
An Overview of the Next Scripting
Toolkit
Gustaf Neumann and Stefan Sobernig

{firstname.lastname}@wu.ac.at

Tcl/Tk 2011 Conference, October 2011

Abstract
This paper introduces the Next Scripting Framework (NSF) and the Next Scripting
Language (NX). The paper presents features such as the definition of object systems,
parametric objects, initialization and interfacing to object states, creating object be-
havior, and designing object interfaces and interactions. Along the way, we review
some syntactic additions and developer support tools for developing NSF/NX pro-
grams. Our goal is to provide a comprehensive overview of the NSF/NX features, in-
cluding hands-on code examples, by comparing NX to its next relative XOTcl.

A Toolkit for Developing A Family of OO Languages
The Next Scripting Framework (NSF) and the object system NX have been developed
between 2008 and 2011 at the Institute for Information Systems and New Media of
the Vienna University of Business and Economics. These systems continue a research
line and a development effort, starting in the late 90s, to develop better language
support for adopting OO Design Patterns, for managing program variability by first-
class abstractions (e.g., aspect and feature modularization), and for creating different
object-oriented languages in Tcl, as well as special-purpose application languages;
e.g., embedded, textual DSLs [15]. As the first code artifact, XOTcl was presented in
2000 [4] and introduced novel language constructs: filters, as well as per-object, per-
class, and transitive mixin classes [7]. XOTcl heavily influenced the design of TclOO
[5], which is in many respects a simplified and streamlined descendant of XOTcl.

The Next Scripting Framework (NSF) generalizes many ideas of XOTcl. NSF allows
for fully scripted definitions of object systems, while preserving (and even improving)
the performance properties of C-based implementations. For example, the scripted
NSF implementation of XOTcl 2.0 is significantly faster than the C-based XOTcl 1.6
implementation [3].

NSF lets the Tcl programmer create several object systems in a single interpreter. Ob-
ject systems are initially created without any predefined behavior (methods), granti-
ng the object system designer (Tcl developer) the full freedom of defining and naming
method interfaces. With scriptable object systems and new composition techniques
(e.g., method aliasing), NSF adds to Tcl’s support for language-oriented program-
ming [8].

While XOTcl 2.0 is designed for backward compatibility with XOTcl 1.* scripts, the
Next Scripting Language (NX) is the result of an extensive re-design and perfective
refactoring of XOTcl. This further development builds on the experience of several
large-scale development projects (i.e., several hundred thousand lines of Tcl/XOTcl
code, 10+ developers, etc.). The NX language is designed to ease language learning
by novices (e.g., by using "mainstream" terminology, higher orthogonality of method
interfaces, smaller core interfaces), to improve maintainability (e.g., preventing com-
mon errors) and to encourage developers to create better structured programs. Pro-
viding different types of interface abstraction, code evolution and collaborative devel-
opment between several developers are facilitated.

The remainder of this paper expands on key features of the NSF/NX programming
toolkit. In this feature presentation, we want to stress the advancements achieved
since our Tcl’09 paper [3]. First, we introduce some basics of the object system model
(in particular, entity and relationship types) underlying any NSF-based language. In
a subsequent step, we guide through the major contributions: Concrete syntax en-
hancements (scripted init-blocks, prefixes for instance variables and methods), new
language abstractions (method ensembles, method aliases, properties), and added
language expressiveness (object parametrization, parameter types). We also sketch
out the developer support provided by the NSF/NX toolkit, including DTrace integra-
tion and a memory debugging facility, generator support for developing Tcl/C APIs
and extension libraries, a functional testing environment (nx::test), and a documen-
tation generator (nxdoc). We conclude by reporting performance data collected for
the NSF/NX language runtime.

Scripted Definition of Object Systems
NSF offers a low-level API providing a small set of primitive commands to define
the behavior of tailored object systems. An object system is formed from a subset of
the (extensible) base features with free naming support. The notion of object systems
stresses objects as the first-class entities. Objects can be related differently, including
meta-class/class, class/instance, mixin, and composition relations [4]. For managing
object states, APIs of different expressiveness and complexity (primitive setter/getter
commands, accessor/mutator methods, slots) can be adopted. For defining object be-
havior, methods can be defined for various scopes (e.g., object, class, mixin) and ad-

vanced forms of implementation reuse (e.g., method aliasing of Tcl procs and Tcl/C
commands) are available in addition to forwarders. Method properties such as rede-
finition and call protection can be specified. Parametric objects and methods can be
realized using a unified parametrization infrastructure, equipped with non-positional
and positional parameters and parameter type annotations.

Once defined, multiple object systems can coexist in a single Tcl interpreter, the ob-
ject systems can be used interleaved in a script. For example, NX is provided as a
purely scripted Tcl package (loadable via "package require") in the same way as the
backward-compatible XOTcl 2.0 object system.

The Next Scripting Framework (NSF) provides a set of about 30 language-program-
ming primitives in the nsf namespace. The primitive
nsf::objectsystem::create allows for declaring a pair of root objects for an
NSF object system: a root class (first argument) and a root meta-class (second argu-
ment).

Listing 1: A minimal NSF Object System

Create an object system with the base classes named "myObject" and
"myClass"
nsf::objectsystem::create myObject myClass

Bind a pre-existing method for creating objects from the methods
pool in "nsf::methods" as "+" to "myClass". After this method is
registered, every class/meta-class of this object system can use "+"
to create objects or classes.
nsf::method::alias myClass + nsf::methods::class::create

Bind a pre-existing method for deleting objects from the methods
pool in "nsf::methods" as "-" to "myObject". Once this method is
defined, every object of this object system can be deleted using
"-".
nsf::method::alias myObject - nsf::methods::object::destroy

Create an application class using the method "+":
myClass + C

Create an instance of the application class:
C + c1

Delete the instance using the method "-":
c1 -

As can be seen from Listing 1, the names of the base classes (myObject and
myClass) are provided to the command nsf::objectsystem::create as the
first two arguments. The root objects determine elementary relationship types be-
tween the objects living in a given object system and describe common behavior for
all objects. The creation command for the object system covers several tasks: To be-
gin with, the memory stores for the root objects are created. Once allocated and reg-

istered as Tcl commands, the root objects are put into elementary relations to each
other (e.g., instance-of and superclass/subclass relations; see below). Finally, the es-
sentially behavior-less root objects (i.e., their empty method records) can be populat-
ed with behavior by the language designer.

Figure 2. The NX Object System

While the bare root objects do not carry any predefined or built-in methods accessible
at the script level, the NSF engine requires the root objects to support basic lifecycle
operations (e.g., object creation, deletion, recreation etc.). These methods might not
only be called in the script, but also from within the NSF engine. For these cases, one
can optionally bind methods to the system callbacks during the definition of the ob-
ject system (not shown above). In this sense, the root objects implement interfaces
required by the NSF engine (see RootMetaClass and RootClass in Figure 2).

