures.   The 
filesystem on every modern computer is the 
most straightforward and ubiquitous example. 
Most users grasp and appreciate the utility of 
hierarchical file storage immediately.

Power users are also generally familiar  with 
the frustration of trying to find particular files 
or file types in a directory structure, only to 
be  faced  with  long  waits  as  the  computer 
grinds  through  a  recursive  search  of  the 
directory space.

The tree-structure data type is widely used for 
a  variety  of  computer  data-processing  tasks 
beyond file storage.  LDAP, OLAP, XML, 3D 
scene graphs, and network spanning trees are 

a  few  examples  of  technologies  which 
organize data into hierarchies.   The sizes of 
the  datasets  utilized  by  means  of  these 
technologies  have  typically  grown 
enormously  over  the  past  several  years,  a 
trend consistent with datasets of nearly every 
type.  What has not grown is the efficiency of 
algorithms  used  to  query  and  retrieve 
information in these datasets.  The approach 
still  used  in  the  overwhelming  majority  of 
cases is recursive search.  Recursive search is 
a  viable  method  for  querying  small  to 
medium-sized datasets, but the technique does 
not scale,  and performance of such searches 
on  very  large  databases  is  becoming 
unacceptable  even  on  the  most  advanced 
hardware.

This  paper  introduces  a  new  method  for 
parametrizing,  storing  and  searching 
hierarchical  information  that  eliminates  the 
need  for  recursive  approaches  for  the  most 



common search query types applied to trees. 
I also present details of a prototype executed 
with the help of advantageous features of Tcl 
8.5  and  the  relational  database  extension 
TclSQLite.

Certain techniques described in this paper are 
covered by US patent  #7,769,781, granted to 
the author.1

2. Hierarchies and Relational 
Databases

Although  the  method  herein  described  is 
generally  applicable to  any linear  or  tabular 
data storage method, this presentation and the 
prototype focus on application to the problem 
of  storing  tree-structure  data  in  a  relational 
database.

The  conundrum of  storage  and  querying  of 
tree-structure data  in  RDBMS programs has 
been  a  topic  of  persistent  interest  for  many 
years.2  The relational database is, generally 
speaking, the most powerful and flexible tool 
available  to  the mainstream programmer for 
dealing  with  large  datasets.   The  presumed 
advantages  of  using  a  SQL-powered  RDB 
package in this field have seemed self-evident 
for decades,  but implementation issues have 
bedeviled almost everyone who has tried it for 
sizable datasets.

The obvious approach is  simply to  assign a 
unique number to each record in a database 
table that represents a node in the hierarchy, 
and define a “parent” field in the table schema 
to  contain  the  unique  number  of  the  node 
linked one level up in the hierarchy from the 
node represented by the record.  Thus finding 
a  node's  “children”  is  simply  a  matter  of 
querying  all  records  whose  “parent”  field 
contains the identifying number of the node of 
interest.

The problem comes when one wants to search 
all  the  linked  nodes  on  the  levels  below  a 
given node, an entire sub-tree.  In that case, 
it's  necessary first to retrieve all  of a node's 
children, then all of those children's children, 
and  so  on  recursively.   A single  complete 
search of this type might require thousands of 
individual read actions on the database, which 
is likely to take an unacceptably long time.

To  get  around  this  problem,  the  concept  of 
“nested  sets”  was  devised  in  the  early 
nineteen-nineties.   To use this  method, each 
node is assigned an “entry” integer and and 
“exit”  integer.   The  range of  these  numbers 
defines  the  set  of  integers  lying  between 
them.  Every descendant of a given node is 
assigned  entry  and  exit  numbers  which  lie 
within the range of the given node's set.  With 
these  parameters  defined  for  each  node, 
querying all descendants of a node is then a 
simple  matter  of  finding  all  nodes  whose 
entry  and exit  numbers  lie  within  the given 
node's defined range, which can be done with 
a single properly-crafted SQL statement.

This  approach  proves  impractical,  however, 
unless the tree structure is completely defined 
in advance and is expected not to change, or 
change very little; because adding a node to 
the  hierarchy  requires  recalculating  and 
rewriting some of the other nodes' entry and 
exit numbers.  In a worst case most or all of 
these  parameters  may  need  to  be  rewritten, 
and  the  performance cost  of  so  many  write 
actions  to  a  database  is  likely  to  be 
unacceptable.

