
 
 

 

 
 
 

Abstract—The National Superconducting Cyclotron 
Laboratory (NSCL) is an NSF funded laboratory that performs 
basic nuclear physics research on nucleus-nucleus collisions 
innvolving systems that are far from stability. The operation 
of the NSCL has been funded by the National Science 
Foundation since 1980. 

The NSCL has developed and used several Tcl based 
applications and tool.  These tools are used by a broad 
community of researchers and accelerator technologiest This 
retrospective will examine the impact of presenting the NSCL 
staff with Tcl based tools and toolkits. A speculative look 
forward at the role of Tcl within the NSCL as it constructs the 
DOE funded Facility for Rare Isotope Research (FRIB) 

 

I. INTRODUCTION 
The National Superconducting Cyclotron Laboratory (NSCL) 
is an National Science Foundation (NSF) funded laboratory 
that conducts basic research in Nuclear Physics.  Software 
based on and using Tcl have been used at the NSCL for a 
number of years.  The purpose of this paper is to describe the 
ways in which Tcl has been and is now used at the NSCL. Tcl 
application case studies will also be provided where 
appropriate.  
 
 In December 2008, the Department of Energy (DOE) selected 
Michigan State University and the NSCL as the location of a 
new laboratory; the Facility for Rare Isotope Research (FRIB).  
FRIB is scheduled to begin operation around 2018.  The 
potential application areas and barriers to the use of Tcl will 
be discussed as well. 
 
The remainder of the paper will be organized as follows: 
• The NSCL will be described with a layman’s introduction 

to the motivation behind the research this done here. 
• A brief overview of the FRIB project, its purpose, 

schedule and remaining administrative hurdles will be 
given. 

• A historical perspective of the introduction of Tcl to the 
NSCL will then be described. Some speculative work in 
progress will be described. 

• Taxonomy of the use of Tcl at the NSCL will be 
presented along with case studies illustrating each of the 
elements in this taxonomy. 

 
 

• Conclusions about the use of Tcl in the past will be 
presented along with a bit of crystal ball gazing regarding 
the role of Tcl in the future of the NSCL/FRIB. 

II. THE NSCL AND OUR RESEARCH 
What is now the NSCL first started producing accelerated 
nuclei 1961 when it commissioned the K-50 cyclotron.  In 
1982 the NSF funded the construction of a K500 (500MeV/A) 
cyclotron, and later (1989) a K800 cyclotron which 
outperformed its design specifications and was therefore 
renamed the K1200.  An n NSF grant in 2000 supported 
running a coupling line between the K500 and K1200 to 
improve primary beam intensity and to build a fragment 
separator which started the NSCL on its career as a radioactive 
beam facility. 
 

 
Figure 1 Schematic of the accelerator and separator 

Figure 1 above shows a schematic of the beam production 
facility.    An ECR ion source (not shown in the schematic) 
injects partially stripped ions into the K500 at the top center of 
the picture (a small grey human figure is provided for scale).  
Beam extracted from the K500 is transported along a coupling 
line to the K1200 where it is run through a foil that increases 
the ionic charge.  The more fully stripped  ions are injected 
into the K1200 (lower left).  The K1200 beam is then 
extracted and is transported to a target at the entry of the 
A1900 fragment separator (running lower left to upper right).  
The fragment separator selects the desired secondary beam 
which is then transported to the experimental target. 
 
Figure 2 shows a floor plan of the experimental part of the 
facility.  Each experimental area (to the right of the A1900 
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fragment separator in the floor plan) has an experimental 
target as well as detector and electronics packages that are 
specialized for specific types of experiments and the apparatus 
in that area. 

 
Figure 2 NSCL experimental area floor plan 

A. Why do radioactive beam experiments. 
In this section we present a brief motivation for the research 
done at the NSCL. 

