
Introduction
The Java Virtual Machine [Lind99] has 
become a platform on which a variety of 
computer programming languages can be 
executed.  While originally written to exe-
cute Java programs that had been com-
piled into Java byte codes, it is now used 
to run languages such as Clojure, Groovy, 
Jacl, JRuby, Jython, Rhino and Scala 
[WikiJVM].  Some of these, like Scala, 
appeared originally as a language on the 
JVM, and others, like Jacl, are JVM im-
plementations of existing languages.  
Jacl, which is an implementation of Tcl 
[Ost10], was one of the first non-Java lan-
guages on the JVM and appeared shortly 
after the initial development of Java 
[Lam97].

While there is an abundance of alternative 
programming languages on the JVM, 
there are relatively few implementations of 
graphical user interface toolkits  besides 
the AWT and Swing toolkits that come 
standard with most Java distributions.  
The primary alternatives have been 
Swank, SWT (the Standard Widget 
Toolkit), and quite recently JavaFX.  While 
SWT is largely implemented on top of na-
tive platform widgets and JavaFX is im-
plemented with its  own windowing toolkit, 
Swank is  a layer on top of the Swing wid-
gets  that provides an interface to the pro-
grammer that is analogous to that of the  
Tk toolkit [Ost10].

JTcl and Swank:
Whatʼs new with Tcl and Tk on the JVM

1Bruce A. Johnson, 2Tom Poindexter, & 3Dan Bodoh

1 bruce@onemoonscientific.com, One Moon Scientific, Inc, Westfield, NJ and University 
of Maryland, Baltimore County
2 tpoindex@gmail.com
3 dan.bodoh@gmail.com

Abstract
JTcl is an implementation of the Tool Command Language (Tcl) written in Java and is 
derived from the Jacl project.  The current release (2.0) of JTcl implements a large ex-
tent of Tcl 8.4 syntax and commands, limited only by the API restrictions of the Java Vir-
tual Machine.  Swank is an implementation of the TK GUI toolkit implemented using the 
Java Swing GUI API.  Most Tk 8.4 widgets and commands have been implemented as 
well as additional ones based on Swing widgets.  This paper describes the current state 
of these projects and gives examples of their use.

mailto:bruce@onemoonscientific.com
mailto:bruce@onemoonscientific.com
mailto:tpoindex@gmail.com
mailto:tpoindex@gmail.com
mailto:dan.bodoh@gmail.com
mailto:dan.bodoh@gmail.com


In this  paper we’ll discuss recent devel-
opments in the Tcl and Tk on the JVM, fo-
cussing on the language implementation 
JTcl, and the Tk-style  graphical user in-
terface toolkit Swank.

JTcl
JTcl is a fork of Jacl, an implementation of 
Tcl written in Java [Lam97].  Jacl was writ-
ten during the period of Tcl/C 8.0 devel-
opment and contains Java equivalents of 
many internal data structures, most impor-
tantly the notion of Tcl objects  to hold bi-
nary representation of numeric data types, 
efficient list and array structures, and im-
plementation of most of Tcl 8.0's com-
mands.  Jacl does not implement the Tcl 
byte code compiler and runtime [Lew96], 
nor the Tcl fileevent command and sup-
porting event system that allows for event 
driven I/O.  After initial development by 
the original authors, Jacl development 
was performed by individuals rather than 
as an official port of the Tcl Core Team.  
During this time Jacl development slowed 
to mostly bug fixes but did result in a few 
major improvements, a port of the Incr Tcl 
object system [DeJ05] and the Tcl-to-Java 
compiler (TJC) [DeJ06].  Development of 
core Tcl commands and features did not 
keep synchronized with mainline Tcl de-
velopment.  Despite Jacl's  slow progress, 
it had proved useful in a number of com-
mercial products, open source projects 
and proprietary internal projects.  Jacl was 
used by IBM in its WebSphere Application 
Server and One Moon Scientif ic's 
NMRView products [John04], as well as 
the open source Swank and Æjaks pro-
jects [Poin07].

Jacl Modernization
Jacl modernization was selected as one 
of the Tcl Core Team projects during the 
Google Summer of Code 2009 [Szul09].  
The goal of the project was to bring Jacl's 
language features to the level of Tcl/C 8.4.  
Tcl 8.4 was chosen as  a target level for 
several reasons.  First, it represented a 
stable base of Tcl compliance that could 
be achieved by implementing new com-
mands or augmenting existing ones.     
Second, the project was limited to one 
student for one summer, so the work 
product of the GSOC project was limited.  
Third, current Tcl/C version 8.5 contained 
many structural changes, such as the ex-
pand syntax which would require a con-
siderable amount of interpreter changes.  
The target of the GSOC project was de-
rived by comparing the current set of Jacl 
command definitions with the Tcl/C 8.4 
definitions. Many of the command imple-
mentations required relatively little addi-
tional code to support a particular com-
mand option, larger code rework was re-
quired to implement commands such as 
[regex] and [regsub].  These commands 
relied on moving from a custom underly-
ing regular expression library to use the 
Java java.util.regexp package.

While the GSOC 2009 Jacl Modernization 
project yielded many improvements, it did 
not reach full Tcl 8.4 compliance.  The 
GSOC project relied on command de-
scriptions based on the Tcl 8.4 manual 
pages, so while many command options 
were added or improved, strict compli-
ance to Tcl/C test cases was not tested.  
The Jacl implementation of [regex] and 
[regsub] improved significantly to match 
Tcl 8.4, but many edge cases were not 
addressed.  Addition of a event system 



and [fileevent] also proved to be too ambi-
tious, requiring more time that was avail-
able.

