
1

Cookfs
Wojciech Kocjan, 2010-10-13

2

•  Introduction
•  Overview and design
•  Comparison with existing technologies
•  Comparison – sample archive contents
•  Cookit – standalone Tcl/Tk binary
•  Current status and plans

3

Introduction

•  Tcl one of first languages to ship applications as single
executable
•  Prowrap – first Tcl solution for putting multiple files in

single executable; uses ZIP based archives
•  freeWrap – one of first freely available solutions; uses

ZIP
•  TclKit – one of most popular solutions for bundling

applications; uses Mk4-based VFS and uses Tcl 8.4
VFS API

4

Introduction

•  Why cookfs?
•  Optimized for Tcl code

•  Groups small files
•  Optimized for Tcl files such as pkgIndex.tcl

•  Multiple compressions
•  Currently zlib, bz2 – plans for including LZMA as option
•  Can use multiple compressions in one archive

•  Designed for shipping all types of files
•  Handles large number of small files and very large files
•  Provides efficient memory management – VFS

operations consume very little memory

5

Introduction

•  Using cookfs
•  Obtaining and building cookfs

•  Available from SourceForge - source code on SVN;
cookfs source and cookit binaries as file downloads

•  Using TEA; uses standard configure & make approach
•  Using cookfs from Tcl

•  Similar to any VFS – vfs::cookfs::Mount, vfs::unmount

•  Commands (i.e. file) work same as for any VFS
•  Direct write command for faster addition of files

6

•  Introduction
•  Overview and design
•  Comparison with existing technologies
•  Comparison – sample archive contents
•  Cookit – standalone Tcl/Tk binary
•  Current status and plans

7

Overview and design

•  Cookfs major elements
•  Cookfs pages

•  Storage of parts of files, entire files or group of files
•  Referenced by integer indexes, starting from 0

•  Index and directory hierarchy
•  Keeps information on files and directories in VFS
•  Maps hierarchy to cookfs pages

•  Cookfs VFS layer
•  Uses pages and index elements to provide VFS
•  Offers access to archive from Tcl and Tcl C API

8

Overview and design – pages

•  Generic solution for storing content of files
•  Each page can store arbitrary amount of bytes
•  Pages are referenced by integer indexes, starting at 0

•  Pages can only be added and read
•  Pages are immutable – update or delete not allowed
•  Page reading uses LRU cache; this speeds up

retrieval of small files
•  Page cache is configurable – faster reads at a cost of

larger memory use

9

Overview and design – pages

•  Metadata keeps track of page sizes
•  Keeps information on all pages’ sizes
•  Provides space for storing cookfs indexes

•  Offer write-aside feature
•  Storing changes to cookfs archive in a separate file
•  Useful for read-only media (CD, DVD) or for storing

updates to application in a separate file

•  Currently written in C; work on pure Tcl
implementation currently in progress

10

Overview and design – index

•  Keeps structure of an archive
•  Index stores a tree of all files and directories
•  Contains information such as mtime for all entries
•  All information read when VFS is mounted and kept

entirely in memory

•  Prevents illegal operations
•  Not possible to create a file/directory as child of a file
•  Operation such as changing a file to a directory are

also blocked by index

11

Overview and design – index

•  Stores mapping of pages to file contents
•  Information on each file has references to pages
•  Keeps list of pages – page number, offset in page and

data size
•  Multiple files can reuse same page(s) if their contents

is the same – automatically detected by VFS layer

•  Currently written in C; work on pure Tcl
implementation currently in progress

12

Overview and design – VFS layer

•  Uses pages and index to provide complete VFS
•  Provides handlers for VFS operations
•  Cookfs index used for file information operations such

asl isting files, getting and setting file metadata

•  Provides channels for reading mechanism
•  Handles seek and read operations – data retrieved

directly from pages, not read entirely to memory
•  Uses chan create or rechan for channel creation

13

Overview and design – VFS layer

•  Uses memchan for writing to cookfs archive
•  Initiated as empty or containing previous content of a

file, depending on how file was opened

•  When memchan is closed closed, its contents is
added to archive or queued for addition

•  Files above specified size are added right away
•  Small files added in batches and grouped by file names

•  VFS layer is currently implemented in Tcl; uses
tclvfs package for providing Tcl virtual filesystem

14

•  Introduction
•  Overview and design
•  Comparison with existing technologies
•  Comparison – sample archive contents
•  Cookit – standalone Tcl/Tk binary
•  Current status and plans