One may hit upon the solution of using non-
consecutive integers in entry and exit integer 
numbering;  e.g.,  using  multiples  of  five. 
There would then be room to add up to three 
more  children  to  any  given  node  before 
forcing  the  need  for  a  recalculation  and 
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rewrite.  But this simply delays the reckoning.

Over  the  past  two  decades  a  number  of 
proposals  have been made to  generalize  the 
nested sets approach with more sophisticated 
means of generating entry and exit intervals, 
using  complex  parametrizing  equations. 
None  has  proved  workable  or  popular  in 
practice  for  a  number  of  reasons;  including 
insufficient  capacity  to  describe  very  large 
sets  of  nodes  within  available  precision  of 
integers storable in database table fields, and 
difficulty in expressing the necessary math in 
the form of SQL queries.

3. Solution Parameters

Existing solutions impose performance and/or 
capacity limitations on the size of hierarchies 
that  can  be  stored.   The  bottlenecks  they 
impose  may  have  been  considered 
manageable with the small  to  moderate-size 
datasets typical of the past, but they quickly 
become  unacceptable  when  trying  to  deal 
with contemporary data processing challenges 
involving very large dataset sizes.

Hardware and supporting software limitations 
will  always  make  it  impossible  to  store  or 
process  hierarchies  of  perfectly  unlimited 
size,  but  a  near-optimal  improved  method 
would impose minimal additional bottlenecks. 
The performance of the method would thus be 
close  to  the  performance  limitations  of  the 
underlying RDBMS itself.

An improved method would impose minimal 
performance penalties  on adding nodes  to  a 
tree  structure  that  will  inevitably  grow  and 
change  in  the  course  of  real-world  use.   It 
would also preferably be relatively simple to 
implement   and to  design  SQL queries  that 
put it into action.

The  solution  proposed  here,  in  addition  to 
approaching  the  above  goals,  has  the 
additional  advantages  of  not  requiring 
complex  schemas  or  extra  record-keeping 
tables,  and  of  employing  simple  integer 
parameters  that  can  be  indexed  in  a 
straightforward  fashion  using  well-known 
database management practices.

4. An Infinite Series for Generating 
Hierarchy Tags

To tag records in a database table as nodes in 
a  hierarchy,  I  employ  an  infinite  series 
specially crafted to converge very quickly; by 
assigning  a  term of  the  series  in  increasing 
order to each node descending down the tree, 
each branch of the hierarchy defines a unique 
partial series subset of the infinite series, and 
each  node  can  be  assigned  a  value 
representing the sum of terms of itself plus its 
ancestors in the partial series it belongs to.

Since  the  infinite  series  is  designed  to 
converge very quickly, the sums assigned to 
all nodes in a given branch of the tree can be 
guaranteed  to  fall  between  all  the  sums  of 
nodes  in  adjacent  branches.   The  quick 
convergence ensures that the limits of partial 
sums  of  the  series  can  be  strictly  ordered 
according to the size of the first term of the 
partial sum; that is, the sum of a partial series 
will never overlap any value of another series 
whose first  term's  sum is  greater,  no matter 
how  many  terms  are  added  to  the  initially 
lesser sum.

The  greatest  difficulty  in  designing  this 
method  was  finding  an  infinite  series  that 
converged  fast  enough  to  guarantee  non-
overlap of values in adjacent partial series.  At 
the  same  time  the  series  needed  not  to 
converge so fast that the precision of the sum 
parameter was exhausted before a sizable tree 



could be defined.  In the end I could not find a 
suitable simple series with a standard linear-
progressing index value.

Ultimately I had to design a double-indexed 
infinite  series  and  use  traits  of  the  nodes 
themselves  as  indexes  for  the  element 
function.  That is, one of the indexes of the 
series  is  the  depth  level  of  the  node  in  the 
hierarchy, and the other is the node's place in 
the  count  of  its  “siblings”  (nodes  with  the 
same parent).  

This approach ensures that available precision 
is doled out suitably depending on whether a 
child or a sibling is  being added to a given 
node,  always allowing for  appropriate  room 
for growth of the tree overall.  

As  far  as  I  am  aware,  incorporating  actual 
traits of the node as inputs into the interval-
generating function is an innovation unique in 
the field.

