
Efficient Communication Strategy of Enterprise TCL/TK
Application with Multi Process System:-A Study

Kumar Gaurav, Tushar Gupta, Madhur Bhatia

Mentor Graphics Corporation

Abstract 1. Introduction

The GUI tool of Veloce emulation system is
a TCL/TK based application. The Veloce
software has a complex multiple process
distributed architecture. The Inter-Process-
Communication (IPC) within the software
components involves frequent and bulky
data transfers between the processes.
VeloceGUI on one hand needs to update its
state very frequently based on responses
from some of the software components and
emulation runtime system, and on the other
hand needs huge on demand data transfer
from other set of servers.

The paper elaborates how to use different
communication methods to get maximum
performance with minimum memory
utilization. The paper also discusses how the
TCL/TK based GUI interacts with larger
client-server ecosystem, communicating
with each other, using a sophisticated
message passing system

Glossary

GUI – Graphical User Interface

IPC – Inter Process Communication

RDS – RTL Data Server

WDS – Wave Data Server

There are two types of communication
mechanism used by VeloceGUI: –

i) TCL Sockets
ii) Message passing library built over

C-Sockets

Socket Communication consists of two
steps:

i) Exchanging of data
ii) Processing of data

Exchanging and processing of data between
client and server through socket
communication, involves lot of challenges
such as optimization of time, speed, memory
and maintaining backward compatibility.
Processing of data requires, parsing of data
to find the actual command, that client has
passed to the server for processing. Parsing
of data may take significant amount of time
if the frequency of communication is high;
however this can be optimized to get fast
response from the server

VeloceGUI communicates with RTL-Data
Server (RDS) and Wave Data Server (WDS)
processes through raw socket interface using
the TCL library functions, as these involve
bulk data transfers, of rtl design connectivity
information and waveform data. This
interface is optimized for data transfer
efficiency, as the volume of data is huge.
The frequency of communication is
generally on demand and numbers of

commands are lesser between GUI
application and RDS/WDS. Thus the time
overhead of command parsing is minimal
and therefore bulk data is transferred in most
efficient way. At the same time most of the
intensive databases loading and data
processing tasks are out-sourced to the
servers, reducing the overall memory foot-
print and response time for VeloceGUI
application.

For interactive emulation control and
communication, VeloceGUI uses C/C++
API interface (also called VeloceAPI),
which is a shared library system. The
VeloceAPI system interacts with other
components of Veloce runtime system,
using a message passing system (called
messaging systems) built over C-sockets.
This communication interface is mainly
designed for fast interactive response, as the
number of command and communication
frequency is larger between GUI and Veloce
runtime system. The design eliminates time
spent in parsing the command level data
through interface definition mechanism. The
messaging system also takes care of
maintaining backward compatibility within
different servers/clients. The Messaging
System sockets are registered in the TCL
Event Loop to enable continuous polling on
the messaging system sockets without
blocking the GUI.

In this paper, we will discuss the various
aspects of communication of GUI with
RDS/WDS using TCL raw sockets and
Veloce runtime system using message
passing system built over C-sockets. We
will also discuss the issues that were
resolved during the development.

2. Communication between GUI
and RDS/WDS over raw sockets

RDS and WDS are rtl-data-server and wave-
data-server. These servers are meant for
storing large databases corresponding to
RTL design hierarchy and their waveform
data.

Our emulation GUI shows the RTL design
hierarchy and waveform data in
hierarchy/signal browser and wave browser
respectively. For the population of
hierarchy/signal tree and waveform data,
Veloce GUI communicates with RDS and
WDS through raw sockets. GUI initiates the
socket connection between itself and
RDS/WDS process when the need arises i.e.
when the first query arises for the
RDS/WDS. Until then there is no
connection between these processes. After
the connection is set, GUI creates different
commands and send them to RDS/WDS.
These commands are used to populate the
RTL design tree structure for
hierarchy/signal browser and waveform data
for wave browser. As the command reaches
the RDS/WDS, it parses the command,
process and fetches the corresponding data
and provides the data to GUI. GUI remains
in blocking state till the processing is
completed by RDS/WDS. As the data
reaches the GUI end, GUI populates its
corresponding database and displays the
results in hierarchy/signal browser if
provided data is from RDS, or in wave
browser if provided data is from WDS.