The JTcl project was formed to continue 
development of Jacl and complete the 
work of the GSOC Jacl Modernization 
project.  The project founders decided that 
a fork was the best way to achieve its 
goals.  Jacl was a part of the TclJava pro-
ject, which produced the  the Jacl inter-
preter as well as TclBlend, a Tcl extension 
that enables use of Java classes and ob-
jects  from the the Tcl/C runtime.  Much of 
the TclJava packaging and build system 
was designed to support the use of the 
java package in both Jacl and TclBlend 
environments.  JTcl project members  had 
no interest in the TclBlend extension and 
instead would focus entirely on the Java 
implementation of Tcl.  

In addition to furthering Tcl 8.4 compli-
ance, a number of other improvements 
were desired.  First, Java code develop-
ment is greatly enhanced by the use of 
Java-centric Integrated Development En-
vironments (IDEs) such as Eclipse, Net-
beans and IntelliJ, so the structure of the 
JTcl source code should be arranged to 
support easy use by Java IDEs..  Second, 
the build system in Jacl using make would 
be replaced with a Java-centric build sys-
tem.  While make could be used to com-
pile and package JTcl, Java oriented build 
systems ant and maven are better sup-
ported by Java  IDEs.  Third, packaging 
the JTcl system would be in a single jar 
file for simple installation, as opposed to 
the Jacl system packaging in five sepa-
rate jar files.  Lastly, extraneous source 
code such as the TclBlend extension 
would be removed entirely.

Tcl Compliance and Test Suite
The Tcl language for any particular ver-
sion is described in man pages and other 
documentation, but the definitive source 
of Tcl compliance is  represented by the 
Tcl test suite.  The test suite is usually de-
veloped in conjunction with a particular 
version of Tcl to ensure that the inter-
preter's  result for any give operation 
matches expected results. 

The Jacl project contained a test suite that 
matched Tcl 8.0 compliance and was en-
hanced as  changes were made to the 
source code.  For JTcl, the Tcl 8.4 test 
suite was  imported and used to measure 
Tcl compliance.  JTcl integrates the Tcl 
test suite through the JUnit test facility.  
JUnit is a Java oriented test environment, 
roughly equivalent to the tcltest Tcl pack-
age.  When running JUnit in a Java envi-
ronment, the normal usage is to run a test 
method that invokes methods on an ob-
ject under test, and asserts that actual re-
sults are equal to expected results.   
Since JUnit is widely supported by Java 
IDEs, the Tcl test suite in JTcl is  invoked 
through JUnit classes.  This allows testing 
of JTcl source code directly from the IDE, 
without requiring a compile/test cycle.

The Tcl test suite contains generic tests 
that should run the same on any execu-
tion platform as well as many tests that 
are specific to the platform. For example, 
a particular test may only run on a Win-
dows platform, while an equivalent test 
may only run on a Unix environment.  A 
Java JVM presents a single virtual ma-
chine that (mostly) eliminates machine 
and platform differences.  As a result, only 



the tests that are labeled as  generic are 
tested in JTcl.

Even with running only the generic Tcl 
tests in JTcl, many differences in test re-
sults  were observed and many of which 
were false negative results.  Erroneous 
test results  generally fell into the following 
categories:

1. Differences in error messages – 
when a test would check for specific 
error messages, differences between 
JTcl and Tcl/C would often arise as er-
ror callback messages may contain 
slightly different text.  Most of these 
differences are a result of Tcl/C's  byte 
code compiler, which returns errors 
stating “...while compiling...” vs. the 
pure interpreter's error messages 
“...invoked from within....”. 

2. Ordering of results -  many Tcl com-
mands return unordered results, e.g. 
[info commands].  Due to JTcl's  use of 
native Java libraries for hash maps  in-
stead of Tcl's C coded ones, key lists 
were returned with different orderings.  

3. Unsupported functions of the JVM – 
the Java JVM does  not support many 
low level system functions, so Tcl 
commands such as [file stat] are lim-
ited to the operations that can be per-
formed.

4. Regexp differences – JTcl makes use 
of the Java library java.util.regexp 
package for regular expression han-
dling, whereas Tcl uses the Spencer 
ARE library coded in C.  While most 
common Tcl ARE regular expressions 
are accepted in JTcl via direct use of 
java.util.regexp or through emulation, 
some Tcl ARE expressions such as the 

Basic-RE meta-character ('b') are not 
supported.

To work around these differences, the JTcl 
JUnit base class is designed to run a Tcl 
test suite test file with a list of expected 
failure cases.  Each failure case returned 
by the test suite is examined to note the 
type of the failure, and when the differ-
ence could be categorized as one of the 
above cases, that case was added to the 
expected failure list.  The result of the ex-
pected failure lists allow the entire test 
suite to be run, with a better indication of 
positive or negative results.  Numerous 
Tcl command implementation classes 
were modified to pass the Tcl test suite.

Code Modernization / IDE support

While the main focus of the JTcl project is 
to continue the effort of making JTcl con-
form to the Tcl language 8.4 test suite, 
and number of other efforts were done to 
modernize the code.  “Modernize” is 
somewhat a subjective term.  The JTcl 
project's definition of modernization in-
cludes reforming the code as if the JTcl 
code was  being developed new by skilled 
Java programmers using accepted Java 
development best practices and tools. 