The equation, expressed in standard form, is 
shown in Equation 1:

     ∞       ∞

  ∑  ∑
   m=0    n=1

{m = 0             0
m >= n          0
m < n        1 /2 n−1∗ 3m−2 

Eq. 1

In  Equation  1,  the  index  m  represents  the 
node's level, and n represents the node's place 
in the sibling count.  (More precisely, n is an 
“inheritance count,” the first child of a node 
gets the node's n value plus one, so the count 
always  increases  as  children  and  additional 
descendents are added to the tree.)

Since  there  is  no  general  method  for 
calculating  the  limit  of  convergence  for  an 

infinite series with transcendental terms in the 
element  function,  the  conclusion  that 
Equation  1  will  always  converge  with 
sufficient speed is purely heuristic.  Extensive 
testing has shown this always to be the case in 
practice.

When  a  node  is  added  to  the  hierarchy, 
Equation 1 is used to calculate a term value 
for  the  node.   Neither  index  value  need  be 
globally unique, so the term value may not be 
either.  What is unique for the node is the sum 
of its term value together with the values of 
its ancestor nodes.  It is this sum that is stored 
in  the  database  record  as  a  numerical  tag 
uniquely descriptive of the node's place in the 
hierarchy.

A column of hierarchy tags so generated in a 
database  table  makes  searching  a  sub-tree 
quite simple.  An ancestor node's descendents 
are  identified  simply  as  nodes  whose  tag 
value is greater than the ancestor and less than 
the  ancestor's  nearest  older  sibling  (“older” 
meaning  having  a  smaller  inheritance  index 
number).  The SQL query to accomplish this 
is  simply  a  single-pass  search  for  numeric 
values that fall  within a  defined range.   No 
special  joins,  views  or  caches  need  be 
employed.  This is just about the fastest kind 
of  search a relational  database can perform, 
and of course the column of tag values can be 
indexed for maximum speed.

Adding nodes to an already-established tree is 
straightforward as well.  One simply needs to 
know the  level  of  the  parent  to  receive  the 
new  node  as  a  child,  and  the  inheritance 
number of the current youngest child of the 
parent.  Equation 1 automatically produces a 
value which, when added to the parent's node 
sum, produces a  new node sum that  can be 
written  directly  to  the  database  table  and is 
guaranteed  to  conform  to  the  existing 



hierarchy scheme.

5. Prototype

In order to test the capabilities of this method, 
I developed a prototype program using Tcl 8.5 
and the TclSQLite extension.3  Tcl and SQLite 
were good complimentary choices to form a 
platform  on  which  to  build  the  prototype. 
SQLite is both easy to use and fast, and can 
handle very large datasets.  SQLite also has 
the ability to store and process integer values 
of up to sixty-four bits in length -- that much 
available  precision  makes  it  possible  for 
numbers generated by the method to describe 
very  large  sets  of  nodes.   And  given  that 
calculation  of  numbers  of  such  bit  lengths 
made   extra-precision  mathematical 
calculations  necessary,  Tcl  8.5's  new feature 
supporting native bigints  in  the core proved 
very  useful,  both  directly  for  integer 
calculations and indirectly via its utilization in 
the tcllib::bigfloat package.

5.1 Implementation Example

Figure 1 illustrates a  small sample hierarchy 
showing  eight  numbered  nodes  along  with 
their level and inheritance number parameters 
in parentheses (m,n).

1. (0,1)
 2. (1,2)

3. (2,3)
4. (2,4)

5. (3,5)
6. (1,3)

7. (2,4)
8. (2,5)

Fig. 1: Sample hierarchy

The  process  of  preparing  this  hierarchy  for 
storage in a SQLite database table starts with 
feeding  each  node's  (m,n)  parameters  into 
Equation  1  to  produce  a  term  value  to 
associate  with  the  node.   The  term  values 
clearly need not be unique.

t(1)= 0
t(2)= 0.5
t(3)= 0.1407857163281744654
t(4)= 0.0906152944101931834
t(5)= 0.0255328320537928796
t(6)= 0.3752142272464817736
t(7)= 0.0906152944101931834
t(8)= 0.0625

Fig. 2: Term values

Each node's term value is then added to the 
term  values  of  its  ancestors;  e.g.,  node  5's 
value is  added to the  values  of  node 4 and 
node 2.   The result is a unique numerical tag 
for  each  node  which  is  unambiguously 
descriptive of its place in the hierarchy.  For 
example,  node 5 is  known to be  a  child  of 
node 4 because its node sum is greater than 
node  4's  but  less  than  node  3's.   Because 
Equation  1  converges  so  rapidly,  one  could 
create unlimited descendents in this way for 
node  5,  and  those  descendents'  node  sums 
would always be less than node 3's sum.

