
A Versatile Beowulf Task Distribution

Application

Clif Flynt
Noumena Corporation
www.noucorp.com

clif@noucorp.com

1 Abstract

Running faster has been the holy grail of computing since the days of the abacus.
The first thing a programmer hears after ”does it work” is ”can you make it run
faster?”

In the early days of computing, the best way to make a program run faster
was to find a better algorithm or optimize the commands. After some 50 years
of study, most of the better algorithms have been discovered and put into well
optimized libraries.

The next way to make an application run faster is to split it into smaller
applications and run them on multiple processors. Modern CPU chips do this
to some extent and modern Graphics Processing Units do it to a greater extent.

Problems that can be optimized for parallel computing range from fine-
grained applications in which the behavior of one thread is influenced by the
computations of other threads to coarse-grained application sets that are totally
separated from each other.

Fine-grained applications in which one thread influences another require
tools like PVM (Parallel Virtual Machines) or CPS (Concurrent Processing
System), specialized hardware with high-speed interprocess communication (of-
ten shared memory) and generally involve instrumenting the code or writing a
special application to perform the processing.

In medium and coarse grained applications the behavior of one processing
thread does not influence the behavior of other threads. These problems are
much more approachable with simple hardware and relatively trivial care in the
architecture of the processing applications.

Examples of medium-grain parallel tasks might be performing image pro-
cessing in a set of strips and then reassembling the strips into a complete image,
or generating a mandelbrot set as a collection of areas that are then assembled
into a mandelbrot image. These individual tasks may run at different speeds
depending on the resource used and the complexity of the task. When all of the
data is available, a final result can be created.

Examples of coarse grained parallel tasks include running multiple simula-
tions with different sets of data, calculating a fitness of solutions for a genetic
algorithm, or performing the same analysis on multiple datasets. These appli-
cations are completely independent of each other, although the results sets may
be combined for later analysis. This level of parallelization is the basis for the
”Seti@home” and ”folding@home” projects. The application requires a small
amount of data and a large amount of independent data processing.

Beowulf clusters, sets of computer nodes with slow (ethernet-speed) interpro-
cess communications are suitable for applications with medium or coarse-grain
parallelization which require large ratio of processing time to inter-system com-
munication.

The concept of a Beowolf cluster covers a large range of autonomous pro-
cessing units from dedicated, diskless-compute nodes to standalone workstations
that aren’t being fully utilized. The techniques for distributing the tasks can
range from direct memory access to scp/ssh interactions.

It is relatively simple to distribute a set of tasks across multiple computing
resources. For a small number of nodes and tasks, the tasks can be distributed
and hand-started. For a single application and a well controlled set of nodes, a
simple shell or Tcl script can be used to start applications as necessary.

Creating a special-purpose control application for each application that needs
to be distributed is costly in terms of human time and reduces the set of ap-
plications that can profit by being distributed. There is a need for a generic
application that can be extended to handle multiple types of tasks and multiple
styles of clusters.

The mythical Beowolf met Wulfgar when he first came to Heorot. Wulfgar
escorted Beowulf to the king and thus provided him with his first task. Wulfgar
was the person who connected a resource (Beowulf) with a task (Grendel).

This wulfgar is a Tcl/Tk application and framework for creating and dis-
tributing tasks across a set of resources (compute nodes). It can be used from a
command line or a GUI. It can be extended for new types of projects by defining
a new class and can be extended to control different Beowolf architectures by
adding external applications to interact with nodes in different style of cluster.

While it would have been great fun to continue the naming motif and have
wulfgar distribute quests across a network of castles, the references to ancient
Geats and monsters ends with the application name.

2 Overview

The wulfgar application distributes a set of jobs among a set of computing
nodes. The jobs will be run one-at-a-time on the nodes and the results will be
collected into a defined location. One job is distinguished from other jobs by
it’s command line arguments. The arguments may be simple values (like -x 1
-y 3) or the name of a configuration file.

The jobs are grouped in a project. The project defines the executable to be
used and how individual jobs are created from that project. The current version

of wulfgar can create jobs using a single numeric loop, two nested loops, or from
a set of configuration files. New project types can be created by adding a new
classes with a custom constructor that creates jobs for this style of project.

The computing nodes are grouped into a nodeSet. A nodeset is a collec-
tion of remote nodes which share a common access method (ssh, rsh, shell,
shared memory, etc.) New types of nodeSets can be created by writing new
access scripts.

