
A CMake-Based Cross Platform Build System for Tcl/Tk

Clifford Yapp
Quantum Research International Inc.

Prepared under contract W911QX-06-F-0057 for the U.S. Army Research Laboratory∗

October 6, 2011

Abstract

Defining build logic for a large software
package in multiple software development
environments entails a large up-front im-
plementation cost and an ongoing mainte-
nance burden. CMake is an open source
cross–platform build tool that allows devel-
opers to define relatively abstract build logic
that is automatically translated into a va-
riety of build system formats, reducing the
burden of supporting multiple development
environments. BRL-CAD’s integration of
Tcl/Tk as a sub-build motivated the develop-
ment of Tcl/Tk build logic compatible with
BRL-CAD’s new CMake logic. This paper
presents a new CMake based build system
for Tcl/Tk and a number of popular Tcl/Tk
extensions.

Introduction

Large scale software projects require the development
and maintenance of build logic governing the compi-
lation, packaging, and installation source code. This
logic is the interface between compilation tools (com-
pilers, documentation processors, etc.) that actu-
ally translate code into usable form and the code it-
self. As such, it is the build logic that must identify
any idiosyncrasies present in the system’s compila-
tion tools and libraries. Once identification is com-
plete, the build system must also generate instruc-
tions the compiler can use to compensate for these
differences. Over the years, each major software de-
velopment platform has created systems to manage
this process. Microsoft Windows has Visual Studio,
Mac OS X has XCode, and most Unix/Linux style

platforms have some form of Make, often augmented
by GNU Autotools. Each of these tools manages this
process for different versions of their specific plat-
form, but generally support only that specific plat-
form. This presents a challenge for cross–platform
projects such as Tcl/Tk, which must build in all of
these environments to achieve their goals.

The responsibilities of the build logic include (but
are not limited to) listing source files, identifying
compilation tools and options needed for files, identi-
fying target libraries and executables, and sometimes
expressing the logic for generating user-installable
packages of the finished package. While specific com-
pilation instructions are typically unique to each op-
erating system and tool, the actual task to be accom-
plished is often the same. For example, when building
a C library, many if not all of the C files themselves
are common to all platforms. Despite this common-
ality, the addition of a single new C file requires al-
tering not one but n build files where n is the number
of build systems that need to be defined in order to
support all targeted development platforms.

CMake[3] is a metabuild system designed to alle-
viate much of this problem by abstracting build logic
one level above makefiles, XCode projects, and Vi-
sual Studio projects. Given portable source code, the
build logic is expressed in a CMakeLists.txt file that
gets translated by CMake into platform native logic
using generators. The developer then uses the stan-
dard system tools to complete the build, and logic
common to all platforms is expressed (and need only
be updated) in a single set of build files.

Tcl/Tk faces precisely this cross-platform devel-
opment problem, making the project a good concep-
tual match for CMake. However, until now Tcl/Tk’s

∗Approved for public release; distribution is unlimited.

existing build systems have proved adequate for most
real-world production use. The marginal benefits of
CMake were insufficient to justify both the effort
of re-implementing Tcl/Tk’s build system and the
disruption of existing work-flows. Given these con-
straints, it is understandable that a cross–platform
CMake build had not already been implemented for
Tcl/Tk.1

Motivation and Requirements

BRL-CAD[1] is an open source Computer Aided De-
sign software package developed by the Ballistic Re-
search Laboratory (now the U.S. Army Research
Laboratory.) BRL-CAD has made extensive use of
Tcl/Tk since the earliest days of its development. Be-
cause so many of BRL-CAD’s core abilities depend
on Tcl/Tk, availability of Tcl/Tk on a targeted plat-
form is a core requirement for deploying BRL-CAD
on that platform. BRL-CAD has a long-standing pol-
icy: if system versions of required libraries are ei-
ther absent or insufficiently modern at configuration
time, the BRL-CAD build will utilize local copies of
those libraries. As part of comprehensive configu-
ration control, testing and dependency management,
BRL-CAD bundles pre–configured copies of all ex-
ternal dependencies. In addition, it has occasionally
been necessary to modify such libraries (Tcl among
them) to support BRL-CAD’s needs or fix bugs en-
countered. Modifications are contributed back up-
stream to the primary development teams when pos-
sible. It is much simpler to use upstream sources
than to maintain a separate version of the source
code. However, BRL-CAD deployment cannot wait
on those fixes propagating through both the upstream
acceptance and customer system upgrade processes.
Moreover, the BRL-CAD developers need to be able
to verify and validate BRL-CAD functionality for a
given configuration that is independent of any plat-
form environment. Consequently, BRL-CAD must be
able to compile its own local copy of Tcl/Tk at need.