 
 
Figure 3 chart of the nuclei 

Figure 3 above shows a chart of the nuclei. Each isotope 
consists of a fixed number of protons (Z) (which identify the 
element) and neutrons.  The sum of the neutron and proton 
count is referred to as A which is roughly the nuclear mass.   
In figure 3 above, stable nuclei are in black.  Those which are 
lighter or darker shades of grey are unstable.  
 
There is a strong belief amongst astrophysicists that most of 
the heavy elements in the universe have been, and still are 
being created in nuclear reactions in stars, and that those 
processes involve decay chains with nuclei far from stability.  
The nuclei involved in the production of stable heavy elements 
are shown in Figure3 in the bands labeled rp-process and r-
process as well as a band,  not labeled that participate in the p-
process.  An understanding of the rates of these decays and, 
where several decays are possible, the branching-ratios 
between these decays is critical to an understanding of how 

the elements we now see were created and what their actual 
abundances are.   
 
Collisions of heavy ions and unstable neutron rich nuclei 
create momentary nucleon densities that approach the 
densities and compositions of supernovae and even neutron 
stars.  The number of nucleons present is already sufficient to 
help reach an understanding of the liquid-gas phase transition 
in nuclear matter as it occurs under these stressed conditions. 
 
In short we can imagine the work done at the NSCL as 
bringing the heavens to earth, allowing us to study what 
happens in the interiors of stars that are, for now, only 
observable at a distance. 
 

B. Stopped and Reaccelerated Beams 
 
The technique used at the NSCL to create radioactive isotope 
beams is called projectile fragmentation.  This is because we 
select from the remains of the projectile after it has interacted 
with the A1900 production target.  This has the advantage that 
the secondary beam will have energies that are essentially 
those of the primary beam.  The secondary beam can therefore 
be easily transported from the separator  exit to the 
experimental target. 
 
Projectile fragmentation requires beams of sufficient 
minimum energy.  This minimum required energy arises, 
among other things, from the fact that in order to get two 
positively charged nuclei to interact, we must jam them close 
enough together that they overcome the electric repulsive 
force between them and come within the much shorter range 
of the nuclear strong force.  For example with a primary beam 
of 16O on a production target of  5Be, a very light projectile on 
a typical production target, this coulomb barrier is already 
20MeV.  In practice we use much heavier projectiles and 
consequently we need higher energies to provide sufficient 
incident energy to create the desired isotopes.   This is because 
the coulomb barrier goes up like the product of the number of 
protons in the two nuclei. 
 
While the resulting energetic secondary beams are useful for a 
broad variety of experiments, there are still a large set of 
interesting experiments for which we would like to have lower 
secondary beam energies.  The NSCL has developed several 
methods to stop these high energy beams (the most energetic 
are moving at about ½ the speed of light)!  We have just 
finished commissioning a reaccelerating LINAC which will 
allow us to study radioactive isotopes at energies from a few 
hundreds of KeV to 5MeV. 



 
 

 

 
Figure 4 Producing low energy radioactive beams. 

 
 
The reacceleration line is shown schematically in Figure 4.  As 
most of the stopping techniques allow the ions to recombine 
with electrons the EBIT charge breeder shown in Figure 4 is 
required to restore a high charge state to the ions so that the 
LINAC can efficiently accelerate the resulting stopped beam. 
Reaccelerated beam experiments are scheduled to start in 
2012. 

III. FACILITY FOR RARE ISOTOPE BEAMS 
Many of the interesting isotopes shown in figure 3 are labeled 
as “Terra Incognita”.  This is because they have not been 
generated at sufficient intensities to allow experiments with 
them to be performed.   This is unfortunate as the r-process is 
believed to take place in this neutron rich realm.   The r-
process is believed to have produced many of the heavy 
elements in the collapsing cores of supernovae.  In the r-
process, as the nuclear matter are compressed, the inner core 
becomes neutron rich and the nuclei in the less dense outer 
core can rapidly capture neutrons (r-process is an abbreviation 
of rapid neutron capture) resulting in very neutron rich, and 
short lived nuclei.  These nuclei decay by sequential β- decay 
which converts neutrons to protons, increasing the atomic 
number (Z) and moving these unstable nuclei step by step 
closer to the line of stability. 
 