The wulfgar application is written using TclOO and a Model-View-Controller
design paradigm. The base classes control defining and distributing jobs and
nodes and collecting the results. The GUI uses inheritance, mixins, the info
command and the trace variable command to examine and attach itself to
the controller elements of the application. This allows wulfgar to be run either
from a command line or script or by interacting with a user via a GUI.

When running in a GUI mode, a running task resembles the image below.
This shows a set of 16 tasks assigned to 3 nodes on an internal network. The
jobs are distinguished by the -x, -y and -out command line values. The -vw,
-vh, -wd and -ht arguments are the same for each job.

The top line shows the progress on the project - the collection of tasks. There
are jobs in 3 states, success, running, and available. The three colors shown in
the completion bar show the relative number of tasks in each state.

Each of the lines below shows the status of that task, either that it is com-
plete, the percentage of completion, or that it is available and unassigned to a
compute node.

Tasks that have been assigned show the node that they are running on and
when they started. A completed task also displays the end time.

3 Internals

Wulfgar views the world as collections of static and ephemeral elements. The
static elements are instantiated as classes which are reflected into a database
(using tdbc::Sqlite) The ephemeral entities are implemented as memory res-
ident classes which are created when needed and are discarded when wulfgar
terminates.

The static elements are collections of jobs and resources. A job’s non-volatile
state includes the executable to invoke and the arguments to be used with the
executable. A job has a volatile characteristic of whether it has been run and
the final status of the run. A resource (referred to as a node) has a non-
volatile state that includes the IP address, access port and a volatile attributes

of online/offline status.
The ephemeral entities are the set of jobs and resources currently in use.

These are grouped as a job and a resource when the job starts being executed.
A job is a single run of an executable program and a set of data. Jobs

are collected into a project, which is a collection of jobs that use a common
executable on the processing resource.

Compute resources are referred to as nodes, and are grouped into nodeSets
A nodeSet is a collection of nodes that share a common access manner such as
ssh, rsh, etc.

The project, job, nodeSet and node are relatively static entities. They
have a state (available, running, completed) that is modified but otherwise they
exist from the time they are created until a real-world project is complete and
the database is retired.

The project, job nodeSet and node classes are shown below with their
data and methods.

::job

id

projectID

status

cmdArgs

startSecs

endSecs

loadByID

saveState

config

loadByTest

::nodeSet

id

port

name

IPbase

IPmin

IPmax

preRun

run

postRun

nodes

dbCmd

getNodesWithStatus

scan

loadFromDb

config

runDataset

getAvailableNode

::node

id

ipaddr

online

allowed

startSecs

endSecs

descr

jobStatus

loadByID

saveState

abort

config

loadByTest

toggleState

::projectBase

id

name

createSecs

priority

projectClass

createDict

remoteCmd

remoteArgs

notes

loadByID

saveState

config

loadByTest

 *1

 *1

Each of the classes has an id variable. This is used to reflect the data to the
database but is not otherwise used by the runtime system.

Each class has a config method. The config method modifies the contents
of a variable and updates the modified data in the database.

The relationship between a job and a node that it is running on is ephemeral.
These items are created as required and destroyed after they have been used.

The ephemeral classes in wulfgar are the line and the piece. The line
is named for a manufacturing line. It contains a nodeSet and a project. The
piece (for piecework) is a class with a single job and a node to run the job on.

A line has an active project and an associated nodeset. When a line is

running, it creates pieces by selecting an available job and node and creating a
piece object that contains the job and node. Once a piece has been started, it
interacts with the node using the pre-run, run and post-run external applications
defined by the nodeSet.

A line object contains the name of a project object and a nodeSet object
and a list of the piece objects that it has created from the jobs and nodes in
the project and nodeSet.

The next image shows the relationships between line, project, nodeset, piece,
job and node.

