
Page 1 / 10

因循
Agent Based Modeling with
Coroutines

Presented at the 18th Annual Tcl/Tk Conference (Tcl‘2011)
Manassas, VA

Sean Deely Woods
Senior Developer
Test and Evaluation Solutions, LLC
400 Holiday Court
Suite 204
Warrenton, VA 22185
Email: yoda@etoyoc.com
Website: http://www.etoyoc.com

Abstract:

Coroutines have been introduced into the Tcl/Tk core with version 8.6. And many developers
ask "what on Earth would I do with them?" This paper describes how coroutines are used to
model human actors following complex, interdependent procedures. During the paper, we will
develop a coroutine based general use architecture for task management. We will also describe
some of the common edge cases to look out for.

This paper is based on my experience developing the Integrated Recovery Model for T&E Solu-
tions.

mailto:yoda@etoyoc.com
mailto:yoda@etoyoc.com
http://www.etoyoc.com
http://www.etoyoc.com

Introduction to Coroutines
What are Coroutines?

I was looking for a definition for corou-
tines, and I found a Chinese expression,
因循 [yīn xún] which translates1 to:

• to continue the same old routine
• to carry on just as before
• to procrastinate

They are a form of cooperative multi-
tasking. Depending on your application,
they could replace threads. (de Maura,
2004)

Coroutines were introduced with TIP
#328, and have been available in the Tcl
core since Tcl/Tk 8.6a2. (Sofer, 2008)

This paper will focus on the application
of coroutines for discrete time simula-
tions. More specifically modeling human
agents in naval casualty scenarios within
T&E Solutions Integrated Recovery
Model (IRM).
A Simple Example

Let’s write a very simple task. Imagine
we have a toy train. We want it to stop
when it reaches a destination. Our envi-
ronment provides a few functions:

• close_enough - Returns true if the agent is close
enough to the target to be considered “there”.

• location - Returns the current position of the agent.
• motor_direction - A procedure that calculates

which direction is the target, Ahead (+1), Behind (
-1), or Stop (0)

• move_train - Move the agent for one time step
• place_train - Manually set the position of the agent

to an absolute location
• speed - Applies power to the agent’s wheels: For-

ward (+1), Reverse (-1), or Stop (0)

Our microcontroller runs a Tcl-like in-
terpreter, so the script for our task looks
something like this:

Run the script and we’ll see:

Of course, if this were running in a real
microcontroller we wouldn’t have a
move_train routine. The laws of physics
would take care of movement, and our
task would simply be a monitor. We’ll get
to that later.

But bear with me, as I’m going to take
this same logic and make it into a corou-
tine:

proc	 move_to	 B	 {
	 puts	 “Starting	 towards	 $B”
	 set	 x	 [location]	
	 while	 {![close_enough	 $x	 $B]}	 {
	 	 set	 x	 [location]
	 	 puts	 “I	 am	 at	 $x”
	 	 speed	 [motor_direction	 $x	 $B]
	 	 move_train
	 }
	 speed	 0.0
	 puts	 “Arrived	 at	 $B”
}
place_train	 0.0
move_to	 100.0
puts	 “(Toot	 Toot)”

Starting	 towards	 100.0
I	 am	 at	 0.0
I	 am	 at	 1.0
I	 am	 at	 2.0
...
I	 am	 at	 98.0
I	 am	 at	 99.0
I	 am	 at	 100.0
Arrived	 at	 100.0
(Toot	 Toot)

Page 2 / 10

1 Translation according to: http://www.websaru.com/因循.html

http://www.websaru.com
http://www.websaru.com

Let’s go ahead and run our example, I’ll
explain the notation in a second:

Our output is the same, even though
the proc move_to no longer calls
move_train.

We use the coroutine command to create
travel_to. travel_to, in turn, calls our
move_to proc. The caller of travel_to sees
whatever value is yielded or returned by
move_to. And this arrangement we use
to drive the while loop, which actually
moves the train.