 The existing Jacl Java code was origi-
nally developed to closely mimic the Tcl/C 
version.  This was likely done for ease of 
the initial port to Java.  JTcl has the follow-
ing changes to the source code, besides 
those made for test suite compliance:

1. Source packages – Java code can be 
organized into distinct packages (i.e., 
namespaces). This promotes grouping 
similar source code classes by func-
tion.  In JTcl, the package tcl.lang.* is 



used for core interpreter classes, 
t c l . l a n g . c m d . * f o r c o m m a n d s ,  
tcl.lang.channel.* for I/O classes, etc.  
Standard JTcl packages java, itcl, and 
tjc were moved to tcl.pkg.* packages.  
Included Tcl library code (e.g., *.tcl 
files) was moved from Java source 
code directories  to resource directo-
ries.

2. Code formatting – much Jacl's 
source code had specific hand-
formatted conventions, such as ASCII 
form-feed characters (^L) to separate 
methods, comments within method ar-
guments, debug-only code fragments.  
JTcl code is reformatted using auto-
mated tools for consistency, and de-
bug specific code is  removed in favor 
of using the IDE's  debug and break-
point facilities.

3. Block comments converted to 
Javadoc comments – Jacl code con-
tains many block comments  that pre-
cede methods, but these were not in 
the format to support the Javadoc 
tools for creating automated source 
code documentation. Where practical, 
source code block comments in JTcl 
are Javadoc formatted.

4. IDE/build tool friendly directory lay-
out – the project directory layout was 
changed to easily support Java IDEs 
and build tools.  src/main/java contains 
the Java source code, src/main/
resources contain Tcl library code, src/
test/java contains Java JUnit code, 
src/test/resources contain test Tcl code 
(i.e., the Tcl test suite.)  Additional di-
rectories contain the project website 
source code, maven assembly de-
scriptors, runtime startup scripts, etc.

Packaging / Tcllib 
Recent Jacl distributions have included 
the Incr Tcl and Tcl-to-Java compiler 
packages.   Jacl's packaging favored 
separate jar files for the Jacl core inter-
preter and each extension.  JTcl instead 
packages all core and extension compo-
nents into a single jar file.  Jacl also in-
cludes Tcllib as  part of its  packaging.  
Tcllib is a large collection of Tcl coded li-
braries..  Some  modules of Tcllib that 
only support Tcl versions 8.5 and 8.6 are 
excluded in the JTcl distribution.  

Packaging all core and library compo-
nents of JTcl into a single jar file allow the 
interpreter to be started as simply as java 
-jar jtcl.jar, though a more common usage 
still utilizes helper scripts.  The JTcl 
startup scripts jtcl (for Linux/Unix/
MacOSX/Cygwin/Msys environments) and 
jtcl.bat (Windows) allow for additional jar 
files to be included via the normal 
CLASSPATH environment variable, as 
well as  runtime Java JVM parameters to 
be easily modified.

The JTcl website is  included in the project 
and is built using the maven build system.  
The JTcl source Javadoc files  are also 
built during website generation.

RegExp Improvements
The regular expression engine class, 
tcl.lang.Regex, is  new in JTcl and used by 
[regsub], [regexp] and [lsearch -regexp].  
This  class  brings the full power of TCL 8.4 
Advanced Regular Expressions (ARE)  to 
JTcl, with a few caveats.  The older Basic 
Regular Expressions (BREs) and Ex-
tended Regular Expressions  (EREs) are 
not supported, although EREs that are 
identical to AREs and not explicitly re-



quested with the 'e' embedded option are 
supported.

A primary implementation goal was  to 
make use of java.util.regex.Pattern and 
java.util.regex.Matcher [Oracle2004], 
rather than writing a custom engine based 
on the C library used in Tcl 8.4.   A 
tcl.lang.Regex instance combines the 
steps  of compiling a regular expression 
and matching it on an input string, and 
contains all the functionality required to 
implement [regsub] and [regexp].

The tcl.lang.Regex.compile() method is 
responsible for converting a Tcl regular 
expression to a Java Pattern instance.  
This  method parses the Tcl regular ex-
pression, building a Java regular expres-
sion in a Stringbuffer, and compiles the 
Java regular expression into a Pattern 
instance.

Many aspects of the conversion of Tcl 
regular expression syntax to Java syntax 
are merely direct translations.  For exam-
ple, a static Hashmap is  used to translate 
Tcl's character classes and escape se-
quences to Java's equivalent, such as 
[:alnum:],  to  \pAlnum and [:ESC:] to 
\\033.

More complex translations  are required 
for those elements that are similar in the 
two regular expression languages, but dif-
fer in minor details or at boundary condi-
tions.   For example, an empty Tcl regex 
matches before every character in the 
string, and after the last character.  Java's 
empty regex is similar, but does not match 
after the last character.  So a Tcl empty 
regex is  translated to ^|(?!$) for Java.  
Many similar complex translations are 

needed for the embedded options, which 
are similar to but not exactly like the 
java.util.regex.Pattern match flags.

Tcl does  contain some regex features that 
are not available in Java.  These are emu-
lated with more complex Java expres-
sions.  For example, the Tcl \M (match at 
the end of a word) has no direct Java 
equivalent, so i t is  t ranslated to 
(?=\W|$)(?<=\w) (look ahead for a word 
character and behind for non-word char-
acter).

T h e d e c i s i o n t o u s e 
java.util.regex.Pattern led to one incom-
patibility in JTcl regular expressions.   Tcl 
always attempts  to match the longest 
string starting from the outermost levels to 
the inner levels of parentheses.  With al-
ternation (A|B) Tcl chooses the longest 
match of all the branches.  Java evaluates 
the  regular expression from left to right, 
and returns the first successful match, 
even if it's not the longest.  This  incom-
patibility will not affect most common uses 
of [regexp] and [regsub].

