
A Novel Method for Representing Hierarchies in a Relational
Database Using Bignums and SQLite

Stephen Huntley
stephen.huntley@alum.mit.edu

Abstract

I introduce a method of using a rapidly-converging infinite series to generate integer
values which, when stored in relational database table rows, act as tags allowing each
row to be interpreted and queried as a node in a hierarchy. To overcome integer
precision limitations, I use Tcl 8.5's Bignum feature and tcllib's math::bigfloat package. I
use SQLite's ability to store arbitrary binary data in its BLOB data type to manage
overflow precision digits. The resulting code provides a fast and efficient way to store
and query tree-structure data of theoretically unlimited size.

1. Introduction

It is natural for beginners as well as for
experienced computer programmers to wish
to organize and store information in the form
of hierarchies, or tree structures. The
filesystem on every modern computer is the
most straightforward and ubiquitous example.
Most users grasp and appreciate the utility of
hierarchical file storage immediately.

Power users are also generally familiar with
the frustration of trying to find particular files
or file types in a directory structure, only to
be faced with long waits as the computer
grinds through a recursive search of the
directory space.

The tree-structure data type is widely used for
a variety of computer data-processing tasks
beyond file storage. LDAP, OLAP, XML, 3D
scene graphs, and network spanning trees are

a few examples of technologies which
organize data into hierarchies. The sizes of
the datasets utilized by means of these
technologies have typically grown
enormously over the past several years, a
trend consistent with datasets of nearly every
type. What has not grown is the efficiency of
algorithms used to query and retrieve
information in these datasets. The approach
still used in the overwhelming majority of
cases is recursive search. Recursive search is
a viable method for querying small to
medium-sized datasets, but the technique does
not scale, and performance of such searches
on very large databases is becoming
unacceptable even on the most advanced
hardware.

This paper introduces a new method for
parametrizing, storing and searching
hierarchical information that eliminates the
need for recursive approaches for the most

common search query types applied to trees.
I also present details of a prototype executed
with the help of advantageous features of Tcl
8.5 and the relational database extension
TclSQLite.

Certain techniques described in this paper are
covered by US patent #7,769,781, granted to
the author.1

2. Hierarchies and Relational
Databases

Although the method herein described is
generally applicable to any linear or tabular
data storage method, this presentation and the
prototype focus on application to the problem
of storing tree-structure data in a relational
database.

The conundrum of storage and querying of
tree-structure data in RDBMS programs has
been a topic of persistent interest for many
years.2 The relational database is, generally
speaking, the most powerful and flexible tool
available to the mainstream programmer for
dealing with large datasets. The presumed
advantages of using a SQL-powered RDB
package in this field have seemed self-evident
for decades, but implementation issues have
bedeviled almost everyone who has tried it for
sizable datasets.

The obvious approach is simply to assign a
unique number to each record in a database
table that represents a node in the hierarchy,
and define a “parent” field in the table schema
to contain the unique number of the node
linked one level up in the hierarchy from the
node represented by the record. Thus finding
a node's “children” is simply a matter of
querying all records whose “parent” field
contains the identifying number of the node of
interest.

The problem comes when one wants to search
all the linked nodes on the levels below a
given node, an entire sub-tree. In that case,
it's necessary first to retrieve all of a node's
children, then all of those children's children,
and so on recursively. A single complete
search of this type might require thousands of
individual read actions on the database, which
is likely to take an unacceptably long time.

To get around this problem, the concept of
“nested sets” was devised in the early
nineteen-nineties. To use this method, each
node is assigned an “entry” integer and and
“exit” integer. The range of these numbers
defines the set of integers lying between
them. Every descendant of a given node is
assigned entry and exit numbers which lie
within the range of the given node's set. With
these parameters defined for each node,
querying all descendants of a node is then a
simple matter of finding all nodes whose
entry and exit numbers lie within the given
node's defined range, which can be done with
a single properly-crafted SQL statement.

This approach proves impractical, however,
unless the tree structure is completely defined
in advance and is expected not to change, or
change very little; because adding a node to
the hierarchy requires recalculating and
rewriting some of the other nodes' entry and
exit numbers. In a worst case most or all of
these parameters may need to be rewritten,
and the performance cost of so many write
actions to a database is likely to be
unacceptable.

One may hit upon the solution of using non-
consecutive integers in entry and exit integer
numbering; e.g., using multiples of five.
There would then be room to add up to three
more children to any given node before
forcing the need for a recalculation and

file:///home/blacksqr/FILTR/us.antipode/projects/tcl/nodes/
file:///home/blacksqr/FILTR/us.antipode/projects/tcl/nodes/

rewrite. But this simply delays the reckoning.