Try move_to on it’s own and you’ll see:

proc	 move_to	 B	 {
	 puts	 “Starting	 towards	 $B”
	 set	 x	 [location]	
	 while	 {![close_enough	 $x	 $B]}	 {
	 	 set	 x	 [location]
	 	 puts	 “I	 am	 at	 $x”
	 	 speed	 [motor_direction	 $x	 $B]
	 	 yield	 1
	 }
	 speed	 0.0
	 puts	 “Arrived	 at	 $B”
	 return	 0
}
place_train	 0.0
coroutine	 travel_to	 move_to	 100.0
while	 {[travel_to]}	 {
	 move_train
}
puts	 “(Toot	 Toot)”

Starting	 towards	 100.0
I	 am	 at	 0.0
I	 am	 at	 1.0
I	 am	 at	 2.0
...
I	 am	 at	 98.0
I	 am	 at	 99.0
I	 am	 at	 100.0
Arrived	 at	 100.0
(Toot	 Toot)

The error is pretty self-explanatory. The
yield command only makes sense to the
Tcl interpreter within the confines of a
coroutine.

Note that the “Starting towards” and
“Arrived at” strings print only once, even
though we call travel_to 100 times. That
is because our coroutine picks up on the
next call where it left off, at the yield.

yield can take an argument. That value
is returned to the caller, as though it were
given in a return.

Once a coroutine calls return it dies. If
we to call travel_to after our while loop
terminates we would would see:

Let’s tweak our example. Say we would
like our train to return to the place it left
from.

Our coroutine now calls a proc
travel_circuit which calls our earlier proc

place_train	 0.0
move_to	 100.0
ERROR:	
yield	 can	 only	 be	 called	 in	 a	 coroutine

travel_to
ERROR:	
invalid	 command	 name	 "travel_to"

proc	 travel_circuit	 {A	 B}	 {
	 	 move_to	 $B
	 	 puts	 "(Toot	 Toot)"
	 	 move_to	 $A
	 	 puts	 "(Toot	 Toot)"
	 	 return	 0
}
place_train	 0.0
coroutine	 travel	 travel_circuit	 0	 100
while	 {[travel]}	 {
	 move_train
}
puts	 "(Done)"

Page 3 / 10

move_to. But it calls it twice with two
different destinations.

The bot moves from A to B, reverses di-
rection, and moves from B to A. The
coroutine picks up wherever the yield
left it. Even if the yield is inside of an-
other procedure!

Coroutines and TclOO

Now, the next question you surely
have. Can I use coroutines with TclOO?
Yes!

Let’s rebuild our example in object ori-
ented code. The rest of the class is defined
elsewhere. There’s only one method that
is interesting at the moment:

Starting	 towards	 100.0
I	 am	 at	 0.0
I	 am	 at	 0.0
I	 am	 at	 1.0
I	 am	 at	 2.0
...
I	 am	 at	 98.0
I	 am	 at	 99.0
I	 am	 at	 100.0
Arrived	 at	 100.0
(Toot	 Toot)
Starting	 towards	 0.0
I	 am	 at	 100.0
...
I	 am	 at	 1.0
I	 am	 at	 0.0
Arrived	 at	 0.0
(Toot	 Toot)

while	 -‐>
	 	 travel	 -‐>
	 	 	 	 travel_circuit	 -‐>
	 	 	 	 	 	 move_to	 -‐>
	 	 	 	 	 	 	 	 while	 -‐>
	 	 	 	 	 	 	 	 	 	 yield

Instead of running as a procedure,
move_to is now a method in a TclOO ob-
ject zephyr, of class train. travel_circuit is
still a procedure, but we pass it the name
of the object, and it calls the object’s
methods.