1.a Communication of GUI with RDS/WDS
using Sockets

The code snippet shown below illustrates,
how the connection establishes between
GUI and RDS/WDS

Adding signal to wave window.
$wave_data_obj add_to_wave $hierarchy

This proc will first check that the connection is
established between wave data server and GUI or not. If
not then it will connect both the servers and then will send
the command.

itcl::body
wave_data_server::add_to_wave {args} {
if {$d_wave_server_id} {
 if {[catch {eval $this wave_server \
 $args} msg]} {

return “error $msg”
 }
 } else {
 if {[catch {wave_server_connect} \
 mesg]} {
 return $mesg
 }
 set d_wave_server_id $mesg
 if {[catch {eval $this \
 wave_server $args} msg]} {

 return “error $msg”
 }
 }
}

In the code above when the first query arises
for the wave server i.e. add signal to wave,
then before sending the command to the
corresponding servers, GUI checks for the
server id, if it exists then GUI sends the
command otherwise it establishes the
connection between itself and the server and
then executes the command.

The communication between GUI and
RDS/WDS is a blocking communication, it
means that GUI will have to wait till
RDS/WDS processes and provides the data.
When a user submits a request, he has to
wait for that request to complete. As RDS
and WDS are dedicated database servers
serving the GUI only, so providing the data
to GUI does not take much time. When user
submits the tasks, GUI creates its
corresponding command and sends to these

servers. These servers fetch the data and
send the results back to GUI without taking
much time.

These are the list of tasks, which need
communication over raw sockets with
RDS/WDS

� Expanding any hierarchy in design
hierarchy tree.

� Searching all the signals of a
module.

� View designs in schematic and
netlist graphical view.

� View waveform of signals in wave
window.

When user gives any such task to GUI, then
user does not want to wait for the
notification from the GUI- about finishing of
the tasks, but user wants to see the results
immediately and will not mind if he is
blocked from submitting new requests for
the small time interval during which the
request will be served.

The frequency of communication and
number of commands are lesser between
GUI application and RDS/WDS. These
servers are created only to entertain the user
tasks, for which user want to see the result
immediately. The syntax of these commands
is also simple, thus the time overhead of
command parsing is minimal, therefore bulk
data is transferred in a most efficient way.
RDS/WDS read big intensive databases so
their loading time and data processing time
remain outside GUI bring up time, reducing

the overall memory foot-print and response
time of VeloceGUI application.

3. Communication between GUI
and Veloce Runtime System using
Message Passing System

Veloce Runtime System interacts with
VeloceGUI using C/C++ API interface (also
called VeloceAPI), which is a shared library
system. VeloceAPI system interacts with
other components of Veloce runtime system,
using a message passing system built over
C-sockets.

Emulation GUI, apart from displaying
design hierarchy and waveform, also does
many critical tasks, which are generally
required from the GUI of Emulation
product. These tasks involve

� Compiling the RTL design

� Keeping the GUI state updated

� Running the Emulation

� Downloading the Emulation
database

� Downloading the Memory in the
design

� Downloading and Updating the
Trigger into hardware

� Getting and Setting the value of the
register

� Adding break points in the design

For executing these tasks GUI
communicates with Veloce runtime system
through VeloceAPI, which is dynamically

linked shared object library. GUI access
Veloce runtime system through a message
passing system (Messaging System) built
over C sockets. The communication APIs
are generated using a sophisticated compiler
and socket management is done internally
inside the messaging system library. The
messaging system library provides the
mechanisms to register the messaging
system sockets to the event loop of GUI
developed in TCL/TK. As these sockets get
registered in TK event loop, then all the
functions in Veloce runtime system can be
accessed through VeloceAPI interface by
the GUI and through the Messaging System
interface by the VeloceAPI. All the calls to
access the VeloceAPI functions are
asynchronous calls. The VeloceAPI
manages the launching/terminating of
Veloce runtime system. The VeloceAPI uses
a predefined protocol with the GUI to
unblock while it is waiting for the data from
the Veloce runtime system. Thus the GUI
does not wait till the processing of the task
is done by Veloce runtime system. GUI can
be used for other purpose, till the time
callback comes from Veloce runtime
system. GUI remains in non blocking state.