In  order  to  take  advantage  of  fast  integer 
processing,  the floating-point node sums are 
converted to integers by taking their fractional 
parts (with suitable precision-preserving zero-
padding)  and  storing  those  in  fields  of  a 
SQLite database table.

file:///home/blacksqr/FILTR/us.antipode/projects/tcl/nodes/


s(1)= 0
s(2)= 0.5
s(3)= 0.64078571632817447
s(4)= 0.59061529441019318
s(5)= 0.616148126463986
s(6)= 0.3752142272464817736
s(7)= 0.465829521656674957
s(8)= 0.43771422724648177

Fig. 3: Node sums

If then for example one wanted to retrieve all 
the descendents  of node 6,  one could use a 
simple SQL statement looking something like 
(sums truncated for clarity):

SELECT sum WHERE sum>3752 
AND sum<5000

Clearly  this  query  would  return  the  sums 
associated with nodes 7 and 8, as desired.

6. Handling Node Distribution 
Limitations

With sixty-four bits of precision to work with, 
this  method  can  easily  be  applied  to 
hierarchies  of  tens  of  millions  of  nodes.   It 
should be able to accommodate just about any 
data  tree  one  is  likely  to  come  across  in 
practice.

But the limited precision of integer storage in 
SQLite  tables  does  impose  some limitations 
in how nodes in a tree can be distributed.  For 
example, no more than thirty-seven levels of 
depth  can  be  described  using  this  method 
before  available  precision  runs  out.   In 
practice  one  is  unlikely  to  encounter  a  tree 
with more than thirty-seven levels.  But there 
may be  pathological  instances  where  this  is 
the case.  One would not wish to invest the 

time bringing this program into a real-world 
application only to  find out  in  the  midst  of 
importing  that  ones  dataset  could  not  be 
accommodated.   And  what  of  the  likely 
characteristics  of  the  datasets  of  the  next 
generation?

In order to eliminate inherent barriers to use 
of  the  prototype  program  for  arbitrary 
hierarchies,  I  added  a  feature  that  makes  it 
possible to encode and store any conceivable 
tree-structure dataset,  up to the performance 
limitations of the database itself.  

6.1 Overflow Precision Storage

SQLite  has  a  BLOB (Binary  Large  Object) 
datatype  which  allows  storage  of  arbitrary 
binary data.  In order to accommodate trees of 
theoretically any size or node distribution, the 
prototype  program  adds  a  field  to  its  table 
schema of the BLOB type, which is used to 
store  extra  precision  digits  in  the  form  of 
binary  data  where  necessary,  without 
limitation as to length.  

The Tcl code, when calculating the node sum 
for  a  new  child,  detects  whether  64-bit 
precision has been exhausted by checking if 
the  child's  node  sum  is  identical  to  the 
parent's.  If this is the case, a global precision 
parameter  is  increased and the  node sum is 
recalculated.  The sum is divided into a part 
which can be stored using 64 bits, and a part 
containing all excess digits.  The excess digits 
are  converted  into  hexadecimal  form  as 
SQLite prefers them and are written into the 
BLOB-format  field  at  the  same  time  the 
integer part is stored in the integer sum field 
as described above.

Thenceforth, search queries which potentially 
require  the  extra  precision to  give complete 
results are done with a slightly more complex 



SQL statement  that  incorporates  comparison 
of  the  BLOB fields  alongside  integer  value 
comparison of the sum fields.   SQLite does 
comparisons of BLOB fields via binary byte-
by-byte  comparisons  from the  beginning  of 
the field value to the end (analogous to Tcl's 
[string compare]  command  option). 
So  precision  of  a  calculated  sum  can  be 
extended  without  limit  by  appending  extra 
digits to a parent's overflow value stored in its 
BLOB field; and if use of overflow precision 
grows by multiple increments, binary values 
of  varying  lengths  can  be  meaningfully 
compared  just  as  varying  length  string 
comparisons are done.

I anticipate that in practice overflow precision 
storage will  be rarely needed and employed 
chiefly  in  pathological  situations,  so  impact 
on performance is expected to be minimal. 