Over the past two decades a number of
proposals have been made to generalize the
nested sets approach with more sophisticated
means of generating entry and exit intervals,
using complex parametrizing equations.
None has proved workable or popular in
practice for a number of reasons; including
insufficient capacity to describe very large
sets of nodes within available precision of
integers storable in database table fields, and
difficulty in expressing the necessary math in
the form of SQL queries.

3. Solution Parameters

Existing solutions impose performance and/or
capacity limitations on the size of hierarchies
that can be stored. The bottlenecks they
impose may have been considered
manageable with the small to moderate-size
datasets typical of the past, but they quickly
become unacceptable when trying to deal
with contemporary data processing challenges
involving very large dataset sizes.

Hardware and supporting software limitations
will always make it impossible to store or
process hierarchies of perfectly unlimited
size, but a near-optimal improved method
would impose minimal additional bottlenecks.
The performance of the method would thus be
close to the performance limitations of the
underlying RDBMS itself.

An improved method would impose minimal
performance penalties on adding nodes to a
tree structure that will inevitably grow and
change in the course of real-world use. It
would also preferably be relatively simple to
implement and to design SQL queries that
put it into action.

The solution proposed here, in addition to
approaching the above goals, has the
additional advantages of not requiring
complex schemas or extra record-keeping
tables, and of employing simple integer
parameters that can be indexed in a
straightforward fashion using well-known
database management practices.

4. An Infinite Series for Generating
Hierarchy Tags

To tag records in a database table as nodes in
a hierarchy, I employ an infinite series
specially crafted to converge very quickly; by
assigning a term of the series in increasing
order to each node descending down the tree,
each branch of the hierarchy defines a unique
partial series subset of the infinite series, and
each node can be assigned a value
representing the sum of terms of itself plus its
ancestors in the partial series it belongs to.

Since the infinite series is designed to
converge very quickly, the sums assigned to
all nodes in a given branch of the tree can be
guaranteed to fall between all the sums of
nodes in adjacent branches. The quick
convergence ensures that the limits of partial
sums of the series can be strictly ordered
according to the size of the first term of the
partial sum; that is, the sum of a partial series
will never overlap any value of another series
whose first term's sum is greater, no matter
how many terms are added to the initially
lesser sum.

The greatest difficulty in designing this
method was finding an infinite series that
converged fast enough to guarantee non-
overlap of values in adjacent partial series. At
the same time the series needed not to
converge so fast that the precision of the sum
parameter was exhausted before a sizable tree

could be defined. In the end I could not find a
suitable simple series with a standard linear-
progressing index value.

Ultimately I had to design a double-indexed
infinite series and use traits of the nodes
themselves as indexes for the element
function. That is, one of the indexes of the
series is the depth level of the node in the
hierarchy, and the other is the node's place in
the count of its “siblings” (nodes with the
same parent).

This approach ensures that available precision
is doled out suitably depending on whether a
child or a sibling is being added to a given
node, always allowing for appropriate room
for growth of the tree overall.

As far as I am aware, incorporating actual
traits of the node as inputs into the interval-
generating function is an innovation unique in
the field.

The equation, expressed in standard form, is
shown in Equation 1:

 ∞ ∞

 ∑ ∑
 m=0 n=1

{m = 0 0
m >= n 0
m < n 1 /2 n−1∗ 3m−2 

Eq. 1

In Equation 1, the index m represents the
node's level, and n represents the node's place
in the sibling count. (More precisely, n is an
“inheritance count,” the first child of a node
gets the node's n value plus one, so the count
always increases as children and additional
descendents are added to the tree.)

Since there is no general method for
calculating the limit of convergence for an

infinite series with transcendental terms in the
element function, the conclusion that
Equation 1 will always converge with
sufficient speed is purely heuristic. Extensive
testing has shown this always to be the case in
practice.

When a node is added to the hierarchy,
Equation 1 is used to calculate a term value
for the node. Neither index value need be
globally unique, so the term value may not be
either. What is unique for the node is the sum
of its term value together with the values of
its ancestor nodes. It is this sum that is stored
in the database record as a numerical tag
uniquely descriptive of the node's place in the
hierarchy.