When implementing these two required interfaces, the language designer has con-
siderable degrees of freedom: First, one can choose custom names (selectors) for
the system methods. Second, one can bind either predefined or custom method
implementations to these selectors. Third, upon declaring the object system by

nsf::objectsystem::create, one can define custom default bindings for the
system methods without exposing them as accessible methods.

nsf::objectsystem::create myObject myClass
nsf::method::alias myClass + ::nsf::methods::class::create
nsf::method::alias myObject - ::nsf::methods::object::destroy

nsf::is class myObject ; # --> 1
nsf::is metaclass myObject ; # --> 0

nsf::is class myClass ; # --> 1
nsf::is metaclass myClass ; # --> 1

nsf::relation myObject class ;# --> ::myClass
nsf::relation myObject superclass ;# -->

nsf::relation myClass class ;# --> ::myClass
nsf::relation myClass superclass ;# --> ::myObject

The creation of an object system establishes characteristic and mutual ties between
the root meta-class myClass and the root class myObject. Most importantly, myOb-
ject is defined as an instance of myClass (the class of myObject is myClass),
and myClass is a subclass of myObject (the superclass of myClass is myObject).
Therefore, every class is an object and inherits the general object behavior.

This relational triad between root meta-class and root class underlies any NSF object
system and is automatically established by nsf::objectsystem::create. A lan-
guage designer can obtain the same relational setting by declaring the relations ex-
plicitly, using the NSF primitive nsf::relation.

Listing 3: System Methods Specification for the NX Object System

namespace eval ::nx {

nsf::objectsystem::create ::nx::Object ::nx::Class {
-class.alloc {alloc ::nsf::methods::class::alloc}
-class.create create
-class.dealloc {dealloc ::nsf::methods::class::dealloc}
-class.objectparameter objectparameter
-class.recreate {recreate ::nsf::methods::class::recreate}
-object.configure configure
-object.defaultmethod {defaultmethod ::nsf::methods::object::defaultmethod}
-object.destroy destroy
-object.init {init ::nsf::methods::object::init}
-object.move move
-object.unknown unknown

}

}

Scripted Init-Blocks - Defining Objects Block-wise

NSF defines a set of about 30 primitive commands in the ::nsf namespace for fur-
ther defining the object system. For application developers, however, the necessary
functionality offered by the NSF primitive commands is exposed by the object system
(e.g., the info method for introspection) directly.

The NX object system (see Figure 2) is entirely defined using these language-pro-
gramming primitives. Listing 3 depicts the relevant script fragment for creating the
NX root objects (nx::Object, nx::Class), as well as for tailoring the provided sys-
tem method interfaces.

The NX Concrete Syntax

In the tradition of nesting evaluable Tcl scripts as definition units (e.g., proc bodies,
looping constructs, namespace scripts), NX objects can evaluate scripts in their con-
text upon request or upon initialization. The scripted init-blocks are evaluated at the
end of object initialization and are typically used for defining variables, properties
and methods. A block-wise notation helps avoid redundancy (i.e., tediously repeated
object names) and allows for grouping related declaration statements.

Consider a bare example. Instead of defining a class and its structural features (i.e.,
relations, properties, and methods) via separate Tcl commands …

nx::Class create ASuperClass
nx::Class create AClass

AClass superclass ASuperclass
AClass property aProperty
AClass public method aMethod {} {...}

one can specify a script for every object/class definition which is evaluated in the con-
text of the newly created entity:

nx::Class create ASuperClass

nx::Class create AClass -superclass ASuperClass {
:property {aProperty 0}
:public method aMethod {} {...}

}

The Colon Prefix - Shortcutting Self Calls and Self-Variable Access

The create method accepts the name of the entity to be created (here AClass) and
optional, non-positional parameters for configuring the entity; referred to as object
parameters. After the object parameters, an optional script might be provided which
is called the init script. In this example, all commands in the init script are prefixed
by a single colon, which means that they denote methods dispatched on the current
object (here AClass). This is achieved by using a special-purpose command resolver
[3].

Scripted init-blocks are equally available for declaring all kind of objects, i.e., direct
instances of nx::Object or instances of arbitrary application classes.To create in-
stances of the previously defined class AClass, one can write:

AClass create a0
AClass create a1 -aProperty 10
AClass create a2 {

:public method foo {} {...}
}

While the instance a0 is created without object parameters (using just the defaults),
the instance a1 is initialized by object parameters, and a2 uses a scripted init block
for defining an object-specific method foo.

By leveraging Tcl’s variable and command resolver infrastructure, NSF introduces
colon-prefixed names for referencing instance variables and for specifying method
calls with implicit receivers for little syntactic overhead. The colon prefix refers to the
current object for the scope of scripts evaluated in an object’s context (e.g., in init
scripts or in method bodies).

AClass create a2 {

set :x 1; # set an instance variable named "x"

:public method foo {} {
set x 1 ; # set a method-scoped variable
set :x 1 ; # set an instance variable
set ::x 1 ; # set a global variable
incr :x ; # access an instance variable
puts "var x value ${:x}"; # refer to value of an instance variable

}

:foo
}

Slim Method Set - Easing API Learning

In the above listing, each colon-prefixed variable reference resolves to an instance
variable named x stored with the object a2. When requesting instance variable sub-
stitution, the dollar sign must be preceded by the colon-prefixed variable name pro-
tected by a pair of curly braces, for example: ${:x}. A colon-prefixed command name
(such as :public) corresponds to an invocation of a method of the same object. For
example, :foo corresponds to my foo in XOTcl.

Each NSF object system provides a core API through its base classes. The perceived
usability [2] of APIs is affected by various cognitive properties, including the API’s
conceptual chunks needed for frequent programming tasks (e.g., introspection) and
the penetrability of an API. An ultimate design goal was therefore to keep the core
interface of NX as concise and as consistent as possible. As a result of this design ef-
fort and new implementation techniques being available (e.g., extensible method en-
sembles), the NX core API consists of only 44 methods, as compared to 124 in XOTcl,
while exhibiting a functional superset of the XOTcl core API.

Table 1. Comparison of the Number of Predefined Methods in NX and XOTcl

NX XOTcl

Methods for Objects 20 51

Methods for Classes 3 24

Info-methods for Objects 15 25

Info-methods for Classes 6 24

Total 44 124

In addition to the reduced interface sizes, the NX core APIs also benefit from the
capacity of creating method interfaces in a hierarchical manner. The figure below
sketches the tree-like structure of the info introspection available for all instances
of nx::Object. Each sub-level of the hierarchical interface (e.g., callable, has,
filter, and mixin) groups introspection operations which relate to the same lan-
guage construct to be introspected (e.g., mixins or filters) or which identify a partic-
ular introspection scope. For example, info callable refers to the methods dis-
patchable on a given object rather than the ones defined by it (info methods).
Hierarchical method interfaces allow the language or application developer to define
working frameworks [2] within an API. At the same time, the hierarchically organized
interfaces can still be extended and refined by standard means of method combina-

tion (e.g., mixin classes) at each sub-level. This API structuring technique is the result
of using method ensembles(find details below).

Figure 4. Hierarchical Method Interfaces: An Excerpt from the 'info' Method
Ensemble

Parameter Types and Parameter Options - Con-
straining and Transforming Parameter Values
Tcl provides the command string is to check whether a provided string has certain
properties, i.e., whether it can be converted into an internal representation with a cer-
tain value format. NSF extends this value checking for specifying method parame-
ters and method return values, as well as object interfaces. A method is specified by a
method signature, i.e., the number of method parameters (in/out), their names, and
value constraints defined over the permissive arguments. An object is configured by
object parameters.