Pattern syntax error information returned 
by Tcl is replicated by translating the mes-
sage from the java.util.regex. Pattern-
SyntaxException  thrown by the Java 
Pattern.compile().  However, Java is 
more forgiving about poor regular expres-
sion syntax, and therefore some expres-
sions that would generate an error in Tcl 
may be interpreted as  literal characters  in 
JTcl.

Code refactoring was done to collapse the 
[regexp] and [regsub] common code into 
tcl.lang.Regex.  The matched input sub-
string state information used by [regexp 



-all] and [regsub -all] was delegated to 
java.util.regex.Matcher,  simplifying the 
code.  

An apparent Tcl 8.4 bug was replicated in 
the JTcl code: a difference between re-
gexp and regsub.  The command [regexp 
-all -inline {a*} {a}]  returns one match, {a}.   
The similar command [regsub -all {a*} {a} 
{Z}] returns {ZZ}, one Z for the match of 
{a} with {a}, and a second Z for a zero-
length match after the 'a'.  The 
java.util.regex.Matcher match groups 
are used for code simplicity, with a special 
case in the [regexp] implementation for 
this inconsistency.

Process Pipelines for  [exec] and 
[open]
Process pipelines for [exec] and [open “| 
command”] and the Tcl 8.4 [exec] input 
and output redirection were added to JTcl, 
using pure Java.  The tcl.lang.Pipeline 
class parses an [exec]- or [open]-style 
pipeline string and builds a chain of 
tcl.lang.process.TclProcess instances 
for the chain of operating system com-
mands in the pipeline.  Each TclProcess 
instance is made aware of its  neighbor 
TclProcess (or its redirected input and 
output)  with a tcl.lang.process.Redirect 
instance.  The Pipeline instance can 
manage any of the [exec] redirectors  The 
[open “| command”] command uses  a 
c h a n n e l v i e w o f P i p e l i n e , 
tcl.lang.channel.PipelineChannel.

The tcl.lang.process.TclProcess class is 
abstract with currently one concrete sub-
class: tcl.lang.process.JavaProcess.  
JavaProcess is a pure Java implementa-
t ion using java.lang.Process and 
java.lang.ProcessBuilder.  This  code 

organization allows for future develop-
ment of platform-specific TclProcess 
subclasses that use native code, or a 
Java 7 subclass  that makes use of the 
new redirection capabilities of Process-
Builder.

The tcl.lang.process.TclProcess sub-
class is  responsible for handling its own 
i n p u t a n d o u t p u t r e d i r e c t i o n .  
JavaProcess is limited by the capabilities 
of the Java 1.5 and 1.6 API, which does 
not expose the operating system's  pipe 
and file descriptor inheritance mecha-
nisms.  All pipelines and redirection must 
u s e P r o c e s s . g e t I n p u t S t r e a m ( ) , 
Process.getOutputStream() , and 
Process.getErrorStream().  To create a 
pipe, a new thread is created with an in-
s t a n c e o f  t c l . l a n g . p r o c e s s . 
TclProcess.Coupler which reads the up-
stream JavaProcess's  output stream and 
writes to the downstream JavaProcess's 
input stream.

These limitations  in the Java API create 
some incompatibilities  between a Tcl pipe-
line and a JTcl pipeline.  A pipeline 
launched in the background by JTcl can-
not outlive the JTcl process itself because 
JTcl, rather than the operating system, is 
managing the pipe.

The Java Process API use of the Input-
Stream class for standard input  and the 
lack of file descriptor inheritance in the 
API creates problems for JTcl's  tclsh emu-
lation, tcl.lang.Shell, when using [exec].
With Java's InputStream, the only way to 
detect an end-of-file condition is to do an 
InputStream.read().  But doing the read 
will take at least one byte from the stan-
dard input.  So the JavaProcess instance 



for an exec'd process can take an extra 
byte from standard input that it may not 
need,  stealing that byte from the JTcl 
shell itself.   A simple example is shown 
below.

Contents of the file testStdin.txt:
exec head -1
this line should go to head and to 
stdout
puts {this line should be inter-
preted by the JTcl shell}
exit

This  file is sent to the JTcl shell via stan-
dard input:

$java tcl.lang.Shell < 
testStdin.txt
Two possible cases occur – the first is  the 
expected output:
this line should go to head and to stdout
this  line should be interpreted by the JTcl 
shell

T h e s e c o n d c a s e i s w h e n t h e 
JavaProcess instance for 'head' steals an 
extra byte
this line should go to head and to stdout
couldn't execute “uts”: no such file or di-
rectory

These incompatibilities are relatively mi-
nor, and could be fixed with the Java 7 
capabilities  of ProcessBuilder which 
support true file descriptor inheritance at 
the operating system level.  

The [pid fileid] command is  supported on 
Posix systems on at least some JVMs by  
looking for a field named “pid” in the 
java.lang.Process instance with  a value  
the same as that re turned  by 
Process.getClass().getDeclaredField

(“pid”).  If this fails, -1 is returned as the 
process id.

File Events and the New Channel Sub-
system
Significant improvements were made to 
the channel subsystem for JTcl to support 
non-blocking I/O, Unicode, and to fix fail-
ing tests in the Tcl 8.4 test suite. Both 
[fcopy] and [fileevent] are supported,

The [fcopy] command simply copies from 
one channel to another within a separate 
Java thread, and uses  the existing JTcl 
event queue to execute the callback script 
when [fcopy] completes.  If possible, a 
byte copy is made to avoid the Unicode 
encoding and decoding step, and an effi-
cient buffering is enabled.