Tcl/Tk has supported multiple platforms for
many years, but it currently uses the Tcl Extension
Architecture (TEA) autoconf macro system on plat-
forms using Make and either NMake or Visual Stu-
dio (MSVC) project files for native2 Windows com-
pilation. This presented a difficulty for the BRL-
CAD project in that neither of these systems inte-
grated well with BRL-CAD’s own build systems. As

a workaround, BRL-CAD used custom Microsoft Vi-
sual Studio files on Windows. On other platforms
Tcl/Tk’s own build system was usable with a Make-
file.am wrapper. This approach worked but repre-
sented an undesirable ongoing maintenance overhead.

In the summer of 2010, the decision was made to
unify BRL-CAD’s build system infrastructure into a
single CMake–based system in order to reduce long
term maintenance costs and simplify building Win-
dows releases. As most of BRL-CAD’s core develop-
ers do not use Windows on a day–to–day basis for de-
velopment, a single cross platform build system would
mean build logic written or updated on non-Windows
platforms would stand a good chance of working with-
out extensive effort. However, to achieve the desired
result the new system would have to build not just
BRL-CAD but all of its bundled dependencies – in-
cluding Tcl/Tk.

The initial attempt to integrate Tcl/Tk into a
CMake-based BRL-CAD build made use of CMake’s
ExternalProject Add functionality for triggering ex-
ternal build systems as sub-builds. Had this worked
smoothly on all platforms, it would have been the
simplest solution. With Make–based systems, the at-
tempt was reasonably successful despite the drawback
of requiring installation of the sub-build libraries be-
fore the CMake build itself could proceed. MSVC
proved to be a considerably greater challenge – be-
tween difficulties integrating Visual Studio project
files and the problems involved with running NMake
build scripts from within Visual Studio, the initial
attempts to integrate Tcl/Tk’s own Windows build
files were not successful. Rather than continue to
struggle with the complexity of triggering multiple
external build systems on multiple platforms, focus
shifted to the integrated approach – implementing
enough CMake logic to build the parts of Tcl/Tk
needed for BRL-CAD. Implementing CMake build
logic for Tcl/Tk would reduce the maintenance bur-
den to a single system for all platforms and integrate
well with BRL-CAD’s new build logic.

A CMake-based build system for Tcl/Tk needs to
satisfy the following requirements:

1. Build Tcl/Tk successfully on Windows (using
MSVC), Linux, FreeBSD, Solaris, and Mac OS
X from a single set of CMake build files.

2. Implement enough of the Tcl/Tk–specific com-
pilation macro logic in CMake to support build-

1Twylite’s Coffee project uses CMake to build Tcl, but is primarily focused on Windows: see http://dev.crypt.co.za/coffee
2“Native” in this case being defined as building without the use of Unix compatibility environments such as Cygwin.

ing Tcl/Tk on BRL-CAD’s target platforms –
the goal was to avoid significantly altering the
Tcl/Tk source code itself.

3. Run tclsh and wish from within the build di-
rectory, without requiring installation. This is
a necessity for BRL-CAD, which makes use of
Tcl in its own build logic and must run tclsh
prior to the installation step.

4. Support compilation of Tcl/Tk extensions, ei-
ther in conjunction with BRL-CAD’s own copy
of Tcl/Tk or using a system Tcl/Tk. BRL-
CAD sometimes needs to compile Tcl/Tk ex-
tensions even if a system Tcl/Tk satisfies the
feature and version requirements, hence build
logic for those extensions needs to support both
cases.

Building Tcl/Tk – What It Takes

CMake provides very general mechanisms for express-
ing build logic, but still requires that any project-
specific compiler options be included by the devel-
oper. It also requires that specific functionality tests
for libraries, header checks, function checks, etc. be
set up in the CMakeLists.txt file(s) according to the
needs of the particular software in question. Hence,
the first step in writing new build logic for Tcl/Tk
was to examine the existing build logic to determine
what functionality it provides.