Value constraints for method and object parameters can be specified with built-in and
custom defined parameter type checkers. They apply to both positional and non-po-
sitional parameters. The range of built-in constraints includes object-type checks and
predefined Tcl value classes. Table 2 below presents selected examples of parameter
types and options. Additionally, custom defined value checkers can be provided by
defining special-purpose methods.

For all types of value checkers, parameter options can be specified to define the
multiplicity class and the optionality of the parameters. Moreover, parameters can
be turned into method and forwarder dispatches, using disposition parameters. For
multivalued object parameters, an incremental getter/setter API is available, offering
the per-element operations add and delete.

These provided value checkers can also be used to perform representational transfor-
mations on parameter values (e.g., normalizing values). This syntactic value checking

can be en- or disabled for the scope of an interpreter; in the sense of an optional rep-
resentational "type system" [1].

Listing 5: Parameter Types for Arguments and Return Values

nx::Class create C {

Define method "set" with an optional positional parameter "value":
:public method set {varName value:optional} {

....
}

Define method "foo" with a non-positional parameter "opt" having a
default value and a positional parameter "x" with the value
constraint "integer":
:public method foo {{-opt true} x:integer} {

....
}

Define a method "bar" with a non-positional
parameter "objs" carrying the value constraint "object" under the
multiplicity class "1..n" and a positional parameter "c" with value
constraint "class" for a multiplicity of "0..1":
:public method bar {-objs:object,1..n c:class,0..1} {

...
}

Bind the Tcl command ::incr as a method (an alias) to the class and specify
that it always returns an integer value:
:public alias incr -returns integer -frame object ::incr

Define a forwarder that has to return an integer value:
:public forward plusOne -returns integer ::expr 1 +

}

Value checking is fully integrated with the argument parser and the error handler for
scripted and for C-implemented methods. For C-implemented methods, value check-
ing provides the internal representations (e.g. integers, boolean, objects, classes, etc.)
as arguments to the underlying C functions [3]. This greatly helps implement C ex-
tensions, such as the MongoDB binding described later in this paper.

Table 2. Thumbnail Descriptions of Common Parameter Types and Parameter Options

Parameter type/op-
tion

Description

Value constraints

integer The argument must be a 32-bit Tcl integer (string is integer).

boolean The argument must be one of the acceptable Tcl boolean values, e.g. 0, 1, true,
false (string is boolean).

Parameter type/op-
tion

Description

object
? type=className ?

The argument must refer to an existing object (i.e., an instance of the root class
nx::Object). If the type option is provided, the object’s class must correspond to
an existing class className.

class
? type=metaClassName ?

The argument must refer to an existing class (i.e., an instance of the root meta-class
nx::Class). If the type option is provided, the class' meta-class must correspond to
an existing meta-class named metaClassName.

Multiplicities

0..*, 0..n Specifies that the argument can be either an empty list (i.e., "" or [list]) or a list
with any number of elements (unbound cardinality). If the argument is a non-empty
list (element cardinality > 0), each element is then tested against the value constraint
specified.

0..1 Specifies that the argument can either be an empty list (i.e., "" or [list]) or a list
with exactly one element (cardinality: 1). If the argument is a non-empty list (element
cardinality > 0), the element is then tested against the value constraint specified.

1..*, 1..n Specifies that the argument must be a non-empty list with an unbounded number of
elements (cardinality > 1). Each element is then tested against the value constraints
specified.

Requiredness/Optionality

required An argument for the parameter must be provided. Note: Positional parameters are
considered required implicitly.

optional An argument for the parameter may be omitted in the arguments vector. Note: Non-
positional (named) parameters are considered optional implicitly.

Disposition

alias
? method=methodName ?

The parameter specifies a method dispatch to a method identified by the parameter
name or, if the method option is provided , to a method methodName. An unqualified
name resolves to a method for the scope of the called object.

forward
method=forwardSpec

The parameter specifies a forward dispatch, according to the mandatory method type
which contains the forward specification forwardSpec.

Various

switch The parameter is specified as a flag, i.e., a non-positional parameter which does not
accept an explicit argument. If the flag is provided, the default value (0 for false) is
toggled. The default value can be set explicitly to change the toggle direction.

incremental The object parameter representing a multivalued instance variable should be mutable
through per-element ("incremental") setter methods, including methods for adding
and deleting single elements.

Object Parameters - Configuration Interfaces for Objects

Like method signatures declaring positional and non-positional parameters with de-
fault values and value constraints, NX provides parameters for initializing and config-
uring objects and classes. The parametric object interfaces are derived from the class
definitions. In conventional OO languages, object creation and initialization are real-
ized by chained constructor methods, risking unwanted interactions in classification
hierarchies (e.g., common constructor anomalies [9]). The less ambiguous object ini-
tialization through object parameters and scripted init-blocks complements the use
of constructors.

Recall the classic example of a compositional anomaly resulting from pairing con-
structor chaining and dynamic method binding in a class hierarchy. The following
code listing reproduces an example for creating partially initialized objects for XOTcl,
adopted from [12].

xotcl::Class create A
A instproc init args {

2) Invoke method "m", dispatching to B.m()!
my m

}
A instproc m {} {

...
}

A subclass, possibly defined by a different module (e.g., Tcl package)
xotcl::Class create B -superclass A -parameter {b}
B instproc init {s} {

1) Pass control to the superclass constructor
next ; # dispatching A.init()
3) Initialize and define the instance variable "b"
my instvar b
set b $s

}
B instproc m {} {

4) Returning instance variable 'b', which is expected to be
already initialized and defined
my instvar b
return $b

}

B create b1 "ZAP!"; # --> can't read "b": no such variable while executing "return $b"

The numbering of the comments (1, 2, 3, and 4) reflects the "intended" unfolding
of the control flow during the creation of an instance of B. The anomalous behavior
manifests in terms of step 3 effectively occurring after step 4. This is due to the dis-
patch to m, which is contracted by the superclass constructor A init, causing an
preemptive attempt to access of B's instance variable b, yet to be initialized and de-
fined in the subclass constructor B init.

This is only one example of various kinds of constructor anomalies discussed in [9].
A further critical kind of anomalies is that construction protocols, though automat-
ically inherited down a class hierarchy (at least in NX and XOTcl), can be easily
breached — maybe intentionally, maybe accidentally — by simply omitting a next in
a subclass constructor. NX, as well as XOTcl, are even more vulnerable to such anom-
alies due to the considerable degrees of freedom during object configuration (e.g., dis-
patching to init or accessor methods in arbitrary orders) and due to the composi-
tional complexity incurred by mixin classes and transitive mixins.

The object parameter facility in NX relaxes this vulnerability to constructor-based pa-
rametrization anomalies considerably. Rewriting the above example in NX yields, for
example:

nx::Class create A {
:method init {} {

:m
}
:public method m {} {

...
}

}

nx::Class create B -superclass A {
:property b:required
:public method m {} {

return ${:b}
}

}

B create b1 -b "ZAP!"
B create b2; # --> required argument 'b' is missing, should be: ::b2 configure -b ...