Once more the rates of these reactions, the half lives of these 
nuclei are important to an understanding of how stars work 
and how we wound up with the distribution of elements we 
have today.    
 
To create these neutron rich elements close to the neutron 
drip-line requires higher intensity and higher energies than can 
be produced by the accelerator systems at the NSCL.  To meet 
that research need, the Nuclear Science Advisory Council 
(NSAC), in a report presented to the DOE in August 2007, 
recommended that “DOE and NSF proceed with solicitation of 
proposals for a FRIB based on the 200MeV, 400kW 
superconducting heavy-ion driver linac at the earliest 
opportunity.”[1].  In this passage FRIB is an acronym for a 
“Facility for Rare Isotope Beams” and is pronounced eff-rib. 

 
As a result of a competitive proposal process, the DOE 
selected Michigan State University and the NSCL to construct 
this facility in 2008. “The Facility for Rare Isotope Beams 
(FRIB) will be a new national user facility for nuclear science, 
funded by the Department of Energy Office of Science (DOE-
SC) Office of Nuclear Physics and operated by Michigan State 
University (MSU). FRIB will cost approximately $600 million 
to establish and take about a decade for MSU to design and 
build.”  [2] 
 
Figure 5 shows the schedule for the construction of this 
facility.  The milestones labeled CD-n are critical decision 
reviews. These are making or break reviews of the project 
progress.  The NSCL has successfully passed the CD-1 review 
and is actively preparing for CD-2 at the time this paper has 
been written.   CD-3 approves the start of the construction and 
CD-4 is a pre-startup approval.  
 
Michigan State University as further committed funds to 
support an early start of conventional construction in 2012 
approximately one year ahead of schedule. 

 
Figure 5 FRIB timeline. 

 

 
Figure 6 FRIB as planned. 



 
 

 

Figure 6 shows the current plan for FRIB.  The plan allows for 
a re-use of the experimental areas and much of the fragment 
separator, by placing a stacked multistage LINAC driver in a 
tunnel to the south of the current building.  The plan also 
provides for a later upgrade to the LINAC energiesw by 
adding space for extensions to two of the planned LINAC 
segments. 
 
The future looks bright for making the early completion date 
of late 2017 paving the way for physics runs to start in 2018. 

IV. TCL AT THE NSCL 

A. History of the First Adoption 
The first use of Tcl/Tk at the NSCL traces back to the 
commissioning of the S800 spectrograph.  The S800 is used 
by over 50% of the experiments at the NSCL. The 
spectrograph is shown in figure 7 below: 
 

 
Figure 7 S800 Spectrograph 

For scale, note the three experimenters at the base of the 
spectrograph. 
 
The S800 is usually run with two detector packages. The white 
box at the top of the S800 is the focal plane of the 
spectrograph and contains 2-d position sensitive detectors as 
well as particle Id detectors, and instrumentation to provide 
time of flight information through the spectrograph.  The 
experiment target is located at the base of the spectrograph 
and is often surrounded by an experiment specific detector 
package. 
 

In 1996 when the S800 was commissioned, the readout 
systems associated with the detector packages were not 
powerful enough to handle both packages while maintaining a 
reasonable dead time.  Therefore it was decided to use a 
readout system for each of the detector packages and to do 
event building via a reflective memory system that connected 
the readout nodes. 
 
The readout computers at that time were controlled by RS-232 
ports that were connected to terminal servers. We needed a 
simple method to provide a control interface to users while 
sending duplicate commands to both systems. 
 
In the previous year, the NSCL had hosted the IEEE 9’Th 
Biennial conference on Real-time Computer Applications in 
Nuclear, Particle and Plasma Physics (RT-95).  At that 
conference, Gene Oleynik et al. presented a paper describing 
the run control system of the FNAL DART data acquisition 
system, a far more distributed system than required by NSCL 
experiments. 
 