The [fileevent] command depends on the 
new non-blocking I/O implemented in the 
channel subsystem.  The fileevent itself is 
d e s c r i b e d w i t h t w o o b j e c t s , 
tcl.lang.channel.FileEventScript and 
tcl.lang.channel.FileEvent.  The in-
stance of FileEventScript exists for the 
lifetime of a fileevent, and  schedules new 
instances of FileEvent on the JTcl event 
queue.  Each FileEvent instance, when it 
comes off the queue, tests  for readability 
or writability of the channel and executes 
the fileevent script as necessary.

As or ig ina l l y coded in Jac l , the 
tcl.lang.channel.Channel abstract class 
is  the root object for all types of channels.  
Much of the channel code was re-written 
in a more Java-like fashion, replacing the 
literal C-to-Java translation. Subclasses of 
Channel are shown in Table 1.



In order to support the JTcl enhancements 
and fixes, Jacl's TclInputStream and 
TclOutputStream classes were replaced 
w i t h a c h a i n o f s u b c l a s s e s  o f 
java.io.InputStream, java.io.Reader, 
j a v a . i o . O u t p u t S t r e a m , a n d 
java.io.Writer.

The input side of a Channel uses the fol-
lowing chain of InputStreams and Read-
ers:

Channel.getInputStream() presents an 
InputStream view of the data on the 
channel.  For example, a FileChannel 
uses java.io.FileInputStream.

Eof InputFi l ter reads by tes f rom 
Channel.getInputStream() and adds the 
end-of-file byte configured by the channel.

InputBuffer reads bytes from the EofIn-
putFilter, provides a resizable read buffer 
and implements non-blocking reads.  It 
performs non-blocking reads by perform-
ing EofInputFilter.read() in a separate 
thread.   All byte read operations on the 
channel are taken from this InputStream.

MarkableInputStream reads bytes from 
the InputBuffer and allows for look-ahead 
in the stream.

UnicodeDecoder reads bytes from the 
MarkableInputStream and converts to 
Unicode using the encoding configured by 
the channel.
EolInputFilter reads characters  from 
UnicodeDecoder and performs the con-
figured end-of-line translation on the 

Table 1Table 1

Java Class Description

SeekableChannel Abstract class that adds seek() and tell()

FileChannel Extends SeekableChannel to implement file I/O

ResourceChannel Implements reading of a Java resource using a 
“resource:” prefix on the file name

ReadInputStreamChannel Bridges a Tcl channel to a Java InputStream

AbstractSocketChannel Abstract class that has common code for socket 
channels

ServerSocketChannel Implements Tcl server sockets

SocketChannel Implements Tcl sockets

TclByteArrayChannel Used internally to bridge Tcl channels to Tcl byte 
arrays



channel.  All character read operations on 
the channel are taken from this Reader.

The output side of a Channel uses the 
following chain of OutputStreams and 
Writers:

EolOutputFilter is written to by the chan-
nel when it performs character writes.  It 
performs the configured end-of-line trans-
lation on the channel.

UnicodeEncoder is written to by Eol-
OutputFilter, and translates Unicode 
characters to bytes according to the en-
coding configured on the channel.

OutputBuffer is  written to by Unico-
deEncoder as well as by the channel 
when it performs byte writes.  It provides a 
resizable buffer, but unlike InputBuffer, 
does not handle non-blocking writes.

EofOutputFilter is written to by Output-
Buffer and adds the end-of-file character 
that the channel is configured to use.

NonBlockingOutputStream is written to 
by EofOutputFilter, and performs its 
O u t p u t S t r e a m . w r i t e ( ) a n d 
OutputStream.flush() in a separate 
thread for non-blocking writes.

Channel.getOutputStream() is written to 
by NonBlockingOutputStream, and pro-
vides an OutputStream view of the chan-
nel data.

Testing Sockets and File Events
A hallmark of Tcl is its event system that 
allows writing of servers with a minimal 
amount of code.  An example of this is the 
DustMote script [Kapl02] that implements 

a web server in merely 41 lines of code.  
We found that DustMote running under 
JTcl could readily serve a web site (the 
document root was set to the content of 
the www.onemoonscientific.com site) indi-
cating that the fileevent and server socket 
code functions as expected.

As a further test, multiple simultaneous 
instances of JTcl were set up calling a 
script using the [http::geturl] command to 
pull a file from the DustMote server.  As 
described above the fcopy command initi-
ates a separate Java thread to do the file 
copy to the clients socket and we indeed 
observed that the Thread usage by Dust-
Mote increased proportionally to the num-
ber of clients accessing it.

Swank
The success of Tcl as a programming lan-
guage comes not only from the intrinsic 
value of Tcl, but its companion Graphical 
User Interface Toolkit, Tk.  Tk has become 
so successful that it is used not only as 
the GUI toolkit for Tcl, but also with other 
languages such as Python.  Without a 
Java implementation of Tk, JTcl would not 
be able to fill many of the programming 
niches accessible to Tcl.  Tk widgets are, 
however, programmed with low level calls 
to each platforms native graphics system 
and replicating this in Java would be a 
large task.