Tcl Extension Architecture – Strong TEA

The venerable TEA system[4] implements a large
number of tests designed to identify platform specific
issues and quirks that may affect Tcl when trying
to build. It also defines standard layouts, platform
specific compiler flags, and a wide variety of other
settings evolved over many years. It utilizes autoconf
from the GNU Autotools suite.

There are two versions of this logic – one in
Tcl/Tk proper whose macros use a SC prefix (SC
standing for Scriptics) and an extended version using
the TEA prefix used with extensions. Both files are
named tcl.m4, and a comparison of the two reveals a
great deal of shared code, but the tcl.m4 with TEA
prefixes is regarded as the “official” TEA. System
functionality tests (such as missing POSIX headers)
required for compilation were of primary interest to a
CMake effort. Detection of installed Tcl/Tk config-
urations is the responsibility of the FindTCL.cmake

macro – that being the case, it was not necessary to
translate TEA macros pertaining to Tcl/Tk configu-
ration detection into the primary CMake build logic.

Because platforms such as HPUX, IRIX, and SCO
Unix are no longer supported by BRL-CAD, logic
specific to supporting them was not needed in the
first–cut implementation of CMake logic. Hence, the
decision was made to only implement as much of
TEA’s functionality as was needed for BRL-CAD’s
target platforms rather than attempting a full TEA
implementation in CMake from the get–go.

Visual Studio, NMake, and MSYS/MinGW

Microsoft Windows–based software compilation is ac-
complished using a wide variety of development en-
vironments, some of which bear little resemblance
to the standard Unix tools. One of the most com-
mon tools for building software on Windows is Vi-
sual Studio’s Integrated Development Environment.
Visual Studio also provides a command line utility
called “nmake” which is similar in spirit to the Unix
style Make. The open source community has pro-
duced compilation environments for Windows, no-
tably GNU gcc within the Cygwin Unix emulation en-
vironment and the MinGW environment (often used
with MSYS) which can produce native Windows bi-
naries. Tcl’s README indicates that the Cygwin
environment is not supported – MinGW/MSYS and
Visual C++ 6.0 + nmake.exe are the standard tools.

Visual C++ compiler flags have little in common
with those supported by most open source C/C++
compilers, and there is not really a direct MSVC ana-
log to the Autotools configure step. Feature detection
on Windows is generally restricted to Unix-style em-
ulation environments such as Cygwin. The introduc-
tion of CMake allowed for many new possibilities in
that respect when building on Windows.

The Structure of Tcl/Tk – Separate But In-
tertwined

The first survey of the Tcl/Tk building system
prompted the question “why not just generate a
tcl config.h header file to hold all of these options,
instead of building up definitions on the command
line?” A small trial quickly demonstrated that there
is indeed a reason for the current Tcl/Tk approach.
Tk makes use of “internal” Tcl headers. In order to
build Tk, it is necessary to specify the location of
a Tcl source archive. These internal Tcl headers in
turn need proper definitions from the configuration

logic. However, when building Tk, a hypothetical
Tcl generated tcl config.h header is not guaranteed
to be present. If the Tk and Tcl builds are treated
as separate systems, Tk would have to re-generate
the Tcl configuration header in addition to its own
and sort out how Tk headers might pull in either or
both tcl config.h and tk config.h. Under the circum-
stances, it is simpler just to supply any needed defi-
nitions via command line arguments to the compiler
– these are passed through to all headers as needed.

Unfortunately, this use of “internal” headers is
also a fact of life in several common third party
Tcl/Tk packages. Tcl/Tk 8.6 is introducing a new
pkgs directory to help address this problem, but that
only avoids the issue by allowing sub-build logic to as-
sume a fixed parent location for source files. Another
approach, used by the Visualization ToolKit (VTK),
is to include local copies of various versions of the
Tcl/Tk internal headers with the package source it-
self. Regardless of the approach used, it complicates
the building (and build logic) of Tcl/Tk extensions.

Beyond straight C compilation, Tcl/Tk exten-
sions also require pkgIndex.tcl files that instruct
Tcl/Tk how to load that particular extension. This
is of particular concern to BRL-CAD, because expe-
rience has shown it is all too easy to create confusing
and dysfunctional situations when multiple Tcl/Tk
installations are present. If Tcl’s auto path variable
happens to be set in such a way that a local Tcl/Tk
finds packages in a system Tcl/Tk installation, the
results can be “almost working” runs of Tcl scripts
that fail in cryptic and mysterious ways.