Object parameters provide means for discriminating between four separated stages
when constructing objects:

1. Creation: This is a class-side event, with the operations for allocating a mem-
ory store etc. being performed in the scope of the instantiating class.

2. Parametrization: At this stage, the argument vector passed to the object cre-
ation procedure (i.e., -b "ZAP!") is evaluated against the object parameter
specification of the newly created instance. This specification represents the
concatenation of all object parameters (e.g., A property b:required) go-
ing up the entire inheritance path of the instance’s class. The parameter spec-
ifications can also contract the mandatoriness or value ranges of parameter
values, along with default values etc.

3. Setup by Init Script: After having completed the parametrization stage, the
object is fully initialized as stipulated by the object parameter specification.
The evaluation of the init script block is performed to allow for continued set-

Object Variables and Properties - Defining Object State

up of the newly constructed object. This step can only be performed once, i.e.,
at construction time, as the init script is not preserved.

4. Setup by Constructor: Finally, the chain of initmethods provided is invoked
upon. Note that in NX, the init methods do not receive any intermediary
results of previous object construction or residuals of the initial vector of
construction arguments as input arguments. In NX, constructor methods are
therefore not equipped for initializing the initial state of an object. Still, they
serve as important extension points during object construction.

NX supports defining instance variables with and without accessor methods. While
internally accessible instance variables are defined via the method variable, exter-
nally accessible instance variables are equipped with accessors (setter/getter meth-
ods). In addition, so accessible instance variables can also be exposed as object para-
meters by the object interface. Instance variables with accessors are created using the
property keyword. Value checkers can be specified for instance variables defined
via variable and via property. Properties can also be accessed through an incre-
mental getter/setter interface (add, delete). The following listing gives three show-
case examples, including the specification of default values and parameter types with
property and variable, respectively:

nx::Class create AClass {
:property {aProperty:integer 0}
:variable aVariable:integer 0
:property {multiProperty:1..*,integer,incremental 0}
:create a1

}

#
property plus setter/getter methods
#
::a1 aProperty; # returns "aProperty" (0) through the so-named getter method
::a1 aProperty 1; # sets "aProperty" through the so-named setter method

#
variable without setter/getter methods
#
::a1 aVariable; # no getter method: ::a1: unable to dispatch method 'aVariable'
::a1 aVariable 1; # no setter method: ::a1: unable to dispatch method 'aVariable'
::a1 eval {set :aVariable}; # internally, the instance variable is accessible/mutable

#
property with incremental setter/getter methods
#
::a1 multiProperty; # returns 0
::a1 multiProperty delete 0; # removes an element from the list
::a1 multiProperty add 1; # adds an element to the list and returns 1
::a1 multiProperty add 2 end; # adds another element and returns "1 2"

Aliases and Forwarders - Method-Level Reuse

Methods
Like XOTcl, NX offers open class and open object definitions. This means, for ex-
ample, that it is possible to define a class or an object without methods and to add
methods dynamically at runtime. NX supports scripted and C-implemented methods.
Scripted methods are defined via a predefined keyword method. When method is ap-
plied on a class, an instance method is defined (i.e., a method applicable to instances
of the class); when method is applied on an object, an object-specific method is de-
fined. The method definition can be refined by modifiers such as public and pro-
tected to request call protection and by the keyword class to refer explicitly to the
class object. One can use class method to define methods applicable to the class
object. Such methods are sometimes referred to as "class" or "static" methods. Sim-
ilarly, one can use class variable or class property to define variables and
properties for the class object.

In addition to defining scripted methods as outlined above, NX supports reusing pre-
existing method definitions for a class or for an object by means of method aliases and
method forwarders. For aliasing a method, NX provides the method alias. Aliasing
means registering a method by a distinct name with an object. This method alias can
refer to the implementation of a method of another object/class, a Tcl proc, or even a
Tcl/C command.

In NX, the idea of assembling the base class interfaces from a set of core C-imple-
mented commands [3] is extended to a general-purpose aliasing mechanism in NX
(not to be confused with Tcl’s interp aliases). Method aliases are one foundation of
traits and method ensembles (we go into more details in later sections). Aliases serve
for bootstrapping an object system and are an essential instrument for object system
developers (as presented earlier in Listing 1).

Listing 6: Method Aliases and Method Forwarders

nx::Class create C
:property {a 0}
:public alias incr -returns integer -frame object ::incr
:public forward plusOne -returns integer ::expr 1 +

}

C create c1 ;# create instance c1
c1 incr a ;# increments instance variable "a" to 1
c1 incr a ;# increments instance variable "a" to 2

puts [c1 a] ;# outputs 2

Method Ensembles - Implementing Hierarchical Method Interfaces

puts [c1 plusOne [c1 a] * 100] ;# outputs 201
puts [c1 a] ;# outputs 2

The alias statement in Listing 6 are taken from Listing 5. It defines a public instance
method named incr of the class C, which reuses the implementation of the C-im-
plemented Tcl command ::incr. The parametrization by -frame object has the
effect that variable names provided as arguments to the newly defined method incr
refer to instance variables. Note that all arguments provided to a method alias are al-
ways passed unmodified to the underlying command implementation.

A method forward is somewhat similar to a method alias except that one can extend
and rewrite the provided argument vector. The definition of the method plusOne
reuses the Tcl command ::expr and adds 1 + at the front of the provided argument
vector to complete the Tcl expression.

In general, a method forward is more flexible than a method alias, but less efficient.
Apart from efficiency, method aliases have another important property: For a method
alias, introspection returns the method parameter specification of the alias target (if
available). Parameter introspection is not possible for a method forward.

The capacity of objects to act as message receivers [3] has been further refined into
the concept of ensemble objects and method ensembles. Resembling Tcl’s idiom of
sub-commands and namespace ensembles, ensemble methods establish hierarchical
and compound method names in an extensible fashion. From the perspective of a
method client, not only a single but multiple Tcl words are the selectors of a method
implementation. As for the method provider, a complex protocol (e.g., introspection
through info) can be organized into several related ensemble method implementa-
tions.

Central to the compositional feature of ensemble methods is the idea of breaking
up otherwise monolithic methods with heavy conditional branching (e.g, extensive
switch threading) into distinct units, i.e., ensemble methods [11]. At the same time,
the ensemble methods remain grouped by a parent method selector. Consider the fol-
lowing example:

Listing 7: Definition of Ensemble Methods without Language Support

Object create o {

Define method "foo", the parent method selector:

:public method foo {sub args} {
#
Define sub-methods behavior via "switch" statement
#
switch -exact -- $sub {

sub1 {
ensemble method 'foo sub1': provide a custom parser for "args"

}
sub2 {

ensemble method 'foo sub2': provide a custom parser for "args"
}
default {

unknown handling
set m "[current method]: unknown sub-method '$sub'. Available: sub1 sub2"
return -code error $m

}
}

}
}

o foo sub1 arg1 arg2; # OK
o foo sub2 -np1 arg1 -np2 arg2 arg3; # OK
o foo sub3; # --> foo: unknown ensemble method 'sub3'. Available: sub1 sub2

While this switch-threaded method implementation certainly mimics sub-commands
(i.e., foo sub1 and foo sub2) to a certain extent, there are considerable limita-
tions, potentially affecting code evolution and maintenance tasks:

1. Homogeneous vs. Heterogeneous Signatures: To begin with, there is a ten-
sion between providing heterogeneous signatures for ensemble methods and
reusing the built-in parameter processing infrastructure. In the above exam-
ple, the intention is to constrain foo sub1 to requiring two positional pa-
rameters only, while foo sub2 accepts two non-positional parameters. The
parent method foo effectively shares its method parameter specification with
its children, with the variable argument vector (args) not enforcing any fur-
ther parameter constraints on behalf of the ensemble methods. This leaves the
developer with the only option to enforce the signature constraints specific to
each ensemble method in the respective switch branch by providing for cus-
tom argument parsing.