::job

id

projectID

nodeID

status

cmdArgs

startSecs

endSecs

loadByID

saveState

config

loadByTest

::nodeSet

id

port

name

IPbase

IPmin

IPmax

preRun

run

postRun

nodes

dbCmd

getNodesWithStatus

scan

loadFromDb

config

runDataset

getAvailableNode

::node

id

ipaddr

online

allowed

startSecs

endSecs

descr

jobStatus

loadByID

saveState

abort

config

loadByTest

toggleState

::projectBase

id

name

createSecs

priority

projectClass

createDict

remoteCmd

remoteArgs

notes

loadByID

saveState

config

loadByTest

::line

jobList

nodeSet

project

dbCmd

pieceList

getAvailableJob

startAllAvailable

updateNodesWithStatus

cleanPieceList

getJobWithNode

startLine

checkLine

getAvailableNode

::piece

pieceState

status

readData

start

config

1

1

1

1

1

1

 *

1

1

1

The project, job, nodeset and node objects are all reflected into an SQL
database, allowing processing to be stopped and restarted as necessary at the
cost of losing the work done by tasks that are currently running on remote
nodes.

4 Creating tasks and jobs

When a project is created the constructor also creates a set of jobs. Different
types of projects use different methods of creating tasks. As examples, tasks
to model the behavior of an engine running different grades of fuel could be
created by iterating through a single loop of octane ratings. A set of tasks to
fill areas of a Mandelbrot set could be created with nested loops iterating over
an X/Y area to define rectangles to be computed. A set of tasks to model the
behavior of a complex system could be generated by iterating through a set of
configuration files generated by external applications.

Support for multiple styles of creating tasks is implemented within wulfgar
by deriving classes with type-specific constructors to create the associated jobs
from a standard base class (projectBase). New mechanisms for creating jobs
can be added by creating new project classes

The inheritance relationship between the parent class (projectBase) and
the derived classes countingProject, twoAxisProject and filesProject is
shown below.

::projectBase

id

name

createSecs

priority

projectClass

createDict

remoteCmd

remoteArgs

notes

loadByID

saveState

config

loadByTest

::countingProject

projectState

::twoAxisProject

projectState

::filesProject

projectState

The important attributes of a project are:

name Used to identify this project to a human.
priority Used to schedule this project when multiple projects are

active.
createDict A set of key/values that are used to create jobs for this

project.
remoteCmd The command to run on a remote system.
remoteArgs A set of patterns to use to create the command arguments

for the remote task. The remoteArgs string may include
tcl variables or commands which will be substituted using
the subst command when the job object is created.

A project to generate rectangular areas of a mandelbrot set resembles this:
name mandelbrot
priority 1
createDict startX -2 startY -2 endX 2 endY 2 incrX 1 incrY 1
remoteCmd fractal.tcl
remoteArgs -x $x -y $y -w 25 -h 25 -vh 1 -vw 1 -out mdl $x $y

The createDict is used to initialize the nested loops. The loops variables are
x and y, which are used (with Tcl’s subst command) to populate the arguments
to the jobs.

A job’s attributes include
projectID References a project’s ID in the databae.
status Describes the job’s status: available, success, fail, abort.
cmdArgs The command line arguments for this job.

An individual job within the mandelbrot project would resemble this:
status available
cmdArgs -x 0 -y 1 -wd 500 -ht 500 -vw 1 -vh 1 -out

/tmp/mdl 0 1

5 Distributing Jobs

A classic beowolf cluster of stand-alone processors distributes jobs using ssh/scp
or rsh/rcp across a network. Setting up a compute cluster using workstations
is fairly cheap (by supercomputing standards) and easy. However, racks of
cabinets use a lot of space and running and maintaining dozens of disk-drive
based systems can chew up a lot of human time.

An economical compute cluster can be created with a set of diskless moth-
erboards attached via an on-board network adapter to a server. The diskless
nodes can be booted using the PXE environment and data transfers can be
done using a NFS shared partition, the traditional ssh or the computationally
cheaper shell (port 514) protocol.

A functional compute cluster can be created from castoff motherboards
thumb-tacked to a cubicle wall, or as assembled into a box as crudely as shown
below:

The wulfgar application can be extended to different connection architec-
tures with external applications that are exec’d by wulfgar to transfer the
client application to the target system, execute it and collect results.

These applications will receive a set of values defined for the nodeset (IP
address, port, userID, password, etc) and per-job values which they must parse
for more details.

The Expect extension is a very useful tool for this sort of machine control
and is used in the external applications provided with wulfgar.

The example below is a sample of a post scp.tcl application which copies a
result file from the remote system to the local results folder. It receives the user
and password from the values in the nodeSet’s postRun attribute, and other
values (-out) from the values assigned to the job’s cmdArgs attribute.