And we find that despite all of these
changes, our example still works:

oo::define	 train	 {
	 method	 move_to	 {B}	 {
	 	 set	 x	 [my	 location]
	 	 puts	 "[self]	 Starting	 towards	 $B"
	 	 while	 {![close_enough	 $x	 $B]}	 {
	 	 	 set	 x	 [my	 location]
	 	 	 puts	 "[self]	 I	 am	 at	 $x"
	 	 	 my	 speed	 [motor_direction	 $x	 $B]
	 	 	 yield	 1
	 	 }
	 	 puts	 "[self]	 Arrived	 at	 $B"
	 	 my	 speed	 0.0
	 	 return	 0
	 }
}
proc	 travel_circuit	 {train	 A	 B}	 {
	 	 $train	 move_to	 $B
	 	 puts	 "(Toot	 Toot)"
	 	 $train	 move_to	 $A
	 	 puts	 "(Toot	 Toot)"
	 	 return	 0
}
train	 create	 zephyr
zephyr	 place_train	 0.0
coroutine	 travel	 \
	 	 travel_circuit	 zephyr	 0.0	 100.0
while	 {[travel]}	 {
	 zephyr	 move_train
}
puts	 "(Done)"

Page 4 / 10

The coroutine has no problems de-
scending into an object and exercising its
methods. In fact, we could call out to
multiple objects within a coroutine, and
the coroutine would properly react as the
specific object. Conversely, multiple
coroutines could also call this same
method.

Just to show this is an ordinary object, if
we call that method outside of a corou-
tine, I still get the same error as our ear-
lier move_to procedure:

Coroutines as Objects

A useful property of coroutines is that
they maintain their own internal state. If I
define a variable, the value of that vari-
able is preserved in between calls.

::zephyr	 Starting	 towards	 100.0
::zephyr	 I	 am	 at	 0.0
::zephyr	 I	 am	 at	 0.0
::zephyr	 I	 am	 at	 1.0
...
::zephyr	 I	 am	 at	 98.0
::zephyr	 I	 am	 at	 99.0
::zephyr	 I	 am	 at	 100.0
::zephyr	 Arrived	 at	 100.0
(Toot	 Toot)
::zephyr	 Starting	 towards	 0.0
::zephyr	 I	 am	 at	 100.0
::zephyr	 I	 am	 at	 99.0
::zephyr	 I	 am	 at	 98.0
...
::zephyr	 I	 am	 at	 1.0
::zephyr	 I	 am	 at	 0.0
::zephyr	 Arrived	 at	 0.0
(Toot	 Toot)
(Done)

zephyr	 move_to	 100.0
ERROR:	
yield	 can	 only	 be	 called	 in	 a	 coroutine

Let’s suppose we are a lazy high
schooler, and we want to solve the classic
Two Trains Problem2.

Instead of using algebra, we will brute
force the solution with Tcl code. We begin
by modeling each train with a coroutine.
That coroutine calculates an updated po-
sition for the train every time step, and
yields the current position:

Our simulator is no longer looking for
when the train reaches the destination.
Instead, we are interested in when the
position of train_a crosses train_b. Since
the position of A is counting up, and B is
counting down, we’ll be at our solution
point the iteration where A surpasses B in
value:

Train A, traveling 70 miles per hour
(mph), leaves Westford heading toward
Eastford, 260 miles away. At the same
time Train B, traveling 60 mph, leaves
Eastford heading toward Westford.
When do the two trains meet? How far
from each city do they meet?

proc	 advance	 {start	 end	 speed}	 {
	 	 set	 x	 $start
	 	 if	 {	 $start	 <	 $end	 }	 {
	 	 	 	 set	 dX	 [expr	 $speed*$::dt]
	 	 }	 else	 {
	 	 	 	 set	 dX	 [expr	 -‐1.0	 *	 $speed	 \
	 	 	 	 	 	 	 *	 $::dt]
	 	 }
	 	 while	 1	 {
	 	 	 	 set	 x	 [expr	 {$x	 +	 $dX}]
	 	 	 	 yield	 $x
	 	 }
	 	 return	 $x
}

Page 5 / 10

2 Text of the problem copied from:http://mathforum.org/dr.math/faq/faq.two.trains.html

http://mathforum.org/dr.math/faq/faq.two.trains.html
http://mathforum.org/dr.math/faq/faq.two.trains.html

Run our simulation to get our answer:

Notice that we are running two copies
of the same procedure at the same time.
The fact they ran inside of two different
coroutines meant that each had a differ-
ent set of parameters, and each main-
tained a different recollection of X for
every time step.

Discrete Time Agents
The simulations I work with play very

much like board game. The scenario is
broken into “steps”. The steps are broken
into phases, so that each actor gets a
chance to affect the simulation equally.