6.2 Separating Branch and Leaf Nodes

In the great majority of tree datasets,  there 
will be many more leaf nodes (nodes with no 
children  of  their  own,  which  terminate  a 
branch) than branch nodes (which have one or 
more children).  For example, in a hierarchy 
in which each node is assigned eight children 
up to a limit of a million nodes, only 62,500 
branch nodes are required.

In  practice,  there  is  no  reason  to  expend 
available  precision  and  CPU  resources 
calculating  node sum values  for  leaf  nodes. 
For querying purposes, leaf nodes can share 
the node sums of their parent branch nodes, as 
long  as  there  is  some  established  means  of 
identifying the leaf nodes as such.

In the prototype program, a separate table is 
created for storage of leaf nodes solely.  This 
table defines fields for a unique node ID, the 
parent  node  sum,  and  the  parent  overflow 

BLOB value in case it's necessary.  

When a leaf is added to the tree, the node ID 
and parent sum information are written to a 
row  in  the  leaf  table.   If  a  leaf  node 
subsequently acquires a child of its own, Tcl 
code is first called to calculate a unique node 
sum of the leaf's own, and the node with its 
new sum is migrated to the branch table. Then 
the new child node is added to the leaf table 
complete  with  the  reference  to  the  newly-
created branch's node sum value.

By granting unique node sums only to branch 
nodes,  the  capacity  of  the  node  sum-
calculating method to describe and store large 
hierarchies is greatly increased.  Splitting the 
total data into two tables also helps keep table 
sizes  tractable,  deterring  the  onset  of  any 
database-related maximum table-size capacity 
issues.   It  also  helps  SQLite   maintain 
efficient  caching  and  indexing  states.   I 
believe  these  advantages  outweigh  the 
performance penalty of requiring two separate 
queries on the database to ensure a complete 
search of a given sub-tree.

7. Performance

In  truth  it  has  been  difficult  to  test  the 
maximum capacity of the prototype program. 
It handles queries on databases containing in 
the  tens  of  millions  of  nodes  with  little 
difficulty,  even though minimal performance 
tuning has been done.

By  way  of  comparison,  probably  the  most 
widely-used  tool  for  storing  and  querying 
large hierarchies is OpenLDAP, which in its 
most  common  implementations  utilizes  a 
Berkeley  DB  (BDB)  backend  for  storage. 
Discussion in online forums suggests that the 
maximum  capacity  limit  for  practical 
operation  of  an  OpenLDAP  server  with  a 



BDB  backend  (after  extensive  expert 
configuration tuning) is on the order of ten to 
fifteen million records.4

The chief performance difficulty is in initially 
populating  the  database  from  a  large  tree-
structure dataset given for input.  Calculating 
node sums and writing them to table rows can 
take hours for hierarchies containing millions 
of  nodes.   This  of  course  would  be 
impracticable  in  applications  requiring  close 
to  real-time  loading  of  data;  such  as,  for 
example,  reading and examining large XML 
files  in  an  XML editor.   In  such  cases  the 
performance  difficulties  could  be  partially 
overcome  by  pre-calculating  large  template 
hierarchies with node sums already included. 
A  suitable  template  hierarchy  could  be 
matched with an input  dataset and imported 
with it,  leaving custom calculations only for 
instances  where the node distribution of  the 
dataset  of  interest  does  not  fit  within  the 
template exactly.

8. Future Developments

The  prototype  program  was  successful  in 
demonstrating the basic validity of this novel 
method  for  encoding  hierarchies,  and  in 
producing evidence that the limitations of the 
method are bounded chiefly by the inherent 
limitations  of  the  underlying  tools  used  to 
construct the program rather than by newly-
introduced  bottlenecks.   Tcl  and  SQLite 
proved  very  useful  in  developing  the 
prototype.  

But  it  is  to  be  expected  that  the  next 
generation  of  computing  challenges  will 
present  even  larger  datasets  and  more 
complex  computing  environments,  and  I 
believe that it is in meeting future challenges 
that  this  new  method,  and  the  particular 
advantages  of  Tcl  and  SQLite,  will  prove 

exceptionally valuable.

