
NaTcl : Native Client Tcl Port



NaTcl : Native Client Tcl Port
Alexandre Ferrieux, France Telecom

1. What is Native Client ?

In 2010, Google started the NativeClient, aka "NaCl" project, which is a new sandboxing paradigm for
browser expansion. The idea is to get the best of two worlds: the speed of (nearly) native code, and the safety
of sandboxed environments. The various trust boundaries are illustrated below:

This little miracle is achieved by jailing the native code (".nexe") inside two sandboxing layers:

the outer sandbox:

This is a traditional process-level sandboxing (chroot, ulimit, etc). It encloses the entire NaCl
plugin-process.

• 

the inner sandbox:

This one is the real jewel inside NaCl. It is a machine-code-level verification pass and execution
context that is run when loading the .nexe, applying an extensive list of checks, among which:

• 

no dangerous instructions (like the one invoking syscalls)♦ 
all constant jumps fall on N-byte boundaries and in allowed range♦ 



all computed jumps are preceded by an AND operation restricting them to N-byte boundaries
and allowed range

♦ 

the runtime narrows the addressable memory (x86 segment registers)♦ 
These constraints together make it impossible for malevolent code to hide syscalls, either in shifts of
the instruction decoding frame, or in data (which are necessarily not executable).

For code to be eligible as an .nexe, it must be compiled and linked with a modified gnu toolchain
guaranteeing the invariants above. Any violation implies instant rejection at load time.

The N-byte boundary scheme does impact both code size (padding by NOPs) and speed (L1i cache).
The NaCl team says they are moderate though. Our own Tcl case demonstrates that the performance
loss (wrt truly native Tcl) is indeed bearable.

This double safety legitimates Google's boasting a bulletproof plugin architecture; moreover, the complete
isolation from the OS implies that .nexes are only processor-specific: all exchanges with the outside world
(the Chrome browser) are done through a new API (aptly named "Pepper" in this salty context). So an x86
.nexe will run unmodified on Windows, Linux, and x86-MacOS.

The Pepper API, which is still in fast expansion, progressively opens up various goodies to the .nexe:

exchanges with the Javascript context• 
sound• 
direct access to the frame buffer• 
(soon) access to accelerated 2D and 3D graphics• 

However, some things will by definition never be allowed within NaCl:

naked sockets• 
access to the whole local filesystem• 

This is obviously the price to pay for the absolute trust that NaCl aims to deserve.

2. NaTcl

2.1 Why ?

In April 2011, Google opened NaCl to outside developers. The motivation for porting Tcl to it stemmed from
a general frustration about not (easily) having Tcl in browsers. To the non-JS world, NaCl comes across as an
opening to alternate languages.

(for other -- and promising ! -- methods to bring Tcl into the browser landscape, see Steve Landers' paper.)

But the real trigger was Colin Mc Cormack's unwinking enthusiasm and support, backed by his deep
knowledge of the whole field (WubTk in perspective).

2.2 Wait a minute

NaTcl : Native Client Tcl Port



The salient issue that comes to mind when thinking about an NaCl port of Tcl is clearly the isolation from the
OS. First, one may ask, How are we supposed to do interesting things in such a neutered environment ?

The answer is, of course: use the browser (and its JS context) as a proxy to the real world. Despite the
limitations mentioned above, it can still do many things: GUI (of course); fetch intra-domain URLs; access
app-restricted local config or user-selected normal files.

Bottom line: we don't need those missing syscalls anyway !

2.3 How ?

Given the unavailibility of syscalls at link level, two approaches were considered:

cut "high" : separate Tcl's language and data manipulation core from more peripheral OS-related
primitives;

• 

cut "low" : take it as a whole, faking syscalls.• 

While the first approach is cleaner, it implies a fair amount of code surgery, which in turn makes it hard to
keep in sync with the mainstream codebase. Cutting "low", on the other hand, means a very small set of
changes, at the expense of error message clarity ('no such file or directory' instead of 'invalid command name
"open"').

After a couple of nanoseconds weighing the options, cutting low sounded like the way to go. This means that
the starting point of the porting effort is a list of trivial syscall/libc definitions, typically setting errno to
something not-too-alien, and returning the adequate value for failure (NULL or -1). See naclMissing.c.

Once syscall plugging was done, a few ancillary adaptations followed:

Compatibility headers defining the (unused) structs passed to the emulated syscalls, not provided by
the NaCl toolchain's includes. See naclCompat.h

• 

Toplevel bootstrapping glue calling Tcl_CreateInterp(), wrapping init.tcl, and passing data back and
forth to JS. See naclMain.c

• 

JS support code. See loader.js.• 
Incremental build system adaptations: parameterize and call ../unix/configure; patch the generated
Makefile.

• 

The bootstrapping code circumvents the absence of local filesystem access by stringifying the contents of
init.tcl. This was preferred over a full-fledged VFS by the same reasoning as above: to keep it incremental,
refrain from pulling in a significant mass of code.

Note that init.tcl is the only file needing this special handling, because once the interp is initialized, Tcl scripts
can take over. For example, [source] is emulated (in init.tcl) by a Tcl coroutine that yields back to JS while the
requested URL is fetched by the browser (with a vanilla XHR).

A further motivation for this approach is size and modularity: .nexes tend to be hefty, so as soon as at least
two NaTcl-based applications exist (wishful thinking), it is best to share the generic Tcl .nexe in the browser's
cache and let the individual apps [source] their specific code (which may be cached too) at init time.