The CMake Build System

A full introduction to CMake is beyond the scope of
this paper – for a more complete overview see Martin
and Hoffman[2]. The focus here will be on differences
between the TEA build system and CMake, as well
as CMake solutions to particularly tricky compilation
and installation issues.

Running CMake

Building Tcl/Tk with CMake is similar to the TEA
build cycle, but the command line syntax and config-
uration options are somewhat different – see Table 1
for a mapping between TEA options and CMake.3

CMake itself can be run one of three ways
– either as a straight command line program
(cmake), with a curses based interface (ccmake),
or with a graphical interfaces based on the Qt
toolkit (cmake-gui). To specify settings on the
command line, the prefix “-D” is used – e.g.
-DCMAKE INSTALL PREFIX=”prefix” instead of
–prefix=”prefix”. All three front ends support the
same basic abilities, although the Qt graphical inter-
face in particular supports some nice extra features
that help a new developer discover the system. When
using the graphical or curses–based interfaces instead
of the command line, configuration (detecting system
characteristics) and generation (actual writing of the
build files) are separate operations. The command
line cmake binary combines both of these steps into
one operation.

Layout

The basic source code layout of Tcl/Tk has not been
altered, but the location of the CMake files relative
to the source files is different than the correspond-
ing TEA/win32 files. While the unix subdirectory
contains the bulk of the TEA logic and the win sub-
directory contains Windows specific build files, the
primary CMakeLists.txt file that specifies sources for
all platforms lives in the top level directory. The li-
brary and doc subdirectories have their own CMake-
Lists.txt files due to the specialized nature of the logic
they require (more on this later,) but all C source
code is handled by the top-level CMakeLists.txt file.

Macros defining CMake logic specific to Tcl/Tk
are in a new top-level directory called CMake, in
keeping with standard CMake conventions. Among
the files present here is tcl.cmake, which is the closest
match in the CMake logic to the original SC prefix
tcl.m4 file.

For convenience, the current Tcl/Tk 8.6b2 CMake
logic is organized with one higher top-level directory
above Tcl/Tk and other extensions for which CMake
build logic has been implemented. A small CMake-
Lists.txt file in this directory suffices to unify all of
the subdirectories (tcl, tk and any extensions) into a
single build. Among other benefits, this combines all
configure stages for all of the packages into a single
configure step – once a particular test is run for a par-
ticular subdirectory, CMake does not need to repeat

3With CMake, it is generally much better practice to run the configuration and building routines in a working directory
other than the top-level source directory – either a subdirectory in the source tree or a directory entirely outside the source
tree. For examples in this paper, a subdirectory named “build” located in the top-level source directory will be assumed.

Table 1: Configuration Options – TEA vs. CMake
Feature TEA CMake
Run configuration ../configure cmake ..
Specify location of sources –srcdir=”DIR” “DIR”
Installation prefix –prefix= CMAKE INSTALL PREFIX
Executable prefix –exec-prefix=”EPREFIX” Not Implemented
Symlinks for manpages –enable-man-symlinks Not Implemented
Compress manpages –enable-man-compression Not Implemented
Add suffix to manpages –enable-man-suffix=STRING Not Implemented
Enable Threads –enable-threads (off) TCL THREADS (AUTO)
Build Shared Libraries –enable-shared (on) BUILD SHARED LIBRARIES (ON)
Enable 64 Bit support –enable-64bit (off) TCL ENABLE 64BIT (AUTO)
Disable rpath support –disable-rpath (on) N/A
Use CoreFoundation (OSX) –enable-corefoundation (on) TCL ENABLE COREFOUNDATION (ON)
Allow dynamic loading –enable-load (on) TCL ENABLE LOAD (ON)
Debugging Symbols –enable-symbols (off) Several CMake options
Use nl langinfo –enable-langinfo TCL ENABLE LANGINFO (ON)
Enable “unload” command –enable-dll-unloading TCL ENABLE DLL UNLOADING (ON)
Enable DTrace support –enable-dtrace (off) Not Implemented
Package as frameworks (OSX) –enable-framework (off) Not Implemented
Specify encoding –with-encoding (iso8859-1) TCL CFGVAL ENCODING