The DART team chose Tcl as the basis of an implementation 
of a   group communication protocol inspired by the ISIS 
Distributed Toolkit [3].  They also chose to build user 
interfaces from Tk.  From Oleynik’s paper: “We chose TCL 
because of its extensible interpretive procedures.  For 
graphics, we chose TK…our experience has been that 
interfaces can be built more quickly with TK than from X…or 
Motif…The ocp GUI…took on the order of ½-1 hour...We 
feel this is a big success of the TCL/TK approach.”[4] 
(Capitalization of Tcl and Tk from that paper). 
 
Based on this endorsement of Tcl/Tk and a similarity between 
the applications (the Readout systems could be thought of as a 
group containing two members and communication with them 
implemented as a group communication problem),  the S800 
run control software was implemented completely in Tcl/Tk. 
A low level group communication mechanism was built on top 
of the [socket] command, it was possible to specify an 
arbitrary number of target system for the group (S800 focal 
plane only experiments could then use the same software).  A 
simple state machine was built to manage the system state 
diagram.  On top of all of this Tk was used to build a GUI 
with which the experimenters interacted. 
 
Our experience with using Tcl/Tk for this project was similar 
to that of the Fermilab group.  The entire system came 
together in a matter of a day or so, including the time required 
to learn the few bits of the Tcl/Tk language needed to 
implement the software. 

B. Coupled Cyclotron Facility and adoption of Tcl/Tk. 
Wide-spread use of Tcl/Tk at the NSCL did not occur until the 
software development group was tasked with creating a new 
data acquisition and data analysis tools for the coupled 
cyclotron facility (proposed in 1994 funded in 1996 and 
commissioned in 2001). 
 
The functional goals of this development project included: 



 
 

 

• Breaking the NSCL’s dependency on proprietary 
software (specifically VMS and Tru64). 

• Providing better accessibility to the software in the 
readout computers (which up until now had been 
embedded computing systems with a very minimal 
operating system). 

• Providing near turnkey online analysis solutions with 
a high degree of flexibility with a low accessibility 
threshold to researchers that were not trained 
computer professionals. 

• Provide a high degree of extensibility and 
customizability for all these systems. 

We had as an additional goal to introduce the researchers at 
the NSCL to modern (at the time) programming techniques. 
 
The data Acquisition system was largely implemented in C++, 
introducing object oriented techniques to the researchers 
which, at the time, were largely a FORTRAN speaking 
community.  Each piece of software that required user 
interaction embedded a Tcl interpreter with an extended set of 
commands to control the functions of that program.  This 
philosophy is in keeping with Ousterhout’s original motivation 
for developing Tcl as described in the Preface to [5]. 
 
A block diagram of the data acquisition system as it is 
typically used is shown below in figure 8.  Components that 
embed a Tcl interpreter or that are entirely written in Tcl are 
indicated. 

 
Figure 8 Structure of NSCLDAQ. 

 
The solid arrows represent the flow of event data while the 
dotted lines represent control flow.  Tcl is involved in all but 
two of the nine boxes in figure 8, and in the case of the boxes 
to the right of the figure, each box may represent more than 
one program used by the experiment. 
 
The system was ready for use two years ahead of schedule, in 
1999 as evidenced by a description of the data acquisition 
system and the analysis program SpecTcl in two NSCL 1999 
Annual report articles.  The gain from using Tcl is best 
described by a quote from  one of those articles: 
“Components we provide are often used in ways we did not 
anticipate. This is a good thing. We intend to use the Tcl/Tk 

scripting language as a base command language for all 
components of the system. This allows us to support run-time 
extensions of the functionality of the software and its user 
interface via Tcl/Tk scripting. It also allows support for 
compile time extensions of the command set via C++ wrapper 
classes around the Tcl command registration procedures.  
Tcl/Tk scripting provides a common basis for automating 
tasks within the data acquisition system. The Tk component 
provides powerful GUI creation and modification tools 
available to all interactive components” [6]. 
 