#!/ opt/ActiveTcl -8.6/ bin/tclsh8 .6
lappend auto_path .
package require expectTools

exp_internal 0

log_user 0

if {[llength $argv] < 4} {
puts {post_scp.tcl -local localFolder -user loginID -pwd pwd }
puts {From Run: post_scp.tcl -path remoteFile \

-ip [$n config -ipaddr]}
exit

}
puts "[llength $argv] .. $argv .."
array set av $argv

if {![info exists av(-path)]} {
set av(-path) $av(-out)

}

if {![info exists av(-local)]} {
set av(-local) .

}

spawn scp $av(-user)@$av(-ip):/$av(-path) $av(-local)
dialog assword $av(-pwd)
dialog 100% ""

The remote application on the compute node can be a single executable, or
a script that invokes several cooperating applications.

6 Adding a GUI

Since wulfgar is an expandable, adaptable application, the GUI code needs to
self-constructing and as independent of the thinking parts of the application as
possible.

This is accomplished in wulfgar with some naming conventions and by using
TclOO inheritance and mixins, Tcl’s introspection (particularly info class)
and trace facilities.

One convention is that the config command behaves like the Tk widgetName

configure command in that it returns a list of keys and values when it is
invoked with no arguments. This allows a procedure to easily retrieve a list of
the attributes in an object’s state array that can be assigned values.

This convention allows the GUIs that create an object to query the class for
values to be used in defining the object.

The info class command provides access to the class state of an applica-
tion. This can be used to determine how many classes are derived from another
class and dynamically construct a GUI that reflects the available functionality.

The next code snippet demonstrates using the info class subclass com-
mand to find the classes for the specific project types and create a separate

tab in the tab notebook for each class. The configure command is used to
populate the fields with the class specific attributes and their initial values.

set nb [ttk:: notebook $fr.nb]

foreach nm [info class subclass :: projectBase] {
set nm [string trim $nm :]

$nb add [frame $nb.f_$nm] -text $nm
set f2 $nb.f_$nm

set f3 [labelframe $f2.fs \
-text "[string range $nm 0 end -7] Specific "]

grid $f3 -sticky news

foreach {k v} [$tmp config -createDict] {
label $f3.l_$k -text $k
entry $f3.e_$k -textvariable ::GUI($nm ,cD,$k)
set ::GUI($nm ,cD ,$k) $v
grid $f3.l_$k $f3.e_$k

}
}

When combined with the rest of the project GUI code an GUI like the image
below is created.

Another convention is that the external nodeState applications are named
using a pattern (so that glob can identify them) and must return a list of
arguments when invoked with no arguments. This allows the GUI for creating
a nodeset to automatically expand when new nodesets are created.

A common design pattern is for a class with GUI methods to be inherited
from a compute model class. This pattern is used to define the lineGui and

nodeSetGui classes.
While a line is running, the line object creates new piece objects as it needs

them. It’s not convenient for a lineGui object to create the pieceGui objects,
since it’s not involved in the piece creation.

The line and piece classes interact with each other, and those interactions
need to be displayed in a GUI without touching the code that controls the
interactions.

The line class maintains a list of pieces that have been created.
The lineGui class inherits from the line class and places a trace on the

lineState(pieceList) variable. This allows the lineStateGui to be updated
whenever the line object adds or removes a piece.

As a remote task runs it should report a fraction complete message at inter-
vals. This message is received by the piece object that is controlling the task
and saved in the pieceState(complete) attribute.

Like the lineGui, the pieceGui class uses a trace on the pieceState(complete)
variable to update the completion bar.

7 Conclusion

Controlling disparate tasks on remote systems is a solvable, but non-trivial
problem. The difficulties in a generic solution are the different methods of
communicating with remote nodes and automating the creation of tasks.

The wulfgar solution is to provide a common framework for controlling
nodes and tasks, with relatively small bits of glue in the form of customized
classes and external applications to allow for per-application and/or per-site
customization.

Tcl’s ability to exec remote tasks coupled with expect’s ability to interact
with remote systems enables a user to tweak the control applications to match
their system.

The TclOO support for both inheritance and mixins and the ability to load
new code at runtime and introspect to find what classes can be created provides
a powerful environment for customizing task creation and linking tasks with
resources.

The trace and mixin facilities are a powerful tool to create a framework in
which the GUI and calculation code can interact with each other without being
intermingled.