A column of hierarchy tags so generated in a
database table makes searching a sub-tree
quite simple. An ancestor node's descendents
are identified simply as nodes whose tag
value is greater than the ancestor and less than
the ancestor's nearest older sibling (“older”
meaning having a smaller inheritance index
number). The SQL query to accomplish this
is simply a single-pass search for numeric
values that fall within a defined range. No
special joins, views or caches need be
employed. This is just about the fastest kind
of search a relational database can perform,
and of course the column of tag values can be
indexed for maximum speed.

Adding nodes to an already-established tree is
straightforward as well. One simply needs to
know the level of the parent to receive the
new node as a child, and the inheritance
number of the current youngest child of the
parent. Equation 1 automatically produces a
value which, when added to the parent's node
sum, produces a new node sum that can be
written directly to the database table and is
guaranteed to conform to the existing

hierarchy scheme.

5. Prototype

In order to test the capabilities of this method,
I developed a prototype program using Tcl 8.5
and the TclSQLite extension.3 Tcl and SQLite
were good complimentary choices to form a
platform on which to build the prototype.
SQLite is both easy to use and fast, and can
handle very large datasets. SQLite also has
the ability to store and process integer values
of up to sixty-four bits in length -- that much
available precision makes it possible for
numbers generated by the method to describe
very large sets of nodes. And given that
calculation of numbers of such bit lengths
made extra-precision mathematical
calculations necessary, Tcl 8.5's new feature
supporting native bigints in the core proved
very useful, both directly for integer
calculations and indirectly via its utilization in
the tcllib::bigfloat package.

5.1 Implementation Example

Figure 1 illustrates a small sample hierarchy
showing eight numbered nodes along with
their level and inheritance number parameters
in parentheses (m,n).

1. (0,1)
 2. (1,2)

3. (2,3)
4. (2,4)

5. (3,5)
6. (1,3)

7. (2,4)
8. (2,5)

Fig. 1: Sample hierarchy

The process of preparing this hierarchy for
storage in a SQLite database table starts with
feeding each node's (m,n) parameters into
Equation 1 to produce a term value to
associate with the node. The term values
clearly need not be unique.

t(1)= 0
t(2)= 0.5
t(3)= 0.1407857163281744654
t(4)= 0.0906152944101931834
t(5)= 0.0255328320537928796
t(6)= 0.3752142272464817736
t(7)= 0.0906152944101931834
t(8)= 0.0625

Fig. 2: Term values

Each node's term value is then added to the
term values of its ancestors; e.g., node 5's
value is added to the values of node 4 and
node 2. The result is a unique numerical tag
for each node which is unambiguously
descriptive of its place in the hierarchy. For
example, node 5 is known to be a child of
node 4 because its node sum is greater than
node 4's but less than node 3's. Because
Equation 1 converges so rapidly, one could
create unlimited descendents in this way for
node 5, and those descendents' node sums
would always be less than node 3's sum.

In order to take advantage of fast integer
processing, the floating-point node sums are
converted to integers by taking their fractional
parts (with suitable precision-preserving zero-
padding) and storing those in fields of a
SQLite database table.

file:///home/blacksqr/FILTR/us.antipode/projects/tcl/nodes/

s(1)= 0
s(2)= 0.5
s(3)= 0.64078571632817447
s(4)= 0.59061529441019318
s(5)= 0.616148126463986
s(6)= 0.3752142272464817736
s(7)= 0.465829521656674957
s(8)= 0.43771422724648177

Fig. 3: Node sums

If then for example one wanted to retrieve all
the descendents of node 6, one could use a
simple SQL statement looking something like
(sums truncated for clarity):

SELECT sum WHERE sum>3752
AND sum<5000

Clearly this query would return the sums
associated with nodes 7 and 8, as desired.

6. Handling Node Distribution
Limitations

With sixty-four bits of precision to work with,
this method can easily be applied to
hierarchies of tens of millions of nodes. It
should be able to accommodate just about any
data tree one is likely to come across in
practice.

But the limited precision of integer storage in
SQLite tables does impose some limitations
in how nodes in a tree can be distributed. For
example, no more than thirty-seven levels of
depth can be described using this method
before available precision runs out. In
practice one is unlikely to encounter a tree
with more than thirty-seven levels. But there
may be pathological instances where this is
the case. One would not wish to invest the

time bringing this program into a real-world
application only to find out in the midst of
importing that ones dataset could not be
accommodated. And what of the likely
characteristics of the datasets of the next
generation?

In order to eliminate inherent barriers to use
of the prototype program for arbitrary
hierarchies, I added a feature that makes it
possible to encode and store any conceivable
tree-structure dataset, up to the performance
limitations of the database itself.