2. Blinded introspection: The built-in object introspection is not aware of the
very existence of the ensemble methods nested under foo, nor their possibly
deviating method parameter specifications. For example, o info methods
foo and o info callable methods won’t reveal the two ensemble meth-
ods foo sub1 and foo sub2. As one of the consequences, introspection
cannot be leveraged to implement ensemble methods. In the above example,
the list of available ensemble methods must be maintained explicitly for gen-
erating the unknown error message.

3. Nesting level limitations: Any implementation variant based on conditional
control structures (e.g., switch threading) risks adding further complexity
with each further nesting level added to an ensemble method hierarchy (e.g.,
foo sub1 sub4). As each nesting level turns into a nested conditional, e.g.,
scattered across several switch threads in the example above, the implemen-
tation suffers from extra complexity due to dealing with parameter specifica-
tions and unknown handling for ensemble methods.

4. Unknown handling: The built-in unknown handling of NX is an important
meta-programming vehicle. The native unknown handling is sidetracked by
the requirement for the switch-local unknown handling. That is, the default
switch branch replaces the otherwise responsible unknown method for ob-
jects. Also, unknown handling must be implemented for each and every
method ensemble repeatedly; unless facilitated by a piece of meta-program-
ming. Adding nesting levels further complicates this form of ensemble-specif-
ic unknown handling.

5. Method combination: Combining ensemble methods with refining ensemble
methods provided by intrinsic (superclasses) or by extrinsic classification
(mixin classes) is hindered. First, the scope for combining methods is the par-
ent selector only. In our example, refining methods can only hook onto the
selector foo, without further specifying an ensemble method as its refine-
ment target. Second, using next chaining in a linearized order of refining foo
methods becomes non-obvious and error-prone as the scope of next calls is
the top-level method only.

6. Method reuse: The type and the implementation of ensemble methods cannot
be reused. This is, to a large extent, due to the limitations of method combi-
nation (see the previous item). However, ensemble method implementations
based on conditionals are also not accessible to other composition techniques,
most importantly method aliases.

Besides, the effects of excessive tangling throughout conditional blocks (e.g., the
"Switch Statement Smell" in [10]) and the non-orthogonal extensibility for method
ensembles are the consequences. To overcome these limitations, NX supports ensem-
ble methods natively. Ensemble methods are implemented by an advanced form of
object delegation hierarchies. A variant of method objects [10], referred to as ensem-
ble objects, are recorded as methods with a registration object. In the above exam-
ple, o acts as the registration object for an ensemble object foo, so that foo becomes
dispatchable as the method member o foo. To avoid common pitfalls of method
objects, in particular self schizophrenia, special dispatch semantics apply: First, ex-
clusively per-object methods of the ensemble objects provide the leaf methods in a
method ensemble hierarchy. Second, the dispatch to an ensemble method is bound
to the self-object context of the registration object. With some syntactic sugar, which

Public, Protected, and Private - Module Encapsulation versus
Method Combination

effectively hides the declaration ensemble objects and the building of their delegation
hierarchies, NX allows one to rewrite the example from Listing 7 as:

Listing 8: Definition of Ensemble Methods with Language Support

Object create o {
:public method "foo sub1" {p1 p2} {

...
}
:public method "foo sub2" {-np1 -np2 p3} {

...
}

}

o foo sub1 arg1 arg2; # OK
o foo sub2 -np1 arg1 -np2 arg2 arg3; # OK
o foo sub3;
--> Unable to dispatch sub-method "sub3" of ::o foo; valid are: foo sub1, foo sub2

Such method ensembles can be incrementally extended, indirected by mixins and fil-
ters, and easily shared between objects through method aliasing. To complete the
support for ensemble methods, object introspection is fully aware of ensemble meth-
ods. One can resolve the entire method path, for which a given ensemble method is
registered, from within the ensemble method (via nx::current methodpath). Al-
so, introspection makes the unfolded method paths available for querying by method
path patterns (using e.g. /obj/ info methods ?-path? … ?pattern?).

A primary reason for putting units of code (i.e., object, classes) into relation (e.g.,
instance-of, superclass/subclass) is to establish various kinds of reuse between these
code-units. These relations establish ways of accessing, using, or mutating structural
and behavioral features (primarily instance variables and methods) of these units.
For example, by method combination (using the next primitive) a subclass may use
the methods of its superclasses. A similar reuse can be achieved by mixin classes, by
traits or, at the method level, by method aliases and method forwards.

When reusing complex units of code (e.g. deep class hierarchies), which have possibly
been developed by different teams and which have been constantly refactored, one
danger arises from unwanted interactions, such as the accidental shadowing of meth-
ods. The example of a constructor anomaly given earlier falls into this category of un-
wanted interactions.

The more relations between code-units are established and the more bloated object
interfaces become, the more likely unwanted interactions will occur. To manage such

interactions, it is important to define explicit and strict module interfaces [14]. The
literature employs the notion of module encapsulation for describing means to regu-
late the accessibility, the use, and the changeability of module features by other mod-
ules [13].

NX supports stronger means for module encapsulation than XOTcl. The design goal
of NX was to encourage encapsulation by language constructs rather than prohibiting
access at all. For example, denying any access to an object’s state would make seri-
alization of objects from the scripting language impossible since the serializer needs
access to all internals. NX adds the following means of module encapsulation:

1. In NX, the object state (instance variables) is better protected than in XOTcl
by not providing any publicly available, built-in accessor methods to all in-
stance variables. XOTcl, on the contrary, exposed the methods set and un-
set; or, the general variable importer instvar. The access to instance vari-
ables from within instance methods is encouraged in NX via Tcl’s variable re-
solvers and the colon prefix.

2. The redefinition of behavioral object features (in particular methods and
properties) can be restricted by declaring the object features redefine-protect-
ed.

3. NX provides a fine-grained mechanism to establish method call-protection
between objects and classes. An object can expose three different method sets
at the same time:

a. The public method set is usable by any client object, without restric-
tions. The methods of this set can be targeted by self-calls (e.g., :bar
in the example below), next-calls, and command-calls (i.e., when spec-
ifying the object’s Tcl command name as receiver: a1 foo).

b. The protected set restricts the method’s use to self-calls and next-
calls. That is, calling upon the method set through the command ref-
erence of the object is forbidden.

c. The private interface is restricted to self-calls and to call sites de-
fined for the same class or object scope as the called method.

nx::Class create A {
#
Public interface of class "A"
#
:public method foo args {

:bar ; # invoke protected method of current object
}

#
Protected interface of class "A"
#

:protected method bar {} {
: -local baz ; # invoke private method of current object with "-local" flag
...