(Defaults to cp1252 on Windows, else iso8859-1)
Install timezone data –with-tzdata (autodetect) TCL TIMEZONE DATA (AUTO)
Use Aqua windowingsystem (OSX) –enable-aqua (no) TK ENABLE AQUA (AUTO)
Use XScreenSaver –enable-xss (on) TK ENABLE XSS (AUTO)
Use freetype/fontconfig/xft –enable-xft (on) TK ENABLE XFT (AUTO)
Specify tcl source directory –with-tcl= TCL SRC PREFIX

TCL BIN PREFIX
Use X11 –with-x (auto)

it for the next. This painless integration of sub–builds
is an important feature for BRL-CAD, and will hope-
fully prove a useful convenience for other developers.

Running from the Build Directory

One convenience offered by CMake is sophisticated
control over the handling of run–time search paths
(RPATH). With the correct options set, CMake’s
generated build files will set RPATH values to the cor-
rect values for build directory execution when compil-
ing executables, and then automatically adjust them
to the correct installation values when “make install”
is run. This means developers do not even have to set
LD LIBRARY PATH to run from the build directory,
and using built-but-not-installed software within the
build process itself becomes simpler.

Tcl/Tk has an additional complication beyond
standard RPATH issues – pkgIndex.tcl files have to
be correct for build paths in the build directory and
install paths in the installation directory. The CMake
solution implemented for this problem is to generate
two pkgIndex.tcl files – one in the correct place rela-
tive to the build path locations of Tcl/Tk’s files, and
the other in a non-functional (within the build di-
rectory) location with the instructions to install that

version when the time comes for installation. See Fig-
ure 1 for an example of the CMake code that achieves
this for the Tk package.

Man Pages

Tcl and Tk use a shell script named installManPage
to generate a large number of manual pages from
a base set that are present in the Tcl/Tk doc sub-
directory. This poses something of a problem in
that CMake does not know ahead of time what files
this script will generate, and thus cannot incorporate
those generated files into its own install commands.
One option would be to list explicitly every file gener-
ated by the installManPage script in the CMake logic,
but this would be both extremely verbose and a main-
tenance burden. The solution currently in place runs
the installManPage script during the configure stage
and has CMake itself identify all the files generated.
CMake is then aware of the full file list and can gen-
erate proper installation commands. The most sig-
nificant drawback of this approach is that man page
changes impacting the list of generated files require
re-running CMake instead of simply re-running the
build logic, but that appears to be the price that must
be paid in order to allow CMake to perform installa-

pkgIndex . t c l − i n s t a l l a t i o n l o c a t i o n
g e t t a r g e t p r op e r t y (TK LIBLOCATION tk LOCATION ${CMAKE BUILD TYPE})
get f i l ename component (TK LIBNAME ${TK LIBLOCATION} NAME)
f i l e (WRITE ${CMAKE CURRENT BINARY DIR}/pkgIndex . t c l

”package i fn eeded Tk ${TK PATCH LEVEL}
[l i s t load [f i l e j o i n $d i r ${LIB DIR} ${TK LIBNAME}] Tk] ”)

i n s t a l l (FILES ${CMAKE CURRENT BINARY DIR}/pkgIndex . t c l DESTINATION l i b / tk${TK PATCH LEVEL})

pkgIndex . t c l − bu i ld d i r e c t o r y l o c a t i o n
FILE(WRITE ${CMAKE LIBRARY OUTPUT DIRECTORY}/ tk${TK PATCH LEVEL}/pkgIndex . t c l

”package i fn eeded Tk ${TK PATCH LEVEL}
[l i s t load [f i l e j o i n $d i r ${CMAKE LIBRARY OUTPUT DIRECTORY} ${TK LIBNAME}] Tk] ”)

Figure 1: Example CMake pkgIndex.tcl generation logic

tion of the manual pages. BRL-CAD needs CMake
to manage these generated files to ensure they are
incorporated in binary packages, and the current ap-
proach meets that requirement. The routines only
generate the pages if sh and sed are present, so the
MSVC build does not use them.