Developing Swank
Two key factors allowed for the feasibility 
of developing Swank (“Tk in Java”) in a 
reasonable period of time. Swing, the pri-
mary Java user interface toolkit, provides 
a rich variety of widgets with similar func-
tionality to Tk widgets.  For example, the 
Tk toplevel widget is similar to the Swing 

http://www.onemoonscientific.com
http://www.onemoonscientific.com


JFrame widget, the button to JButton, the 
menu to JMenu, etc.  Using the Swing 
widgets meant that the behavior of Swank 
would not be as similar to Tk as  it would if 
the Swank widgets were developed with 
lower level Java graphic operations. On 
the other hand, adopting Swing meant 
that a great deal of coding work could be 
skipped.  Furthermore,using the Swing 
widgets provides a richer set of behaviors 
than the original Tk widgets.

The second key factor was the introspec-
tion capabilities of the JTcl language. 
Much of the code that forms the basis of 
Swank is generated by JTcl scripts  that 
determine the fields and methods of each 
Swing component and then automatically 
produce Java code that provides  a Tk-like 
interface to the components. This gener-
ates a large number of configuration op-
tions for each widget. Some of these map 

Table 3Table 3Table 3Table 3

Swing Tk Swing Tk

JDesktopPane jdesktoppane JProgressBar jprogressbar

JComboBox jcombobox JScrollPane jscrollpane

JDialog jdialog JSplitPane panedwindow

JEditorPane html JTabbedPane jtabbedpane

JInternalFrame JInternalframe JTable jtable

JOptionPane joptionpane JToolBar jtoolbar

JPasswordField jpasswordfield JTree jtree

JPopupMenu jpopupmenu JWindow jwindow

Table 2Table 2Table 2Table 2

Swing Tk Swing Tk

JButton button JRadioButtonMenuItem radiobutton (on menus)

JCheckBox checkbutton JScrollBar scrollbar

JFrame toplevel JSlider scale

JLabel label JSpinner spinbox

JList listbox JTextArea message

JMenu menu JTextField entry

JMenuBar menubar JTextPane text

JPanel frame JFrame (composite) labelframe

JRadioButton radiobutton JPanel (customized) canvas



coincidentally to the names and functions 
of Tk configuration options. In other 
cases, JTcl code is used to specifically 
generate Java code for Tk options. In 
some of these cases it is  only necessary 
to generate code that parses the appro-
priate Tk option and maps it to an existing 
Java Swing method. In other cases spe-
cific Java code is  written to enable the 
correct action in response to the specified 
option. This Java code is inserted in the 
generated Java file.

In earlier versions of Swank we made 
available nearly all configuration options 
of the Swing widgets as Tk-style configu-
ration options.  Starting with version 3.0 
the code generator has been changed to 
limit the options to a predefined list that 
leaves out many of the more obscure 
Swing configuration options.  This  leads to 
a simpler toolkit that presents  options 
more consistent with that of the Tk toolkit.

Swank Widgets
Swing widgets and the Tk style com-
mands used with Swank to create them 
are listed in Table 2.  These are the wid-
gets  that have a particularly close corre-
spondence between the Tk widget and 
the Tk-style widget as  implemented in 
Swank.

Some Swing widgets don’t have a direct 
correspondence to existing Tk widgets, 
but were deemed useful enough that they 
should have a Tk style command in 
Swank.  These are listed in Table 3.  
Some of them do have analogous Tk 
commands that are available in exten-
sions like the table and combobox wid-
gets.  Others, like the panedwindow, exist 

in Tk, but the Swank implementation has 
significant differences.

The behavior of most of the widgets in 
these tables is largely a product of that of 
the underlying Swing widget.  The two 
most complex Tk widgets, text and can-
vas, required substantial Java code to re-
produce the behavior of the Tk widgets.  
The canvas  widget, in particular, is almost 
entirely implemented by Swank specific 
Java code.  This widget is based on the 
Swing JPanel, which essentially provides 
an empty screen area on which to draw 
by overriding its paintComponent 
method.

Swank Canvas Widget
The Swank canvas widget provides most 
all of the features of the Tk canvas, plus 
some additional capabilities.  Colors are 
one area where the Swank canvas  is dis-
tinguished from that of Tk.  In Swank, ob-
jects  like rectangles and ovals can have 
gradient or texture fills, and the colors  for 
all Swank canvas items can be transpar-
ent. 

Configuration Options
Additional configuration options  are avail-
able for Swank canvas items.  For exam-
ple, while Tk lines can have arrows at one 
or both ends of the line, lines  on the  
Swank canvas allow for different styles 
(arrow, square, circle, diamond or nothing) 
at each end.  All Swank canvas items also 
support  a -rotate configuration item. A 
common style when generating diagrams 
is  the placing of a text label on a shape.  
To facilitate this, rectangles and ovals on 
the Swank canvas can be configured with 
a text option (and corresponding font and 
text color options).



Additional Canvas Items
Several additional canvas item types are 
present in Swank. In addition to normal 
text items, the Swank canvas adds htext 
items. These support many HTML tags 
and some CSS styles (as implemented by 
Java Swing HTML endowed text widgets).  
For example, an htext item could have an 
H2 header, superscripts, bold and italic 
text or be laid out as a table using HTML 
table tags.  

Connection items are unique in that their 
coordinates are specified in terms of a 
fraction of the bounds of two other items 
on the canvas.  In this way it is easy to 
produce diagrams where dragging one 
item around maintains  a displayed con-
nector to a second item without needing 
to write Tcl level code to reposition the 
connector.  Annotation items combine a 
line with an arrow at one end and a text 
string at the other. 