V. HOW TCL AND TK ARE USED AT THE NSCL. 
Tcl and Tk are used in the following ways at the NSCL: 
• An embedded command language for applications. 
• To provide application specific languages and 

configuration languages. 
• To provide enabling components on which pure Tcl/Tk 

scripts can be built. 
• As a scripting language for applications. 
 
The remainder of this section will provide case studies and 
references to the uses of Tcl/Tk described above. 
 
 

A. Tcl/Tk as an embedded command language. 
Embedding Tcl/Tk and application specific extensions as the 
command language for an application was the original intent 
of Tcl.  Using Tcl in this way provides several free benefits: 
• Common flavor of command language across all 

applications. 
• Ability of application users to automate commonly 

performed operations as Tcl scripts and [proc]s. 
• Ability, via the Tk package  facility to provide a GUI 

front end to the application and for the users of the 
application to either extend or replace this GUI with one 
more suited to their use of the application. 

• Ability via a well defined internal API and the [package 
require] command to provide a plug-in architecture that 
provides for extensions to the application base 
functionality, and the ability to selectively add these plug-
ins at run-time. 
 

 
The flagship Tcl/Tk application at the NSCL is nsclSpecTcl 
[8] the online/offline event analysis/histogramming 
application.  Users have extended it in many ways that were 
not originally foreseen in the design including the replacement 
of its visualization package with a Tcl/Tk client called SpecTk 
[9].  Both SpecTcl and SpecTk were described in earlier Tcl 
conferences. 
 

B. Application specific languages and configuration 
 
Applications that operate in this way use Tcl and extensions to 
steer the way they operate.  The normal pattern of usage is that 
sometime during the execution of a program, a Tcl interpreter 



 
 

 

is created and possibly extended.  A script is sourced into the 
interpreter and used to build data structures that define how 
the program will operate. 
 
The readout software for the focal plane of the A1900 
fragment separator uses this technique in its simplest form.   A 
configuration file that consist of a bunch of Tcl [set] 
commands provide values to Tcl variables that are examined 
by the C++ level software and used to instantiate readout 
objects for the various detector packages that can live in the 
A1900 focal plane. 
 
Taking this to its logical extension, [10] describes using Tcl as 
a basis for a domain specific language that describes and 
configures the digitizer devices used in a nuclear physics 
experiment.  The Readout software uses scripts in this 
language to initialize and configure the described modules and 
to construct the operations required to read out those modules 
in response to an event trigger. 
 
The experiment configuration script is also processed 
NSCLSpecTcl selecting the set of event processors required to 
process raw events into parameters, and to turn those 
parameters into an initial set of raw spectra.  This technique 
brings Tcl’s high level of abstraction into the domain of 
defining an experiment leading to what the experimenter 
believes to be ‘programming free’ experimental setups. 
 
Figure 9 shows an actual segment of a configuration script 
used to describe the readout of the Particles And Non-
Destructive Analysis (PANDA) detection system used by the 
Finish nuclear safety organization (STUK)[20]: 
 

 
C. Enabling components and their applications 

An enabling component usually takes the form of a Tcl 
loadable package.    The package is normally written by the 
software development group and provides access to some 
facility that is not easily accessed by Tcl itself. Researchers 
use these packages to write pure Tcl scripts to perform 
operations that they would otherwise find difficult. 
 

While several packages have been written that could be 
classified as enabling components (including plug-in for 
nsclSpecTcl), this section will focus on the capabilities and 
application of two of them, Vme and epics. 
 

1) Vme package 
Many hardware components in experiments run at the NSCL 
are VME cards.  VME bus started out as a multi-master 
computer bus and is now an ANSI/IEEE standard 
(ANSI/IEEE 1014-1987).  As used at the NSCL, however, this 
bus is largely an instrumentation bus, providing power and 
data transfer to a host system for experimental electronics. 
 