Package Installation

Tcl includes a number of scripts that are installed in
lib/tcl8, with subdirectories and file names based on
the scripts themselves – for example, http/http.tcl
is installed to lib/tcl8/8.4/http-2.7.5.tm in Tcl 8.5
and lib/tcl8/8.6/http-2.8.2.tm in Tcl 8.6. This loca-
tion and naming appears to be based on the package
version number and required Tcl/Tk version in the
script itself. Initially the destination for each file was
hard–coded in the library CMakeLists.txt file, but
this proved problematic moving from Tcl 8.5 to Tcl
8.6. Current logic uses CMake’s regular expression
facilities and parses the required information from
the tcl scripts themselves. This macro places all tcl8
script files correctly based on their own contents.

SC / TEA Macros

Most of the time spent in converting Tcl/Tk’s build
logic to CMake involved studying the macros in
tcl.m4 and determining how to express their logic
in CMake. After a few false starts a systematic ap-
proach proved necessary – a tcl.cmake file was orga-
nized along the same lines as tcl.m4, and whenever
a test from tcl.m4 proved necessary the correspond-
ing functionality was implemented in tcl.cmake. As of
the time of this writing all SC tcl.m4 macros have not
been implemented (see Table 2) but enough of them
exist to successfully build on BRL-CAD’s target plat-
forms and more will be implemented if needed. Some
of the TEA functionality (in particular, identifying

Tcl configurations) has been expressed elsewhere in
the new CMake build.

Dependent Options

Another feature available in CMake is a type of op-
tion that is displayed or not displayed based on values
assigned to other options - a dependent option. Tk’s
CMake build logic makes use of this feature for fea-
tures requiring the presence of X11 - the CMake GUI
will not list those options for the user if the current
windowing system is Win32 or Aqua. The Xft option
is actually conditional on multiple variables - the Tk
windowing system must be X11 and both xft and
Freetype need to be found for TK ENABLE XFT to
be displayed as an option. The code that achieves
this is displayed in Figure 2.

Tcl/Tk Extensions

CMake uses pre–package routines, typically in files
named according to the FindPKG.cmake template,
and the find package command to locate system in-
stallations of packages and libraries. CMake includes
a FindTCL.cmake, but it proved insufficient for BRL-
CAD. This necessitated the implementation of a new
version, which has been submitted for upstream in-
clusion in CMake. Its distinct features include:

1. Detection of the windowing system in use by the
found Tcl/Tk version (Aqua, X11, etc.). This
is particularly important on Mac OS X.

2. Successful detection of a second system instal-
lation of Tcl/Tk if the first fails to satisfy speci-
fied criteria – for example, if X11 is required on
OS X, the system Tcl/Tk framework will fail
but an X11 version (if installed) will be found
instead.

i n c lude (CMakeDependentOption)
CMAKE DEPENDENT OPTION(TK ENABLE XFT ”Use f r e e t ype / f on t c on f i g / x f t ” ON

”TK SYSTEM GRAPHICS STREQUAL x11 ;FREETYPE FOUND; ${X11 Xft FOUND}” OFF)

Figure 2: Dependent Xft option definition in Tk.

3. Finer control of what is needed from a Tcl/Tk
installation – for example, if Tcl without Tk is
sufficient for a particular project, an option can
be defined to indicate that to FindTCL.

BRL-CAD requires not just Tcl/Tk but a host of
Tcl/Tk extensions and all of those extensions needed
CMake logic of their own. For the most part routines
already defined for Tcl/Tk in combination with the
new FindTCL.cmake proved sufficient for both local
and system Tcl/Tk extension compilation scenarios,
but there were a few significant exceptions.

The use of internal Tcl headers remains a signif-
icant complication for compilation of Tcl/Tk exten-
sions, and a system installation of Tcl/Tk is not suf-
ficient in such cases – the Tcl source code must be
available, just as in the case of Tk. In the case of
BRL-CAD this situation is usually workable due to
the Tcl source code being guaranteed to be available
in BRL-CAD’s own source tree. Currently BRL-CAD
requires Tcl/Tk 8.5, but in order to support more
general cases (such as using an 8.6 system Tcl/Tk)
extensions need more than the Tcl/Tk 8.5 headers.
Rather than accept that limitation, experiments are
underway using a solution from the VTK codebase.
Local copies of various versions of the internal headers
are included in the extension’s own source tree. The
new FindTCL.cmake identifies the system Tcl/Tk
version numbers and the correct internal headers are
included from the extension’s own source tree. This
avoids requiring the developer to locate and down-
load source trees that match the installed Tcl/Tk.
Use of such local copies runs the risk of crashes if the
system Tcl/Tk should happen to have modifications
not compatible with the standard headers, but the
same problem exists when downloading the Tcl/Tk
sources themselves. The only sure solution is to build
a local copy of Tcl/Tk as well, which defeats the
purpose of using a system Tcl/Tk installation. In-
cluding the internal headers does increase the size of
the extension source trees somewhat (approximately
2.4 megabytes, uncompressed,) but it is a relatively
clean solution to an otherwise thorny configuration
management problem.