8.1 Parallelization

The  prototype,  despite  its  early  state  of 
development  and  minimal  performance 
tuning,  already  performs  well  enough  to 
handle very large hierarchical datasets which 
are typically handled only with difficulty by 
existing solutions.  As the next generation of 
larger  datasets  arrive,  I  believe  it  will  be 
possible  to  expand  the  capacity  of  the 
prototype greatly by introducing the ability to 
execute queries in parallel.

A strong advantage of the method described 
above is that partitioning a tree by node sum 
ranges without foreknowledge of the structure 
of  the tree is  a conceptually  straightforward 
task.  Thus SQL statements could be designed 
in advance to search sub-sections of the tree.

SQLite has no built-in client-server or parallel 
query-processing features.  But it does make 
use of shared memory on operating systems 
that  offer  it  for  loading  tables  into  RAM.. 
Thus  multiple  independent  processes  or 
threads that attempt to open a single database 
are  all  accessing a single in-memory set  of 
tables.

With  that  feature  in  mind,  SQLite's  lack  of 
multi-processing  features  can  be  well-
compensated by Tcl's advanced event looping, 
socket  networking   and  threading  features. 
These features would be well  put to use by 
expanding the prototype to include the ability 
to  execute  separate  sub-queries  in 
independent  processes  or  threads,  and 
collecting results via event loop polling.

As growing dataset sizes  push the limits of a 
computer's  ability  to  host  a  single  database 
containing an entire  hierarchy,  the ability  to 
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partition  trees  and  index  the  partitions  by 
node sum also makes the concept of calving 
off  sub-trees  into  separate  tables  appealing. 
These  tables  could  be  moved  to  separate 
computers,  thus  efficiently  sharding  that 
database.  Tcl's networking features could be 
used to distribute and collate queries and their 
results across a cluster.

The  rapid  development  of  multi-core 
processors  and  clustering  technology  in  the 
commodity computer market  suggest almost 
unlimited  scalability  in  application  of  this 
method to hierarchical search.

8.2 Disconnected Hierarchies

Related to the ability to partition a tree into 
sub-trees is the ability of the method to add 
nodes to a parent without global information 
about  the  tree:  only  the  traits  of  the  parent 
node itself are required to calculate values for 
child node values (namely parent node sum, 
level and inheritance number).  Thus if a sub-
tree is moved to a separate computer, it can be 
updated  and  grown  independently,  without 
loss of ability to coordinate, or even re-merge, 
with  the  original  tree.   This  ability 
distinguishes  the  method  from  most 
competing approaches for handling large-size 
hierarchies.

This  feature is  potentially  useful  for  scaling 
and  sharding  databases  for  a  single  server 
application.   But  it  also  makes  possible  the 
concept  of  distributed  filesystems or  similar 
hierarchical  information  systems.   In  short, 
node sums calculated via  this  method could 
be  used  as  universally  valid  hierarchical 
position identifiers (UHI:// ?).

Whereas in the Internet Protocol the concept 
of  hierarchy  is  imposed  arbitrarily  on  an 
undifferentiated  32-bit  range  of  numbers, 

node  sums  used  for  network  host 
identification  would  be  meaningful  within 
themselves,  and thus  potentially  make  tasks 
like  routing  as  well  as  searching  more 
efficient  (at  the  cost  of  maximum  node 
capacity in a given number space).

The version control system git is a conceptual 
example of a tool that organizes project files 
into hierarchies, and lets individuals check out 
subsections  of  the  main  project  for 
disconnected  development,  with  changes  re-
merged to the main project later.  If one were 
to imagine a future iteration of the git concept 
which  managed  thousands  or  millions  of 
entities  in  a  project  (rather  than  the  now-
typical few dozen files), assigning node sums 
to each entity would be a useful way to ensure 
consistent  classification  and  search 
capabilities  throughout  the  development 
cycle.

Various other tools for sharing information in 
discontiguous  and  dispersed  usage  patterns 
continue  to  appear  and  evolve  into 
widespread use, from the old (e.g. Usenet) to 
the new (BitTorrent).

Advances in mobile computing and the spread 
of computer networks into the less-developed 
parts of the world have spurred interest in ad 
hoc and disconnected networking.

These  and  many  other  use  cases  could 
conceivably benefit from a globally valid yet 
locally  editable  hierarchy  tagging  protocol. 
The  great  diversity  of  environments  and 
platforms  encompassed  by  these  use  cases 
make the portability, compactness and power 
of the combination of Tcl and SQLite highly 
attractive  for  future  development  of 
applications which make use of this method.
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