}

#
Private interface of class "A"
#
:private method baz {} {

...
}

}
A create ::a1

In the above listing, the method modifiers public, protected, and private are
used to add methods to these three method sets. If omitted, the default call protection
in NX is protected. This default can be altered by configuration. From within meth-
ods of the instance ::a1, the protected and the private method sets can be effectively
used. The method call statement :bar represents a self-call to the protected method
set. The invocation of a private method is performed via : -local baz. The flag
-local indicates to call only methods from the private method set. The flag -local
at the call site makes the intention clear to use only a method declared for the same
class context. It cannot be invoked from within methods of subclasses (as the follow-
ing example shows), nor from methods of superclasses.

However, when the methods foo, bar, and baz are called from the "outside" (i.e.,
from instances of other classes, or from the top-level namespace), neither the protect-
ed, nor the private methods of A are callable:

a1 foo; # command-call to public interface --> OK
a1 bar; # command-call to protected interface --> ::a1: unable to dispatch method 'bar'
a1 baz; # command-call to private interface --> ::a1: unable to dispatch method 'baz'

Let us now introduce a superclass/subclass relation between the classes A and B, with
the sublcass B defining its own public method set consisting of the methods bar and
baz:

nx::Class create B -superclass A {
:public method bar {} {

next ; # next-call to protected interface --> OK
}
:public method baz {} {

next ; # next-call does not reach the private method
}

}

B create ::b1
b1 bar; # command-call to public interface --> OK

The public method B bar shadows A bar. Because B bar can be called unrestrict-
edly, it can be invoked from the outside. Since protected methods are available for
next-calls, A bar can be reused via next in this context.

The method B baz is part of the public interface of class B and defines a next-call.
While A baz is a candidate target for this next-call, however, since private meth-
ods are not available to next-calls, the invocation of next behaves exactly like A baz
would not have been defined.

The redefinition protection and the call protection in NX are implemented by a set
of properties assignable to method implementations through NSF primitives. Based
on these property assignments, the language runtime regulates the modification of
the method implementations (redefinition protection) and determines the availabil-
ity of method implementations as message receivers depending on the caller context
(call protection). This low-level interface allows the NSF language developer to spec-
ify custom redefinition and call protection schemes. For example, for XOTcl 2.0, the
default call protection mode is so implemented as public.

To summarize, discriminating between public and protected methods provides
for defining explicit object interfaces (i.e., intended ways of having classes and objects
reused by client objects). The private modifier helps hide implementation details
and helps avoid unwanted method combinations due to name clashes in, e.g., mixin
classes or traits.

Support for Advanced Feature Composability: Traits
NX supports the concept of per-object, per-class, and transitive per-class mixins [7].
In addition to mixins, NX adds a variant of traits [6] as a scripted language extension.
Traits realize a composition mechanism for the reuse of methods. Contrary to other
forms of reuse (e.g. inheritance of methods in a class hierarchy or via mixin classes),
the methods defined in traits are materialized in the target objects and classes. For
the implementation of the traits, method aliases provide the necessary implementa-
tion infrastructure. Every method inherited from a trait can be modified, deleted etc.
by subsequent method definitions for a given class. This gives more fine-grained con-
trol over the reuse of methods and overcomes the "total composition ordering" limi-
tation of mixins [6]. Consider the following example of a simple trait called tRead-
Stream which provides the interface to a stream:

package require nx::trait

nx::Trait create tReadStream {
#
Define the methods provided by this trait:

#
:public method atStart {} {expr {[:position] == [:minPosition]}}
:public method atEnd {} {expr {[:position] == [:maxPosition]}}
:public method setToStart {} {set :position [:minPosition]}
:public method setToEnd {} {set :position [:maxPosition]}
:public method maxPosition {} {llength ${:collection}}
:public method on {collection} {set :collection $collection; :setToStart}
:public method next {} {

if {[:atEnd]} {return ""} else {
set r [lindex ${:collection} ${:position}]
:nextPosition
return $r

}
}
:public method minPosition {} {return 0}
:public method nextPosition {} {incr :position 1}

This trait requires a method "position" and a variable
"collection" from the base class. The definition of the trait is
incomplete in these regards.
:requiredMethods position
:requiredVariables collection

}

Define a class ReadStream with properties position and collection which uses
the trait. The method require trait checks the requirements of the trait and im-
ports the methods of the trait into the class ReadStream:

nx::Class create ReadStream {
:property {collection ""}
:property {position 0}
:require trait tReadStream

}

One can now create an instance of the class ReadStream …

ReadStream create r1 -collection {a b c d e}

to test the behavior of the composed class:

% r1 atStart
1
% r1 atEnd
0
% r1 next
a
% r1 next
b

NX supports simple and composite traits, with a composite trait definition inheriting
from another trait.

MongoDB Mapping
The NSF development toolkit features a Tcl/C-API generator and Tcl_Obj type con-
verters for developing NSF/C extensions. By using these helpers, we developed a
MongoDB binding for NX. The C-implemented part of this extension integrates with
the C client library of MongoDB. The extension also provides an NX/Tcl package for
integration of NX objects with MongoDB.

The MongoDB extension provides both a low-level interface and a high-level, object-
oriented interface based on NX. By using this high-level API, one can create NX class-
es and objects which are equipped with additional capabilities for defining (prop-
erty, index), retrieving (find), and storing (save) objects in MongoDB. The ex-
ample below shows an excerpt from the "Business Insider" data model, a frequently
cited MongoDB showcase [16]. The listing depicts the entity definitions for postings,
authors, comments, tags etc. Using the parameter option embedded, one can created
embedded (nested) documents with the required multiplicity. In this example, we al-
so use the incremental setter interface for creating tags.

package require nx::mongo

nx::mongo::db connect -db "tutorial"
#
Create the application classes based on the "Business Insider" data
model. Note that instances of the class "Comment" can be embedded in
a posting (property "comments") as well as in a "Comment" itself
(property "replies"). All comments in this example are multivalued
and declared "incremental" (i.e., one can use slot methods "... add
..." and "... delete ..." to add/remove values of the multivalued
attributes).
#
nx::mongo::Class create Comment {

:property author:required
:property comment:required
:property replies:embedded,incremental,type=::Comment,0..n

}

nx::mongo::Class create Posting {
:index tags
:property title:required
:property author:required
:property ts:required
:property comments:embedded,incremental,type=::Comment,0..n
:property tags:incremental,0..n

}

Create a Posting
set p [Posting new -title "Too Big to Fail" -author "John S." \

-ts "05-Nov-09 10:33" -tags {finance economy} \

-comments [list \
[Comment new -author "Ian White" -comment "Great Article!"] \
[Comment new -author "Joe Smith" -comment "But how fast is it?" \

-replies [list [Comment new -author "Jane Smith" -comment "scalable?"]]] \
]]

We add an additional comment at the end of the list of the comments
using the incremental operation "add" ...
$p comments add [Comment new -author "Gustaf N" -comment "This sounds pretty cool"] end

... and we add yet another tag ...
$p tags add nx

... and save everything
$p save

Now fetch the first entry with the tag "nx"
set q [Posting find first -cond {tags = nx}]
....