However, some physical phenomena
don’t tend to happen in neat 1 second in-
tervals. Up until now, we have taken for
granted that our agents move at a con-
stant speed. Most simulations must ac-
count for momentum.

Before I’m accused of having a one
track mind, let us transition away from
examples with trains, and into problems I

set	 ::dt	 [expr	 {1/60.0}]
coroutine	 move_a	 advance	 0	 260	 70
coroutine	 move_b	 advance	 260	 0	 60
while	 {1}	 {
	 	 set	 a	 [move_a]
	 	 set	 b	 [move_b]
	 	 if	 {$a	 >	 $b}	 break
}
puts	 "They	 Met	 at..."
puts	 "$a	 From	 Westford"
puts	 "[expr	 260-‐$b]	 From	 Eastford"
puts	 "(Done)"

They	 Met	 at...
140.0000000000001	 From	 Westford
120.0	 From	 Eastford
(Done)

deal with in the real world. Well, real, vir-
tual world.
Crew Movement

The major application thus far for
coroutines within the IRM is modeling
crew behavior.

Now you may be wondering, why did I
start with so many examples of moving
in one dimen-
sion? Crew can
move in 2 di-
mensions, with a
limited ability to
move in the
third dimension
via stairways
and ladders.

Well, it turns
out that once the
crew member
has selected a
route, he or she
breaks the path
into segments.
Each of those
segments is a
line or spline,
and we can consider the movement along
it to be the very same one dimensional
“Am I there yet?” problem that I opened
this paper with.
Exception Handling

However, we have a few other rules
that come into play.

Because we are calculating a route in a
ship that can include spaces that are on
fire, flooded, or both, it’s a very real pos-

Page 6 / 10

sibility that no route exists between two
points. In that case we must fail our task.

An agent may find him or herself in a
hazardous situation, or discover that a
compartment he/she was intending to
route through is inaccessible. If that is the
case, he/she should withdraw to a safe
location and compute a new route.

We also have to account for the fact that
this task may be interrupted. And when
we get control back, the agent may be in a
different location than where we had in-
tended to be.

In agent based modeling there are a dif-
ferent grades of exceptions. I imagine
there are canonical terms for them, but I
classify them as blocks, conflicts, and
punts.

A block exception is when something
external temporarily impedes the pro-
gress of our agent. The task simply bides
it’s time until the blockage has cleared.

method	 movement	 location	 {
	 	 set	 here	 [my	 location]
	 	 if	 {[my	 isNearby	 $destination]}	 {
	 	 	 	 return	 0
	 	 }
	 	 set	 route	 [crewroute	 find	 $here	 \
	 	 	 	 	 $destination]
	 	 if	 {[llength	 $route]==0}	 {return	 -‐1}
	 	 my	 route	 $route
	 	 while	 1	 {
	 	 	 	 if	 {[my	 goal]	 !=	 $destination}	 {
	 	 	 	 	 	 return	 2
	 	 	 	 }
	 	 	 	 if	 {[my	 hazard_detect]}	 {
	 	 	 	 	 	 my	 withdraw
	 	 	 	 	 	 return	 2
	 	 	 	 }
	 	 	 	 if	 {[my	 isNearby	 $destination]}	 {
	 	 	 	 	 return	 0
	 	 	 	 }
	 	 	 	 yield	 1
	 	 }
}

A conflict exception is when two tasks
require the same resource for mutually
exclusive goals. A higher power sorts out
which task gets priority. But the loser of
that battle will have to restart from
square one the next time it’s called.

A punt exception is one which termi-
nates the task because the conditions that
justify the task’s existence are no longer
valid.
Standardize Yield and Return Codes

One trouble with coroutines is that once
they return a value, they cease to exist.
Calling a completed coroutine will cause
an error.

In my systems, I
use the code re-
turned to tell us the
fate of the coroutine.
An active coroutine
yields a 1. Any
other value indi-
cates that the corou-
tine terminated, and
will need to be re-
started.

The caller can interpret these codes, and
react accordingly.
Task Nesting

It’s very useful to break large goals into
smaller goals that can be reused. We often
have a crew member go out to a device,
operate it, and come home.