6.1 Overflow Precision Storage

SQLite has a BLOB (Binary Large Object)
datatype which allows storage of arbitrary
binary data. In order to accommodate trees of
theoretically any size or node distribution, the
prototype program adds a field to its table
schema of the BLOB type, which is used to
store extra precision digits in the form of
binary data where necessary, without
limitation as to length.

The Tcl code, when calculating the node sum
for a new child, detects whether 64-bit
precision has been exhausted by checking if
the child's node sum is identical to the
parent's. If this is the case, a global precision
parameter is increased and the node sum is
recalculated. The sum is divided into a part
which can be stored using 64 bits, and a part
containing all excess digits. The excess digits
are converted into hexadecimal form as
SQLite prefers them and are written into the
BLOB-format field at the same time the
integer part is stored in the integer sum field
as described above.

Thenceforth, search queries which potentially
require the extra precision to give complete
results are done with a slightly more complex

SQL statement that incorporates comparison
of the BLOB fields alongside integer value
comparison of the sum fields. SQLite does
comparisons of BLOB fields via binary byte-
by-byte comparisons from the beginning of
the field value to the end (analogous to Tcl's
[string compare] command option).
So precision of a calculated sum can be
extended without limit by appending extra
digits to a parent's overflow value stored in its
BLOB field; and if use of overflow precision
grows by multiple increments, binary values
of varying lengths can be meaningfully
compared just as varying length string
comparisons are done.

I anticipate that in practice overflow precision
storage will be rarely needed and employed
chiefly in pathological situations, so impact
on performance is expected to be minimal.

6.2 Separating Branch and Leaf Nodes

In the great majority of tree datasets, there
will be many more leaf nodes (nodes with no
children of their own, which terminate a
branch) than branch nodes (which have one or
more children). For example, in a hierarchy
in which each node is assigned eight children
up to a limit of a million nodes, only 62,500
branch nodes are required.

In practice, there is no reason to expend
available precision and CPU resources
calculating node sum values for leaf nodes.
For querying purposes, leaf nodes can share
the node sums of their parent branch nodes, as
long as there is some established means of
identifying the leaf nodes as such.

In the prototype program, a separate table is
created for storage of leaf nodes solely. This
table defines fields for a unique node ID, the
parent node sum, and the parent overflow

BLOB value in case it's necessary.

When a leaf is added to the tree, the node ID
and parent sum information are written to a
row in the leaf table. If a leaf node
subsequently acquires a child of its own, Tcl
code is first called to calculate a unique node
sum of the leaf's own, and the node with its
new sum is migrated to the branch table. Then
the new child node is added to the leaf table
complete with the reference to the newly-
created branch's node sum value.

By granting unique node sums only to branch
nodes, the capacity of the node sum-
calculating method to describe and store large
hierarchies is greatly increased. Splitting the
total data into two tables also helps keep table
sizes tractable, deterring the onset of any
database-related maximum table-size capacity
issues. It also helps SQLite maintain
efficient caching and indexing states. I
believe these advantages outweigh the
performance penalty of requiring two separate
queries on the database to ensure a complete
search of a given sub-tree.

7. Performance

In truth it has been difficult to test the
maximum capacity of the prototype program.
It handles queries on databases containing in
the tens of millions of nodes with little
difficulty, even though minimal performance
tuning has been done.

By way of comparison, probably the most
widely-used tool for storing and querying
large hierarchies is OpenLDAP, which in its
most common implementations utilizes a
Berkeley DB (BDB) backend for storage.
Discussion in online forums suggests that the
maximum capacity limit for practical
operation of an OpenLDAP server with a

BDB backend (after extensive expert
configuration tuning) is on the order of ten to
fifteen million records.4

The chief performance difficulty is in initially
populating the database from a large tree-
structure dataset given for input. Calculating
node sums and writing them to table rows can
take hours for hierarchies containing millions
of nodes. This of course would be
impracticable in applications requiring close
to real-time loading of data; such as, for
example, reading and examining large XML
files in an XML editor. In such cases the
performance difficulties could be partially
overcome by pre-calculating large template
hierarchies with node sums already included.
A suitable template hierarchy could be
matched with an input dataset and imported
with it, leaving custom calculations only for
instances where the node distribution of the
dataset of interest does not fit within the
template exactly.

8. Future Developments

The prototype program was successful in
demonstrating the basic validity of this novel
method for encoding hierarchies, and in
producing evidence that the limitations of the
method are bounded chiefly by the inherent
limitations of the underlying tools used to
construct the program rather than by newly-
introduced bottlenecks. Tcl and SQLite
proved very useful in developing the
prototype.