Infrastructure and Toolkit
For developing object systems and programs in NSF/NX, a rich development en-
vironment is available. Monitoring the runtime performance is possible through a
DTrace binding and a native measurement facility. Detecting skewed refcounts is fa-
cilitated by a built-in monitoring facility for Tcl_Objs which complements Tcl’s mem-
ory command. For defining Tcl/C APIs based on the uniform parametrization infra-
structure of NSF, an API generator based on a declarative API specification language
can be used. Functional tests can be managed using the nx::test environment, a
documentation generator (nxdoc) takes Javadoc-styled Tcl comment blocks as input
and outputs to various templating backends (e.g., YUIDoc markup documents or wiki
pages).

The following listing shows a D script for DTrace which turns DTrace probes on and
off during a script run. The D script measures (when activated) the time spent in
methods called on nx::Object. Finally, it provides a graph produced by the DTrace
quantize aggregator function.

/* -*- D -*-
*
* Quantize time between method-entry and method-returns for calls on nx::Object
*
* Activate tracing between
* nsf::configure dtrace on
* and
* nsf::configure dtrace off
*
*/

nsf*:::configure-probe /!self->tracing && copyinstr(arg0) == "dtrace" / {

self->tracing = (arg1 && copyinstr(arg1) == "on") ? 1 : 0;
}

nsf*:::configure-probe /self->tracing && copyinstr(arg0) == "dtrace" / {
self->tracing = (arg1 && copyinstr(arg1) == "off") ? 0 : 1;

}

/*
* Measure time differences on method calls on nx::Object
*/

nsf*:::method-entry /self->tracing && copyinstr(arg1) == "::nx::Object"/ {
self->start = timestamp;

}

nsf*:::method-return /self->tracing && copyinstr(arg1) == "::nx::Object" && self->start/ {
@[copyinstr(arg1), copyinstr(arg2)] = quantize(timestamp - self->start);
self->start = 0;

}

The snippet below shows how DTrace can be applied to monitor the evaluation of a
NSF/NX test script, as well as how the result is rendered (showing here just a small
part of the output). The NSF distribution contains some more examples for using
DTrace with NSF/NX.

% sudo TCLLIBPATH=. dtrace -F -s dtrace/timestamps-q.d -c "./nxsh tests/object-system.test"
....

::nx::Object eval
value ------------- Distribution ------------- count
4096 | 0
8192 |@@@@@@@@@@@@@@@@@@@@@@@@@@@ 2

16384 | 0
32768 |@@@@@@@@@@@@@ 1
65536 | 0

::nx::Object vars
value ------------- Distribution ------------- count
2048 | 0
4096 |@@@@@@@@@@@@@@@@@@ 4
8192 |@@@@@@@@@@@@@@@@@@@@@@ 5

16384 | 0

A Synthetic Performance Evaluation
This section presents a first performance comparison between NX and XOTcl 2.0, on
the one hand, and XOTcl 1.6.0, on the other hand. The measurement design is com-
parable to the one presented in [3]. The data for NX, XOTcl 2.0, and XOTcl 1.6.0 were
gathered running on top of the same Tcl versions (especially Tcl 8.5.10 and Tcl 8.6b2)
and using the same machine (3.33 GHz Intel Core 2 Duo) under Mac OS X 10.6.8.
All C-programs and Tcl libraries were compiled with gcc 4.2.1 and identical compiler
flags (in particular, -O3).

The first probes used to gather execution times were adopted from the methcall
benchmark of the OO shootout (http://wiki.tcl.tk/2428). By doing so, the results can
be related to previously published benchmark reports for other Tcl object systems.

In addition, probes for object creation and object deletion times are included. To be
precise, we measured the average execution time to create and to destroy a single ob-
ject while creating/destroying 100.000 objects.

Table 3. Comparison of the OO Shootout Benchmark, Object Creation and Deletion

NX 2.0
Tcl 8.5.10

NX 2.0
Tcl 8.6b2

XOTcl 2.0
Tcl 8.5.10

XOTcl 2.0
Tcl 8.6b2

XOTcl
1.6.0

Tcl 8.5.10

TclOO 0.6
Tcl 8.5.10

TclOO
0.6.3

Tcl 8.6b2

OO Shootout: methcall
(n=30.000)

0.57 0.79 2.07 2.78 2.61 1.40 2.07

Object create
(n=100.000)

35.63 40.19 39.71 45.46 56.77 48.56 49.85

Object destroy
(n=100.000)

20.95 23.21 20.97 22.89 25.77 269.70 257.98

The first table row gives the OO shootout methcall timings. It reports the average tim-
ing for 30.000 iterations of the method call probe. The second and third rows show
the timings for object creation and deletion. The timing measure is the average exe-
cution time per operation in micro seconds (hence, smaller values indicate a better
performance).

Figure 9 visualizes the measurement provided in Table 3 in terms of performance
improvements relative to XOTcl 1.6.0 (index: 100). The higher the indices, the more
substantial is the relative improvement. The chart shows that NX is 4.5 times faster
than XOTcl 1.6.0 for the OO Shootout methcall probe, both running Tcl 8.5.10. The
methcall performance of NX 2.0 under Tcl 8.6b2 slightly decreases. Despite this, both
NX probes give the best result. The methcall script used for XOTcl 1.6.0 and for XOT-
cl 2.0 are the same (i.e., the new language features of XOTcl 2.0 are not used). For Tcl
8.5.10, XOTcl 2.0 is about 26% faster than XOTcl 1.6.0. The object creation and object
deletion probes draw a similar picture. NX is the fastest under Tcl 8.5.10. TclOO ap-
pears to be especially slow on destroying objects, both under Tcl 8.5.10 and Tcl 8.6b2.

http://wiki.tcl.tk/2428

Figure 9. Performance Improvements (relative to XOTcl 1.6.0) on the OO
Shootout Benchmark, Object Creation and Deletion.

The second set of measurement probes aims at capturing the execution timings of
method dispatches for different parameter handling and argument parsing tasks. The
method implementations used as probes have trivial bodies (no-ops might be treated
differently by the byte-code compiler). The first probe, args0, is a method without
parameters. The method args3 specifies three positional parameters, np2 expects
two non-positional parameters and np2args3 has two non-positional and three po-
sitional parameters. None of the parameter specifications in these probes contains
parameter value constraints, which would have to be scripted in XOTcl 1.6.0 and
TclOO, inducing a considerable performance penalty.

nx::Class create C {
:public method args0 {} {return 1}
:public method args3 {x y z} {return $x}
:public method np2 {{-a 10} {-b 100}} {return $a}
:public method np2args3 {{-a 10} {-b 100} x y z} {return $x}

}
#
Measuring the following method invocation on instance "c1" of class "C":
c1 args0
c1 args3 1 2 3
c1 np2
c1 np2args3 -a 20 -b 200 1 2 3

Table 4 presents the collected probe throughput in terms of calls per seconds (higher
numbers are better). The results are illustrated as a chart in Figure 7. XOTcl 2.0 is
not reported separately in this test since it builds upon the same parameter/argument
handling infrastructure as NX. The NX timings apply to XOTcl 2.0. Also, the compar-
ison for non-positional parameter handling does not cover TclOO, since it does not
feature a built-in implementation for non-positional parameters. A pure Tcl imple-
mentation would be substantially slower.