Affine Transforms
All Swank canvas  items can have an Af-
fine transform associated with them. The 
standard Swank canvas includes frac-
tional transforms that allow canvas draw-
ing in fractional positions of the canvas, 
allowing, for example, a rectangle to fill 
the top half of a canvas, no matter how 
the canvas is resized.  This capability is 
extensively used in the NMR analysis 
program dataChord where custom canvas 
items add transforms to the canvas that 
allow items to be drawn relative to the first 
items position.  In this way labels  and an-
notations positioned near features of the 
NMR spectrum remain positioned relative 
to the NMR feature, no matter how the 
whole spectrum is zoomed or panned.  
Additionally, the whole Swank canvas has 

an Affine Transform associated with it, the 
scale of which is changed with the canvas 
"zoom" subcommand. This allows one to 
zoom the view of the entire canvas in or 
out.

Handle Selection 
A standard feature of many programs for 
creating diagrams or illustrations is the 
ability to select, move and resize items on 
the drawing canvas using various mouse 
actions. This can be implemented in a Tk 
program by drawing selection indicators 
and handles with explicit canvas items, 
but it seemed such a common paradigm 
that we added low level support to the 
Swank canvas for these actions.
All items can be selected using an "hse-
lect" subcommand. Any items that are se-
lected are displayed with selection han-
dles.  When the mouse enters  a handle 
the cursor is changed to an "appropriate" 
resize cursor.  The handles are not im-
plemented as separate canvas items, but 
are fundamentally displayed by the under-
lying Java code at appropriate positions 
on the bounds of the item. Moving and 
resizing selected items is  the responsibil-
ity of "user code" and is  not part of 
Swank, but is easily implemented.

Scene Graph
Advanced graphics applications often ar-
range the display items as a collection of 
nodes in a graph structure known as a 
Scene Graph. Rendering of the items is 
then done by traversing the scene graph 
and rendering each viewable item. 
Whether or not items are rendered in front 

http://en.wikipedia.org/wiki/Scenegraph
http://en.wikipedia.org/wiki/Scenegraph


of or behind other items depends on their 
relative position in the scene graph. A 
scene graph is being developed for the 
Swank canvas. As  currently implemented 
the Swank canvas scene graph is imple-
mented by adding a new "-node" configu-
ration option for each item on the canvas 
and adding a new node item type. Each 
traditional item on a canvas (arc, rectan-
gle, line etc.) exists  as leaf node on the 
graph and can not have other items at-
tached. Only the new node item can have 
descendants, which may be traditional 
display items, or additional nodes.

If nodes are not specified the canvas acts 
as the traditional Tk canvas, effectively 
being a scene graph with one root node 
and zero or more visual items that are 
rendered in order of their attachment to 
the root node. The scene graph is ren-
dered in a depth-first (post-ordered) fash-
ion with children at each node rendered 
from left to right (first to last added). The 
bounding box (returned with the "canvas 
bbox" command) is  the union of the 
bounds of all the items below that node. 
Node items are also rendered if they have 
a non empty fill or outline parameter. They 
are rendered as rectangles whose size is 
the same as the bounding box described 
above. Note that if the fill parameter is set, 
and is not transparent, all items below that 
node will be obscured as the node is 
drawn after the items below it on the 
graph.

The raise and lower canvas subcom-
mands have a modified behavior with re-
spect to scene graphs  that have more 
than one node. A raise command issued 
without a "aboveThis" argument will move 
the specified items to be the last items of 

the node to which they are attached. If an 
"aboveThis" argument is specified, the 
aboveThis item must be attached to the 
same node as any items to be moved. 
Thus raise (and the comparable holds  for 
lower) will only change the display order 
of items relative to other items attached to 
the same node (but, note that node items 
themselves can be raised or lowered).

Charts
Charts are implemented using JFreeChart 
[Gilb11]. In the Swank implementation 
they are essentially just another item that 
can be placed on the canvas. The chart 
shown in Figure 1, for example, is  not im-
plemented by using a multiple individual 
canvas items, as would be done in Tk, but 
is  instead a single chart item that can 
readily be resized and repositioned on the 
canvas.

The canvas charts, illustrate a significant 
advantage of working in the JVM envi-
ronment.  Working with the C implementa-
tion of Tcl/Tk one would need to find a 
charting library that works on all the major 
environments (Mac, Windows, Linux, etc.) 
and then ensure that it compiles, links  and 
runs on these.  Integrating such a library 
might require significant knowledge of the 
build environment of each operating sys-
tem.  Using such a library also requires an 
ongoing commitment to update the library 
and build environment for new operating 
system releases.  With the JVM ap-
proach,however, one needs  only ensure 
that the libraries jar files  are available on 
the build and run classpaths and one has 
a high level of confidence that the applica-
tion will run on any platform implementing 
a compatible version of the JVM.



Figure 1.  This figure is a screenshot of the program dataChord Spectrum 
Analyst which is a Java program that integrates JTcl and Swank.  The primary 
window is used for displaying Nuclear Magnetic Resonance (NMR) spectra, but 
also provides for rich annotation features by the user.  The NMR spectra are 
analyzed, in part, using tools available from the Apache Commons Math libary 
[ACM11].  The spectra are rendered as custom items on the Swank canvas, so 
multiple spectra can be rendered in various positions and orientations on the 
canvas.  The screenshot is somewhat contrived to show various Swank canvas 
items: a rectangle with a transparent, gradient color, two ovals joined by a 
connector item, an htext item showing the user of superscript and bold text, and 
a chart item, implemnted using the JFreeChart library.

Much of the data analysis of dataChord Spectrum Analyst is implemented as 
JTcl scripts, and as a client-server program it relies heavily on the file, channel 
and socket capababilites of JTcl.