Longer term, it would be ideal if extensions were
no longer required to use non-public APIs to extend
Tcl/Tk (or were rewritten to not use them if they
don’t really need to.) Working with the situation
as it exists today header inclusion appears to be the
most flexible and functional option available.

Extensions currently built with CMake in BRL-
CAD include tkhtml, tktable, togl, incrTcl, iwidgets,
and tkpng.

Results

Except for the lengthening of Tcl’s configure step due
to the inclusion of installManPage processing in the
CMake configuration, the time needed for configura-
tion and compilation is within ten percent when com-
paring a TEA based build and a CMake based build.
The performance numbers below were generated on
a Gentoo Linux machine with an AMD Athlon II X2
245 Processor. All builds are single core (e.g. make
with no -j flag).

Operation TEA (sec) CMake (sec)
Tcl Configure 6.3 8.4
Tcl Build 48.2 50.5
Tk Configure 2.8 4.0
Tk Build 35.8 38.7
Total Time 93.1 101.6

In addition to matching TEA’s compilation perfor-
mance, CMake has successfully generated working
Tcl/Tk build logic on Windows (MSVC), Mac OS X,
FreeBSD, Linux, and Solaris (using gcc.) Generators
used successfully so far include Visual Studio 8, Vi-
sual Studio 10, Unix Makefiles and XCode. There are
a number of other possible generators to test, include
Eclipse, KDevelop3, NMake Makefiles and MinGW
Makefile. Clean integration with BRL-CAD’s own
logic simplifies cross–platform BRL-CAD develop-
ment, and the new system has already replaced BRL-
CAD’s earlier Windows compilation logic in produc-
tion use.

It is difficult to compare the size and complexity
of build systems – the following table reports the line

counts for Tcl’s autoconf4, Windows5 and CMake6

build systems. This is a raw number (without at-
tempting to filter comments) and it should be noted
again that the CMake build does not claim to imple-
ment all features of the TEA system.

Autoconf Windows CMake
7111 5746 4342

The initial implementation of a working Tcl/Tk
build with CMake consumed about 12 man-weeks
of effort, although the work was actually performed
part-time over the course of one year. Initial efforts
used the modified Tcl/Tk 8.5.9 codebase present in
BRL-CAD’s source tree. Subsequent work has fo-
cused on the latest 8.6 beta release. The initial 8.5 to
8.6 conversion of the CMake build system involved a
few hours for the initial effort, and a couple of days
for subsequent clean-up work in preparation for this
paper.

Conclusions and Future Work

The Tcl/Tk CMake build is already the production
method of BRL-CAD’s Tcl/Tk compilation on Win-
dows, and is being phased in on all other supported

platforms. Based on experience accumulated thus
far, building Tcl/Tk with CMake represents a fast,
effective, low maintenance, and cross–platform solu-
tion. It is expected that the new system will reduce
BRL-CAD’s long term maintenance costs, particu-
larly when it comes to supporting seamless portabil-
ity to Windows.

The largest remaining task is to finish surveying
the TEA build options and identify any tests or set-
tings in the current CMake logic that are inconsis-
tent with Tcl/Tk’s Autotools build system. Other
remaining items include general clean-up and addi-
tion of CPack logic to generate source tarballs, Linux
RPM, Mac OS X pkg and Windows NSIS installers.
Currently the build does not support running from
the build directory when multiple configurations such
as those used in MSVC and XCode (Debug, Release,
etc.) are present – it may be desirable to generalize
existing routines to support such configurations.

The BRL-CAD project will be maintaining and
enhancing this new build system as part of its ongo-
ing development, and invites other Tcl/Tk users and
developers to build on what has been accomplished
to date.