Fighting with a large army under your
command is nowise different from fighting
with a small one: it is merely a question of
instituting signs and signals.
--Sun Tsu, The Art of War, Chapter V

Code Meaning

-‐1 Exception

0 Normal	
Exit

1 Running

2 Waiting

3 Blocked

Page 7 / 10

But our toplevel task may want to re-
spond to exceptions in it’s own way.

I’ve found it useful to employ a bit of
syntactic sugar in the form of the subtask
command.

With subtask, we assume that a posi-
tive value (even if non-one) will not allow
the program to continue. A zero indicates
success, and allows the program to con-
tinue. A negative value represents an ex-
ception that should be punted.

Without subtask, the method above
would look like:

(And continue on to fill the entire col-
umn on the right.)

method	 attend	 {objective}	 {
	 	 set	 location	 [objective	 location	 \
	 	 	 	 $objective]
	 	 #	 Go	 to	 the	 device
	 	 while	 1	 [subtask	 movement	 $location]
	 	 #	 Operate	 the	 device
	 	 while	 1	 [subtask	 mitl	 $objective]
	 	 #	 Return	 home
	 	 set	 home	 [my	 home]
	 	 while	 1	 [subtask	 movement	 $home]	 	
	 	 return	 0
}

method	 attend	 {objective}	 {
	 	 set	 location	 [objective	 \
	 	 	 	 location	 $objective]
	 	 #	 Go	 to	 the	 device
	 	 while	 1	 {
	 	 	 set	 result	 [movement	 \
	 	 	 	 	 $location]
	 	 	 if	 {	 $result	 <	 0	 }	 {	
	 	 	 	 	 return	 -‐1
	 	 	 }	 elseif	 {	 $result	 >	 0	 }	 {
	 	 	 	 	 yield	 1
	 	 	 }	 else	 {
	 	 	 	 	 break
	 	 	 }
	 	 #	 Operate	 the	 device
	 	 while	 1	 {
	 	 	 	

The implementation for subtask is as
follows:

Note, subtask doesn’t run code, it
builds code. That block of code becomes
the body of the while loop.

subtask can take options (positive,
negative, and zero) which allow the de-
veloper to control the agent’s reactions to
the sub-task’s return code.
High Level Tasks

Agents often have to deal with compet-
ing goals. Because we’ve gone through
the trouble of standardizing our return
and yield codes, it’s easy to detect when
one goal is running, and could poten-
tially block another task from running.

Let’s refactor our methods so that we
have three top level goals. One is to “at-
tend”. If the agent is assigned a device,
he/she will walk to and operate the de-
vice. How the agent receives the assign-
ment can vary. It is quite possible that af-
ter completing the first assignment the
agent could have received a communica-
tion to do a second or a third. So it

proc	 subtask	 {cmd	 args}	 {
	 set	 positive	 {yield	 1}
	 set	 negative	 {return	 $result}	
	 set	 zero	 {return	 0}
	 foreach	 {f	 v}	 $args	 {set	 $f	 $v}
	 foreach	 f	 {
	 	 	 positive	 negative	 zero	 cmd
	 }	 {
	 	 lappend	 replace	 %${f}%	 [set	 $f]
	 }
	 return	 [string	 map	 $replace	 {
	 	 set	 result	 [{*}%cmd%]
	 	 if	 {	 $result	 <	 0	 }	 {%negative%}	 \
	 	 elseif	 {	 $result	 >	 0	 }	 {%positive%}	 \
	 	 else	 {%zero%}
	 }
}

Page 8 / 10

wouldn’t be very efficient to walk home
after each time.

The next goal is to return home, but
only if we have nothing to do.

Preempting either goals is the safe-
ty_check. safety_check is a reflex that
will cause the agent to flee a space if he or
she detects danger.

We also include a method “task” which
will kick off a coroutine if it isn’t operat-
ing yet, or evaluate one iteration of a
coroutine that does exist.