Canvas3D
Besides the standard Tk-like canvas, 
Swank includes a canvas  suitable for dis-
playing 3D objects.  The implementation 
is  at present fairly limited, but does pro-
vide the ability to draw spheres, cylinders, 
cones, and text.  The actual 3D graphics 
are implemented using Java3D.
Building and Packaging
Swank is built and packaged using the 
same maven-based infrastructure as used 
by JTcl.  The primary build result is a zip 
file that forms a “batteries included” distri-
bution, that includes JTcl (which as dis-
cussed above includes incr Tcl, the TJC 
Tcl to Java Compiler, and much of Tcllib), 
the chart canvas item code (including 
JFreeChart jar files), and the canvas3d 
package.

Helper scripts  for starting a Swank envi-
ronment are included and are analogous 
to those described above for  JTcl.  Tk dis-
tributions include a program called “wish”.  
Swank provides helper scripts called 
“wisk” (and wisk.bat on Windows) that 
start up the same type of environment that 
“wish” does.  Also included are helper 
scripts, swkcon (and swkcon.bat on Win-
dows).  These start up Swank with a 
Swank implementation of the TkCon con-
sole [Hobbs09].

Conclusions
Together, JTcl and Swank, provide an en-
vironment for developing applications that 
is  very similar to that of Tcl and Tk.  Most 
programs that will run with Tcl 8.4 will run 
unchanged on JTcl.  Swank has a greater 
level of differences to Tk, but provides a 
high level of compatibility along with addi-
tional widgets and capabilities, especially 
with regards to the canvas widget.

A large advantage of developing in the 
JTcl/Swank environment is the ability to 
take advantage of other libraries imple-
mented in Java.  The developer can have 
a high level of confidence that the combi-
nation of JTcl and Swank with other Java 
libraries will run unchanged on any plat-
form with the JVM.  An example of this is 
the program, dataChord Spectrum Analyst 
(Figure 1), which is written to use JTcl and 
Swank, and integrates in a cross-platform 
way libraries for math, statistics and chart-
ing.

JTcl is hosted at http://jtcl.kenai.com/ and 
Swank at http://swank.kenai.com/.  In-
stallers, source code, documentation, 
mailing lists and bug trackers are avail-
able for both projects at these sites.

References
[ACM11]
Commons Math: The Apache Commons 
Mathematics Library
http://commons.apache.org/math/

[DeJ05]
Incr Tcl extension for Jacl
TclJava project
http://sf.net/projects/tcljava
http://sourceforge.net/mailarchive/messag
e.php?msg_id=1134245

[DeJ06]
TJC : A Tcl to Java Compiler
Mo DeJong
Thirteenth Annual Tcl/Tk Workshop, 2006 
http://modejong.com/publications.html

[Gilb11]
JFreeChart
David Gilbert

http://jtcl.kenai.com
http://jtcl.kenai.com
http://swank.kenai.com
http://swank.kenai.com
http://www.jfree.org/jfreechart
http://www.jfree.org/jfreechart
http://sf.net/projects/tcljava
http://sf.net/projects/tcljava
http://sourceforge.net/mailarchive/message.php?msg_id=1134245
http://sourceforge.net/mailarchive/message.php?msg_id=1134245
http://sourceforge.net/mailarchive/message.php?msg_id=1134245
http://sourceforge.net/mailarchive/message.php?msg_id=1134245
http://modejong.com/publications.html
http://modejong.com/publications.html


http://www.jfree.org/jfreechart

[Hobbs09]
TkCon Project
Jeffrey Hobbs
http://tkcon.sourceforge.net/

[John04]
"From C to Java, Scientific Data Analysis 
with Java, Jacl and Swank"
Bruce A. Johnson
11'th Annual Tcl/Tk Conference
http://www.tcl.tk/community/tcl2004/Paper
s/

[Kapl02]
DustMote 
http://wiki.tcl.tk/4333

[Lam97]
"Jacl: A Tcl Implementation in Java"
Ioi K. Lam, Brian Smith
Fifth Annual Tcl/Tk Workshop, 1997 
http://www.usenix.org/publications/library/
proceedings/tcl97/lam.html

[Lew96]
"An On-the-fly Bytecode Compiler for Tcl"
Brian T. Lewis
Fourth Annual USENIX Tcl/Tk Workshop, 
1996
http://www.usenix.org/publications/library/
proceedings/tcl96/lewis.html

[Lind99]
 “The Java™ Virtual Machine Specifica-
tion, 2nd Ed.”, T. Lindholm and F. Yellin, 
1999, Prentice Hall.

[Oracle2004]
http://download.oracle.com/javase/1,5.0/d
ocs/api/overview-summary.html

[Ost10] 
“Tcl and the Tk Toolkit, 2nd Ed.”, John. K. 
Ousterhout and Ken Jones, 2010, 
Addison-Wesley.

[Poin07]
Aejaks Project
Tom Poindexter
http://sf.net/projects/aejaks

[Szul09]
Tcl/Tk Community Google Summer of 
Code 2009 
Jacl Modernization Project
http://wiki.tcl.tk/23812

[WikiJVM]
JVM Languages
http://en.wikipedia.org/wiki/JVM_language
s

http://www.jfree.org/jfreechart
http://www.jfree.org/jfreechart
http://tkcon.sourceforge.net
http://tkcon.sourceforge.net
http://www.tcl.tk/community/tcl2004/Papers/
http://www.tcl.tk/community/tcl2004/Papers/
http://www.tcl.tk/community/tcl2004/Papers/
http://www.tcl.tk/community/tcl2004/Papers/
http://wiki.tcl.tk/23812
http://wiki.tcl.tk/23812
http://wiki.tcl.tk/23812
http://wiki.tcl.tk/23812