References

[1] BRL-CAD Development Team, BRL-CAD – an Open Source Solid Modeling System, http://brlcad.org

[2] Martin, K. and B. Hoffman, Mastering CMake: A Cross-Platform Build System , Kitware Inc., 2003

[3] Kitware, Inc., CMake - Cross Platform Makefile Generator, http://www.cmake.org

[4] Welch, B. and M. Thomas, “The Tcl Extension Architecture” 7th USENIX Tcl/Tk Conference, Austin,
TX, Feb. 14-18 2000.

4In the unix subdirectory – .in files and .m4 files
5In the win subdirectory: buildall.vc.bat makefile.bc makefile.vc rules.vc tcl.dsp tcl.dsw Makefile.in configure.in aclocal.m4
6Contents of CMake + CMakelists.txt files + FindTCL.cmake

Table 2: Mapping of TEA macros to CMake
SC Macros TEA Macros CMake Macros
SC PATH TCLCONFIG TEA PATH TCLCONFIG
SC PATH TKCONFIG TEA PATH TKCONFIG
SC LOAD TCLCONFIG TEA LOAD TCLCONFIG (part of FindTCL.cmake)
SC LOAD TKCONFIG TEA LOAD TKCONFIG (part of FindTCL.cmake)
SC PROG TCLSH TEA PROG TCLSH (part of FindTCL.cmake)
SC BUILD TCLSH TEA PROG WISH (part of FindTCL.cmake)
SC ENABLE SHARED TEA ENABLE SHARED
SC ENABLE FRAMEWORK
SC ENABLE THREADS TEA ENABLE THREADS SC ENABLE THREADS
SC ENABLE SYMBOLS TEA ENABLE SYMBOLS
SC ENABLE LANGINFO TEA ENABLE LANGINFO SC ENABLE LANGINFO
SC CONFIG MANPAGES
SC CONFIG SYSTEM TEA CONFIG SYSTEM
SC CONFIG CFLAGS TEA CONFIG CFLAGS
SC SERIAL PORT TEA SERIAL PORT SC SERIAL PORT
SC MISSING POSIX HEADERS TEA MISSING POSIX HEADERS SC MISSING POSIX HEADERS
SC PATH X TEA PATH X (use FindX11.cmake)

TEA PATH UNIX X (use FindX11.cmake)
SC BLOCKING STYLE TEA BLOCKING STYLE
SC TIME HANDLER TEA TIME HANDLER SC TIME HANDLER
SC BUGGY STRTOD TEA BUGGY STRTOD
SC TCL LINK LIBS TEA TCL LINK LIBS SC TCL LINK LIBS
SC TCL EARLY FLAG TEA TCL EARLY FLAG
SC TCL EARLY FLAGS TEA TCL EARLY FLAGS
SC TCL 64BIT FLAGS TEA TCL 64BIT FLAGS SC TCL 64BIT FLAGS
SC TCL CFG ENCODING SC TCL CFG ENCODING
SC TCL CHECK BROKEN FUNC SC TCL CHECK BROKEN FUNC
SC TCL GETHOSTBYADDR R SC TCL GETHOSTBYADDR R
SC TCL GETHOSTBYNAME R SC TCL GETHOSTBYNAME R
SC TCL GETPWUID R SC TCL GETPWUID R
SC TCL GETPWNAM R SC TCL GETPWNAM R
SC TCL GETGRGID R SC TCL GETGRGID R
SC TCL GETGRNAM R SC TCL GETGRNAM R
SC TCL IPV6 SC TCL IPV6

TEA PREFIX
TEA SETUP COMPILER CC
TEA SETUP COMPILER
TEA MAKE LIB
TEA LIB SPEC
TEA PRIVATE TCL HEADERS
TEA PUBLIC TCL HEADERS
TEA PRIVATE TK HEADERS
TEA PUBLIC TK HEADERS
TEA PATH CONFIG
TEA LOAD CONFIG
TEA LOAD CONFIG LIB
TEA EXPORT CONFIG
TEA PATH CELIB
TEA INIT
TEA ADD SOURCES
TEA ADD STUB SOURCES
TEA ADD TCL SOURCES
TEA ADD HEADERS
TEA ADD INCLUDES
TEA ADD LIBS
TEA ADD CFLAGS
TEA ADD CLEANFILES