Table 4. Calls per Seconds on Method Dispatches

NX 2.0
Tcl 8.5.10

NX 2.0
Tcl 8.6b2

XOTcl 1.6.0
Tcl 8.5.10

TclOO 0.6
Tcl 8.5.10

TclOO 0.6.3
Tcl 8.6b2

args0 3,074,463 2,113,561 1,360,003 2,499,743 1,942,890

args3 2,609,651 1,815,349 1,175,925 2,069,303 1,711,060

np2 2,198,836 1,553,550 481,428 n.a. n.a.

np2args3 1,440,079 1,116,283 250,525 n.a. n.a.

Figure 10 provides a graph with values of Table 3 illustrating the performance index
against XOTcl 1.6.0 (which has for every test a performance index of 100). These tests
show that especially for non-positional argument handling NX improves substantially
over XOTcl 1.6.0, by factors of up to 5.75. NX shows the best performance profile for
all parameter handling tests. Similar to the methcall probes above, when NSF is com-
piled against Tcl 8.6b2, the parameter handling performance degrades significantly
as compared to the same NSF version built against Tcl 8.5.10.

Figure 10. Performance Improvements on Method Dispatches (as compared to
XOTcl 1.6.0)

Summary and Availability
For this paper, we were motivated to present a comprehensive overview of the fea-
tures of the Next Scripting Toolkit, and the Next Scripting Language (NX) in partic-
ular. We gave a first insight into advancements for the NX concrete syntax (i.e., init
blocks and the colon prefix) and discussed the basics of object and method parame-
ters. The overview was completed by walking the reader through the enhancements
for defining behavioral features of objects, i.e., method aliasing, method ensembles,

and method call protection. The interplay of these features was demonstrated by in-
troducing NX traits as an important composition technique. We concluded by hinting
at developer support tools (e.g., DTrace) and at first libraries realized for NX, most
importantly a MongoDB binding for NX.

NSF, NX and XOTcl 2.0 will become publicly available at the time of the Tcl/Tk 2011
Conference from http://next-scripting.org/.

References
• [1] Bracha G. (2004): Pluggable Type Systems. In Proceedings of the

OOPSLA’04 Workshop on Revival of Dynamic Languages (RDL 2004).

• [2] Clarke S., Becker C. (2003): Using the Cognitive Dimensions Framework
to evaluate the usability of a class library. In Proceedings of the 15h Workshop
of the Psychology of Programming Interest Group (PPIG 2003), Keele, UK
(pp. 359—336).

• [3] Neumann G., Sobernig S. (2009): XOTcl 2.0 — A Ten-Year Retrospective
and Outlook. In Proceedings of the Sixteenth Annual Tcl/Tk Conference,
Portland, Oregon, 2009. Tcl Association.

• [4] Neumann G., Zdun U. (2000): XOTcl — An Object-Oriented Scripting
Language. In Proceedings of the 7th USENIX Tcl/Tk Conference (cl2k),
Austin, TX, USA, 2000.

• [5] Fellows D.K. et al. (2008): Object Orientation for Tcl. TIP#257, finalized
in September 2008. URL http://www.tcl.tk/cgi-bin/tct/tip/257.html.

• [6] Ducasse S., Nierstrasz O., Schärli S., Wuyts R. , Black A. P. (2006): Traits:
A mechanism for fine-grained reuse. ACM Trans. Program. Lang. Syst. 28(2):
331-388 (2006).

• [7] Zdun U., Strembeck M., Neumann G. (2007): Object-Based and Class-
Based Composition of Transitive Mixins, Information and Software Technol-
ogy, 49(8) 2007.

• [8] Fowler M. (2009). Language Workbenches: The Killer-App for Domain
Specific Languages? http://www.martinfowler.com/articles/languageWork-
bench.html, last accessed: July 7, 2009, 2005

• [9] Cohen T., Gil, J. (2007): Better Construction with Factories. Journal of
Object Technology, 6(6), 103—123.

• [10] Fowler, M. (2003): Refactoring - Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

http://next-scripting.org/
http://www.tcl.tk/cgi-bin/tct/tip/257.html
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html

• [11] Renner P., Rauschmayer A. (2005): TUBE - Structure-Orientation in
a Prototype-Based Programming Environment. In Proceedings of the 2005
International Conference on Programming Languages and Compilers, PLC
2005, Las Vegas, Nevada, USA, June 27-30, 2005 (pp. 194-200). CSREA
Press.

• [12] Fähndrich M., Leino, K. R. M. (2003): Declaring and Checking Non-null
Types in an Object-Oriented Language. In Proceedings of the 18th Annual
ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Lan-
guages, and Applications (OOPSLA 2003), Anaheim, California, USA, New
York, NY, USA, 2003 (pp. 302-312). ACM.

• [13] Schärli N., Black A. P., Ducasse S. (2004): Object-oriented Encapsulation
for Dynamically Typed Languages. In Proceedings of the OOPSLA’04. ACM.

• [14] Buschmann, F. & Henney, K. (2003). Explicit Interface. In Proceedings
of EuroPLoP 2003, Irsee, Germany, 2003.

• [15] Sobernig, S., Gaubatz, P., Strembeck, M., & Zdun, U. (2011). Comparing
Complexity of API Designs: An Exploratory Experiment on DSL-based
Framework Integration. In Proceedings of the 10th International Conference
on Generative Programming and Component Engineering (GPCE’11), Port-
land, OR, USA, 2011.

• [16] White, I. (2009). How This Web Site Uses MongoDB, URL:
http://www.businessinsider.com/how-we-use-mongodb-2009-11, last ac-
cessed: October 8, 2011.

http://www.businessinsider.com/how-we-use-mongodb-2009-11

	An Overview of the Next Scripting Toolkit
	Abstract
	A Toolkit for Developing A Family of OO Languages
	Scripted Definition of Object Systems
	The NX Concrete Syntax
	Scripted Init-Blocks - Defining Objects Block-wise
	The Colon Prefix - Shortcutting Self Calls and Self-Variable Access
	Slim Method Set - Easing API Learning

	Parameter Types and Parameter Options - Constraining and Transforming Parameter Values
	Object Parameters - Configuration Interfaces for Objects
	Object Variables and Properties - Defining Object State

	Methods
	Aliases and Forwarders - Method-Level Reuse
	Method Ensembles - Implementing Hierarchical Method Interfaces
	Public, Protected, and Private - Module Encapsulation versus Method Combination

	Support for Advanced Feature Composability: Traits
	MongoDB Mapping
	Infrastructure and Toolkit
	A Synthetic Performance Evaluation
	Summary and Availability
	References