But it is to be expected that the next
generation of computing challenges will
present even larger datasets and more
complex computing environments, and I
believe that it is in meeting future challenges
that this new method, and the particular
advantages of Tcl and SQLite, will prove

exceptionally valuable.

8.1 Parallelization

The prototype, despite its early state of
development and minimal performance
tuning, already performs well enough to
handle very large hierarchical datasets which
are typically handled only with difficulty by
existing solutions. As the next generation of
larger datasets arrive, I believe it will be
possible to expand the capacity of the
prototype greatly by introducing the ability to
execute queries in parallel.

A strong advantage of the method described
above is that partitioning a tree by node sum
ranges without foreknowledge of the structure
of the tree is a conceptually straightforward
task. Thus SQL statements could be designed
in advance to search sub-sections of the tree.

SQLite has no built-in client-server or parallel
query-processing features. But it does make
use of shared memory on operating systems
that offer it for loading tables into RAM..
Thus multiple independent processes or
threads that attempt to open a single database
are all accessing a single in-memory set of
tables.

With that feature in mind, SQLite's lack of
multi-processing features can be well-
compensated by Tcl's advanced event looping,
socket networking and threading features.
These features would be well put to use by
expanding the prototype to include the ability
to execute separate sub-queries in
independent processes or threads, and
collecting results via event loop polling.

As growing dataset sizes push the limits of a
computer's ability to host a single database
containing an entire hierarchy, the ability to

file:///home/blacksqr/FILTR/us.antipode/projects/tcl/nodes/

partition trees and index the partitions by
node sum also makes the concept of calving
off sub-trees into separate tables appealing.
These tables could be moved to separate
computers, thus efficiently sharding that
database. Tcl's networking features could be
used to distribute and collate queries and their
results across a cluster.

The rapid development of multi-core
processors and clustering technology in the
commodity computer market suggest almost
unlimited scalability in application of this
method to hierarchical search.

8.2 Disconnected Hierarchies

Related to the ability to partition a tree into
sub-trees is the ability of the method to add
nodes to a parent without global information
about the tree: only the traits of the parent
node itself are required to calculate values for
child node values (namely parent node sum,
level and inheritance number). Thus if a sub-
tree is moved to a separate computer, it can be
updated and grown independently, without
loss of ability to coordinate, or even re-merge,
with the original tree. This ability
distinguishes the method from most
competing approaches for handling large-size
hierarchies.

This feature is potentially useful for scaling
and sharding databases for a single server
application. But it also makes possible the
concept of distributed filesystems or similar
hierarchical information systems. In short,
node sums calculated via this method could
be used as universally valid hierarchical
position identifiers (UHI:// ?).

Whereas in the Internet Protocol the concept
of hierarchy is imposed arbitrarily on an
undifferentiated 32-bit range of numbers,

node sums used for network host
identification would be meaningful within
themselves, and thus potentially make tasks
like routing as well as searching more
efficient (at the cost of maximum node
capacity in a given number space).

The version control system git is a conceptual
example of a tool that organizes project files
into hierarchies, and lets individuals check out
subsections of the main project for
disconnected development, with changes re-
merged to the main project later. If one were
to imagine a future iteration of the git concept
which managed thousands or millions of
entities in a project (rather than the now-
typical few dozen files), assigning node sums
to each entity would be a useful way to ensure
consistent classification and search
capabilities throughout the development
cycle.

Various other tools for sharing information in
discontiguous and dispersed usage patterns
continue to appear and evolve into
widespread use, from the old (e.g. Usenet) to
the new (BitTorrent).

Advances in mobile computing and the spread
of computer networks into the less-developed
parts of the world have spurred interest in ad
hoc and disconnected networking.

These and many other use cases could
conceivably benefit from a globally valid yet
locally editable hierarchy tagging protocol.
The great diversity of environments and
platforms encompassed by these use cases
make the portability, compactness and power
of the combination of Tcl and SQLite highly
attractive for future development of
applications which make use of this method.

References

[1] Huntley, S. “Method for labeling data stored in
sequential data structures with parameters which
describe position in a hierarchy.” US Patent
7,769,781, issued August 3, 2010.

[2] A comprehensive treatment of the state of the art
can be found in: Celko, J. Joe Celko's Trees and
Hierarchies in SQL for Smarties, Morgan-
Kaufmann. San Francisco, CA, USA, 2004.

[3] TclSQLite - http://www.sqlite.org/tclsqlite.html

[4] See for example: http://www.openldap.org/lists/
openldapsoftware/200611/msg00051.html