The Vme package provides access to this backplane from Tcl 
scripts.  The package itself was described in [11].  It provides 
a mechanism for declaring interest in address windows within 
the VME and performing simple pokes and peek operations 
within those windows. 
 
Researchers typically use this package to build graphical user 
interfaces to control devices that are not in the primary event 
data flow.   Figure 10 below is a screen shot from one of these 
applications, the discriminator control program for the 
CAEsium iodide Detector Array (CAESAR) [12]: 
 

 
Figure 10 CAESAR discriminator control panel. 

 
This application was written by Andrew Ratkiewicz and 
NSCL nuclear physics graduate student. 
 

2) Epics Tcl package 
 
The Experimental Physics and Industrial Control System [13] 
(EPICS) is a control system in common use at accelerator labs.  
EPICS is used to control accelerators and also to provide 
control over some experimental devices.  For example, the 
S800 magnets are all controlled via EPICS. 
 

madc create dsssd1.x  -base 0x40000000 -id 4 -ipl 0 
madc config dsssd1.x  -gatemode common -gategenerator 
disabled 
madc config dsssd1.x  -inputrange 8v 
madc config dsssd1.x  -timestamp on -timingsource vme \ 
                                     –timingdivisor  $madcTimeDivisor  
madc config dsssd1.x  -thresholds $thresholds(dsssd1.x) 
stack create event 
stack config event -trigger nim1  
stack config event -modules [list  fadc  
stack config event -delay 40 
set         adcChannels(dsssd1.x) $xstrips  
lappend adcChannels(dsssd1.x) timestamp 
 
Figure 9 Sample Experiment configuration 

 



 
 

 

For some experiments it is critical to be able to know the state 
of the beam line leading up to the experiment or the state of 
the experimental devices themselves.  Furthermore, 
accelerators tend to be one-of-a-kind devices and when 
commissioning them it is not always clear what human 
operator interface is actually required.  The Epics Tcl package 
was built to address these needs.  It enables physicists 
accelerator physicists and operators to rapidly build monitor 
and control interfaces via Tcl/Tk as well as via snit epics 
specialized mega widgets that are provided with the package. 
 
The package itself was presented at Tcl 2007[14].  It provides 
mechanisms to access EPICS channels (called Process 
Variables in EPICS nomenclature), to bind them to variables 
and to bind traces to them.  A feature of the EPICS package 
that supports programming in the large is the ability for a one-
to-many binding of process variable to Tcl variables, along 
with application wide process variable coalescence.  This 
allows the programmer to specify an Epics channel, and link 
variables to it without being concerned about whether the 
execution trace of the program has already linked to the same 
process variable elsewhere.  Changes in the underlying 
process variable update all linked variables.  Changes in any 
one linked variable set the corresponding Epics process 
variable eventually triggering and update of all process 
variables. 
 
The Epics package played a key role in the debugging and 
commissioning of the ReA3 re-accelerator.  Two accelerator 
operators build the entire control and monitoring console for 
ReA3 as a set of Tk applications build on the Epics package. 
 
Figure 11 below shows a screen shot the ReA3 beam line 
monitor application.  
 

 
Figure 11 The ReA3 ROCS beam line monitor application. 

3) SpecTcl 
SpecTcl itself can be thought of as both an enabling 
technology and an application.  Daniel Bazin has implemented 

a commonly used graphical user interface front end on top of 
SpecTcl.  This front end is shown below in Figure 12:  

 
Figure 12 SpecTcl GUI front end 

Many other experimental groups have leveraged SpecTcl, and 
Tk to produce control panels of their own that select data 
sources or steer the analysis performed by their experiment 
dependent code. 

D. Pure Tcl uses 
 
Tcl and especially Tk are also used as a language to write 
complete applications.  One very successful application is an 
access controlled ‘TclServer’.  This is simply a Tcl script that 
accepts connections from a well defined set of client and 
accepts Tcl commands over a socket from them.  The server is 
often used in conjunction with a Tcl script that manages a pool 
of server ports and serves as a directory for those ports 
enabling clients to discover the ports on which various 
applications are listening for connections. 