NaTcl : Native Client Tcl Port



2.4 Putting the pieces together

Once we have a working Tcl interpreter, properly adapted to the peculiar syscall-less link environment, the
next step is to integrate it into the JS context's lifecycle. This task is outstandingly easy when Everything Is A
String ;-). To be fair, JS also takes part in this, with its own eval() function. Indeed, we can set up a very
simple "JS trampoline":

 (JS) String result = natcl.eval("some Tcl code");
 (JS) eval(result);

• 

It is important to note that these two lines are not in a tight "while(true)" loop; instead, they are typically
invoked from within a JS event handler, which in turn may be set up by (a side effect of) the "eval(result)"
line. As a consequence, as long as "some Tcl code" takes a small time to complete (or to [yield]), the JS
interpreter and associated browser-borne GUI stay responsive. The coupling between NaTcl and the browser
is thus identical to the Tcl/Tk one.

2.5 First real example: the "balls" demo

One of the many showcases of HTML5 features is the Google "balls" demo at

http://www.html5canvastutorials.com/labs/html5-canvas-google-bouncing-balls

It is a modest JS script simulating bouncing balls relaxing to fixed positions drawing a Google logo, and
disturbed by the hovering mouse:

It is an interesting porting exercise for NaTcl, because:

it features quickly-moving graphics (at 30fps)• 
it also involves a bit of physics calculations• 
it leverages the browser's beautiful antialiased circles• 

An additional self-imposed constraint was to use a Tk-like API in the NaTcl script. This is at variance with the
natural JS canvas API, which is lower-level (exposes a Repaint callback and immediate-mode graphics). But
as it turns out, bridging this gap is fairly simple. Basically, it amounts to mapping the current state (items,
coordinates) of the Tcl-level canvas to a JS data structure used in the JS Repaint function.

This setup allows the interactive loop to only exchange with Tcl a (stringified) array of integers, feeding them
into a Repaint function that was typically JIT-compiled once for all. The resulting speed is adequate, in that
30fps can still be held on an average-powered laptop.

NaTcl : Native Client Tcl Port

http://www.html5canvastutorials.com/labs/html5-canvas-google-bouncing-balls


2.6 Performance analysis

(to be completed with current Nacl+Chrome)

Bottom line:

the NaTcl balls demo uses roughly thrice the CPU used by the original pure-Javascript code at the
same frame rate.

• 

pure Tcl code, not hampered by the I/O with the JS context, runs marginally slower than native Tcl on
the same platform.

• 

One thing about the string I/O bottleneck: the NaCl team promised the advent of TypedArrays in the Pepper
API, which will allow to populate JS data with native values (like lists and integers) from within NaCl. This
points to a promising optimization of the transmission of a bunch of coordinates, directly from Tcl's Lists and
Integers to JS's. TBC, when Google delivers.

2.7 NaTk

The "balls" demo shows that, with NaTcl in hand, a JS newbie (like me) can whip up a non-ridiculous
coupling with the HTML5 canvas. The fundamental reason is that while the String is a handy common
ground, each side knows to back it with more efficient representations.

Now, within this general string-coupling strategy, many forms of Tcl-side syntax and JS-side tricks are
obviously possible. In particular, if you replace the JS newbie with a JS+Tcl expert like Colin, you get NaTk
(based on ideas from WubTk). Learn more about it in Steve's paper.

3. Ecosystem

Despite the OS agnosticism, the portability dream is a bit spoilt by having NaCl only on Chrome (or
Chromium) right now. Though the project is opensource, and Google initially targeted it as a multi-browser
plugin, the reaction from competing browsers has been, as could be expected, lukewarm to say the least.
Tough.

Still, NaCl retains some headroom in two areas:

The Chrome App Store: there, dependency on Chrome is by design. Moreover, the download size is
also part of the tradition, since the apps are installed locally (in a more persistent form of cache). Find
a killer app, write it in NaTcl, publish, reach fame, then don't forget to mention "Powered by Tcl" ;-)

• 

The Android browser. The NaCl inner sandbox also exists for ARM CPUs (though in a less polished
state than x86 and x86_64), and the NaCl team is committed to integrating it into the Android browser
as soon as the x86 branches' bugcount reaches zero.

• 

4. Afterword

When we were all mulling over Tcl and browsers in the Spring 2011, various ideas were discussed, among
which Steve's amazing ones. In hindsight, NaTcl is less sexy than them, especially with its position under fire
in the browser war. Still, it strikes a different balance between effort (minimal) and outcome (medium). And
anyway, the observation of intimate contact between Tcl and Javascript was personally enriching.

NaTcl : Native Client Tcl Port



ACKs

Colin McCormack, for the initial spark, many good ideas and optimizations, and NaTk.• 
Cameron Laird, for patient proofreading and key side-questions• 
Brad Chen (from Google), for his sheer skills at taming rogue instructions on any processor• 
Steve Landers, for exploring the opposite approach and succeeding !• 

Bibliography

NaCl page on Google Code: https://sites.google.com/a/chromium.org/dev/nativeclient• 
NaCl inner sandbox concepts by Brad Chen:
http://www.youtube.com/watch?v=L8m9U7p_Ntk&feature=related

• 

NaTcl branch on core.tcl.tk: http://core.tcl.tk/tcl/timeline?r=ferrieux-nacl• 
Wiki page by Colin et al, to get started with NaTcl: http://wiki.tcl.tk/28211• 

NaTcl : Native Client Tcl Port

https://sites.google.com/a/chromium.org/dev/nativeclient
http://www.youtube.com/watch?v=L8m9U7p_Ntk&feature=related
http://core.tcl.tk/tcl/timeline?r=ferrieux-nacl
http://wiki.tcl.tk/28211

	NaTcl : Native Client Tcl Port