2.a Communication of GUI with Veloce
Runtime System using Messaging System

The code snippet shown below illustrates,
how GUI communicates with Veloce
runtime system using VeloceAPI message
passing system

// VeloceAPI Interface Code

int RTS_evalcmd (ClientData cld,
Tcl_Interp *intrp, int argc, char**

argv) {

 ……………………
 ……………………
 sts = RTS_eval (argv[1]);
 RTS_WaitForCallbak(wait);
 If(wait == true){
 Tcl_SetVar(intrp,hastowait,”1”,
 “TCL_GLOBAL_ONLY”);
 } else {
 Tcl_SetVar(intrp,hastowait,”0”,
 “TCL_GLOBAL_ONLY”);
 }
 ……………………
 ……………………
 Return sts;
}

TCL CODE

incr task_queue 1
set retval [RTS_evalcmd $cmd]
if{$retval !=0}{
 return –code error $retval
 incr task_queue -1
}
if {$retval == 0 && $hastowait == 1}
 wait_for_callback
 release_prompt
} else {
 incr task_queue -1
}

In the code above, the GUI process invoked
the commands of VeloceAPI with the task
that needs to be processed in Veloce runtime
system. VeloceAPI interface just sends the
task to Veloce runtime system. The Veloce
runtime function accepts the task and sends
the acknowledgement for the acceptance. A
callback function is registered which is
being called when the processing of task is

being done by the Veloce runtime system.
If the processing of the task requires time
then TCL global variable “hastowait” is set
by the VeloceAPI interface. After the status
is being returned back to GUI then GUI just
checks the return status and value of
“hastowait” variable. If it is set then GUI
called the proc wait_for_callback and
releases the prompt. Now polling is started
at the GUI sockets. The wait_for_callback
proc does vwait on the variable which is
being reset in the callback function. The
prompt is released and can be used for other
tasks.

The list of tasks which is allocated to the
Veloce runtime servers are of the category
for which user can wait for their completion.
These tasks are run in the background
without hindering user interaction with the
GUI. User can use the GUI for other
purpose like exploring the rtl hierarchy and
looking at the waveforms, while these tasks
are being processed in the background. The
processing of these tasks should not block
the GUI.

The processing of these tasks is in
background but it does not mean that user
can wait for long to see the results. User
wants a quick response and notification from
these servers. The number of commands and
communication frequency are larger
between GUI and Veloce runtime system
thus for optimizing the time, our design
eliminates the time spent in parsing the
command level data through interface
definition mechanism. This communication
interface is mainly designed for fast
interactive response.

4. Issues taken care during
development

During the development of the GUI, we
encountered number of issues. Two of the
major issues were

i) Maintaining backward compatibility

ii) Optimizing the time and memory for
blocking servers.

Maintaining backward compatibility is the
major issue which needs to be handled
carefully. Any change in the interface part of
the GUI results in breaking the
compatibility. There should always be
synchronization between the servers and the
GUI process. But if the forward and the
backward compatibility are to be maintained
between the servers and the GUI process,
then instead of synchronizing the GUI and
the servers, you also need to support the
parsing of the older commands by the new
server and parsing of the older data from the
new GUI process. This is the important
point that needs to be taken care of.

Communication between GUI and
RDS/WDS server is blocking. The GUI will
be in hung state till the RDS and WDS
servers are processing the data. The busy
state of the GUI increases the impatience in
user. So it is the important task of the
developer to optimize the processing and
fetching time of the data. RDS and WDS are
database servers. These servers just parse
the command, fetch the corresponding data
and send it back to GUI. As frequency of
commands are lesser thus the time spend in
the parsing is minimal. Developer should
concentrate on minimizing the fetching time
of the data. The fetching time can be
minimized, if the data is stored in a proper
container, which decreases the complexities

during the search. Decreasing the
complexities by using the proper container,
increase the response time of the servers.

5. Conclusion

Performance of the GUI can be increased by
selecting the right communication methods
between the processes. If the communication
between two processes is less and the syntax
of commands are simple then GUI can
communicate with the server using raw
sockets. If the frequency of communication
is large then communication between the
processes can be done using message
passing system.

 Interface compatibility between the
processes also needs to be taken care of
during the development. Thus any change in
the server side of the interface should be
reflected in the client side as well and vice
versa.