You can see all of this put together in an
example on the right.
Multitasking

All of this is work as built up to a sys-
tem for multitasking that, while power-
ful, turns out to be simple and relatively
uninteresting. Because coroutines are en-
gaged in cooperative multitasking the
loop for running an entire simulation
with a few hundred agents can be as
simple as:

In the IRM I have a routine no more
complex than this that runs 40 odd crew
members, 30 automated devices (which
also behave as agents), and still operates
in real time3.

proc	 simulation_step	 {}	 {
	 	 physics_step
	 	 foreach	 agent	 [agent::list]	 {
	 	 	 	 $agent	 behavior
	 	 }
}

Page 9 / 10

3 Granted with a lot of the heavy calculations optimized in C.

method	 attend	 {}	 {
	 set	 objective	 [my	 get_assignment]
	 if	 {	 $objective	 eq	 {}	 }	 {return	 0}
	 set	 location	 [objective	 \
	 	 	 	 location	 $objective]
	 	 #	 Go	 to	 the	 device
	 	 while	 1	 [subtask	 \
	 	 	 	 {movement	 $location}	 negative	 {
	 	 	 	 	 	 record_failure	 $objective
	 	 	 	 	 	 cancel_assignment	 $objective
	 	 	 	 	 	 return	 0
	 	 	 	 }]
	 	 #	 Operate	 the	 device
	 	 while	 1	 [subtask	 mitl	 $objective]
	 	 cancel_assignment	 $objective
	 	 return	 0
}

method	 go_home	 {}	 {	
	 	 set	 home	 [my	 home]
	 	 while	 1	 [subtask	 movement	 $home]	 	
	 	 return	 0
}

method	 safety_check	 {}	 {
	 	 if	 {![my	 hazard_check]}	 {return	 0}
	 	 set	 dest	 [my	 escape_route]
	 	 my	 route	 [route	 $dest]
	 	 while	 1	 {
	 	 	 	 if	 {![my	 hazard_check]}	 {return	 0}
	 	 	 	 yield	 1
	 	 }	 	
	 	 return	 1
}

method	 task	 name	 {
	 set	 coro	 [self]/coro_$name
	 if	 {[info	 command	 $coro]	 ==	 {}	 }	 {
	 	 return	 [coroutine	 $coro	 [self]	 $name]
	 }	 else	 {
	 	 return	 [$coro]
	 }
}

method	 behavior	 {}	 {	
	 	 my	 variable	 task_status	 	
	 	 set	 task_status	 {}
	 	 foreach	 task	 {
	 	 	 	 safety_check
	 	 	 	 attend
	 	 	 	 go_home
	 	 }	 {
	 	 	 	 set	 status	 [my	 task	 $task]
	 	 	 	 dict	 set	 task_status	 $status
	 	 	 	 if	 {$status	 >	 1}	 break
	 	 }
	 	 return	 $task
}

Conclusions
Coroutines, while not new as a concept,

are new to Tcl. In this paper I have have
demonstrated that coroutines can be used
to run complex discrete time simulations.
And not just run, but run simply.

Coroutines are particularly well suited
for simulations:
• That require multitasking across multiple

agents
• Operate in discrete time
• Are amenable to cooperative multitasking.

Bibiliography
de Moura, Ana Lu ́cia and Ierusalimschy,
Roberto, 2004, Revisiting Coroutines,
(PUC-RioInf.MCC15/04 June, 2004),
http://www.inf.puc-rio.br/~roberto/docs/M
CC15-04.pdf, (October, 8 2011)

Sofer, Miguel and Madden, Neil, Corou-
tines, (Tip #328, Revision: 1.6),
http://www.tcl.tk/cgi-bin/tct/tip/328.html,
(October 9, 2011)

Page 10 / 10

http://www.inf.puc-rio.br/~roberto/docs/MCC15-04.pdf
http://www.inf.puc-rio.br/~roberto/docs/MCC15-04.pdf
http://www.inf.puc-rio.br/~roberto/docs/MCC15-04.pdf
http://www.inf.puc-rio.br/~roberto/docs/MCC15-04.pdf
http://www.tcl.tk/cgi-bin/tct/tip/328.html
http://www.tcl.tk/cgi-bin/tct/tip/328.html