VI. CONCLUSIONS AND A LOOK FORWARD 
 
To date, it is safe to say that Tcl/Tk have removed a great deal 
of the programming load from the software development 
group at the NSCL.  That load has been transferred to end user 
community by a mixture of tool and application building.  An 
educational program to teach the basics of Tcl to the first 
generation of graduate students was also useful as knowledge 
tends to be passed down from one generation of graduate 
students to the next. 
 
The transfer of programming load from a software 
development group to the user community is only possible in a 
community that has a relatively high technical level.  The 
NSCL research staff fit that profile.  In our community the end 
users were actually grateful for the empowerment that Tcl/Tk 
and the tools we wrote provided.  It allowed them to quickly 
iterate between versions of user interfaces to see what worked 
best for their application needs.  If we had been involved in 
each iteration of every application, I can only imagine the 
frustration that would set in.  In the end it is likely that model f 



 
 

 

development would have led to a willingness to settle for sub-
optimal solutions. 
 
This empowerment has some cost as well: 
• Bad code can be written in any language and physicists 

are renowned for their ability to demonstrate this fact.  
This has led to a number of Tcl applications that are 
essentially un-maintainable even by the group that wrote 
it.  This also results from the rapid cycling of generations 
of graduate students who are often tasked to develop 
support code for research groups. 

• In addition to knowledge being passed from graduate 
student to graduate student, folklore is passed as well.  
This folklore is usually based on a poorly understood 
solution to a problem that was not well understood in the 
first place.  It can take a great deal of effort to dispel the 
folklore and associated rituals that spring up around it. 

• While the users generally develop user interfaces that 
meet their needs, they do so by learning the minimum 
needed to do this.  This means that: 

o Interfaces might benefit from the use of widgets 
the users are not familiar with. 

o There are no user interface standards between or 
even within groups.  That results in having to 
learn each application from scratch rather than 
being able to start with knowledge gained from 
the use of other applications. 

 
The use of Tcl in the nuclear physics community has been 
largely driven by the widespread adoption of NSCLSpecTcl 
by the NSCL user community.  As such it is appropriate to 
look in to the future to try to understand what the data 
acquisition and analysis environment might be at FRIB. 
 
As users have become more comfortable with object oriented 
techniques, they have also adopted object oriented tools. 
• Root[15], developed by R. Brun at al. at CERN for LHC 

experiments is gaining increasing popularity for late stage 
data analysis amongst all users in the nuclear physics 
community. 

• Python [16] is also gaining in importance as a scripting 
language in the community. 

• Finally with the advent of good Java implementations of 
the Abstract Interfaces for Data Analysis (AIDA) [17], 
physicists are also increasingly turning to Java and its 
large (though sometimes cumbersome) set of libraries. 

 
If Tcl/Tk is to compete it must meet several challenges: 
• One or more OO toolkits must be sold effectively to break 

the impression that Tcl is only an imperative language. 
• Software groups that support nuclear physicists must be 

encouraged to forge interfaces between Tcl and existing 
software such as Root and AIDA based applications such 
as the Java Analysis Studio (JAS) [18], or the Python 
based Hippo Draw [19].  Jacl and Swank may be of some 
use in the AIDA front and a set of effective Tcl bindings 
to Root would help there. 

• The benefits of the simplicity of the Tcl language and the 
speed with which that simplicity enables development 
must be actively sold. 

• The fact that Tcl is an ‘old’ language needs to be placed 
in context.   C is still a highly used language, however it 
dates from 1969-1973 while Tcl originally emerged in 
1988. 

 
In conclusion, I believe that Tcl has provided a great deal of 
benefit to the nuclear physics community.  If, however it is to 
continue to be of use to that community there are several 
significant challenges and hurdles that must be overcome. 
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