15

Comparison with existing technologies

•  Mk4 VFS
•  Both Mk4 VFS and cookfs use zlib compression

•  Mk4 VFS compresses each file individually
•  Cooks compresses smaller files in groups

•  Cookfs offers multiple compression algorithms
•  Currently bzip2 also available
•  LZMA support planned for future releases

16

Comparison with existing technologies

•  Mk4 VFS – continued
•  Mk4 VFS and cookfs implemented in C+Tcl

•  Mk4 VFS uses Mk4tcl for underlying storage
•  Mk4tcl written in C++ - requires additional libraries

(libstdc++)
•  Cookfs uses C code for storage; pure Tcl version work

in progress – C version will provide better performance
•  Both technologies depend on tclvfs

17

Comparison with existing technologies

•  ZIP VFS
•  Both ZIP VFS and cookfs use zlib compression

•  ZIP VFS compresses each file individually
•  Cooks compresses smaller files in groups
•  Cookfs provides other compressiona algorithms

•  ZIP VFS uses a known standard for archive
•  Multiple tools for managing ZIP archives available
•  Can be created from various tools such as ant

18

Comparison with existing technologies

•  Other related projects and/or alternatives
•  Trofs

•  Pure C solution for single file archives; designed for Tcl
modules in mind

•  Does not use compression, simply concatenates file
contents and metadata on stored files

•  Does not depend on tclvfs

•  Tar VFS
•  Uses tar archive format for storing files
•  Does not use compression by default

19

•  Introduction
•  Overview and design
•  Comparison with existing technologies
•  Comparison – sample archive contents
•  Cookit – standalone Tcl/Tk binary
•  Current status and plans

20

Comparison – sample archive contents

•  Tcl related samples
•  Tclhttpd 3.5.1 – embedded web server

•  relatively small package, often used in Tcl applications
•  uncompressed size: 460kB

•  Tclllib 1.11.1 – set of commonly used Tcl packages
•  uncompressed size: 12MB

•  ActiveTcl 8.4 – sample of Tcl binaries and packages
•  Installation of ActiveTcl 8.4.19.0 for Linux
•  uncompressed size: 71MB

21

Comparison – sample archive contents

22

Comparison – sample archive contents

•  Non-tcl samples
•  Packaging Joomla and LAMP – BitNami Joomla stack

•  example of packaging non-Tcl content into an archive
•  Joomla stack for Linux with Apache, MySQL and PHP
•  uncompressed size: 224MB

•  Packaging Redmine – BitNami Redmine stack
•  Redmine application with Ruby and all other artifacts
•  uncompressed size: 535MB

23

Comparison – sample archive contents

24

•  Introduction
•  Overview and design
•  Comparison with existing technologies
•  Comparison – sample archive contents
•  Cookit – standalone Tcl/Tk binary
•  Current status and plans

25

Cookit – standalone Tcl/Tk binary

•  Cookit is a tclkit-like binary that has Tcl, core
libraries and VFS included in a single file
•  Includes Tcl (optionally Tk) and cookfs linked static

•  Can be used in same ways as tclkit:
•  For running other scripts – Tcl scripts, cookfs and zip

archives
•  For building standalone applications – by adding files

to cookfs archive, including main.tcl
•  As interactive tclsh / wish shell in a single file

26

Cookit – standalone Tcl/Tk binary

•  Cookit and Tcl initialization
•  Uses Tcl_Main() and Cookit_AppInit() as custom

application initialization
•  Reads initialization Tcl code from cookfs
•  Initializes tclvfs and Tcl libraries after mounting cookfs

•  If main.tcl file is present in cookfs archive, cookit
sources it

•  Works as standalone application
•  Other packages can be placed in lib/ directory; they

can be loaded using package require commands

27

Cookit – standalone Tcl/Tk binary

•  Cookit build system
•  Engine for building packages and linking cookit

•  Has logic to handle dependencies, comparing versions
•  Multiple commands to build entire cookit or just parts

•  Has definitions for cookit parts – i.e. tcl, tk, vfs, cookfs
•  Each part defines how it is configured and built
•  Handles listing files to add to cookit VFS
•  Create additional scripts for cookit initialization
•  Handle adding static packages to Cookit_AppInit()

28

Cookit – standalone Tcl/Tk binary

•  Building cookit
•  Download cookit build system from SourceForge:

http://sourceforge.net/projects/cookit/files/cookit/

•  Retrieve Tcl, Tk, tclvfs and cookfs sources:
tclsh build.tcl retrievesource tcl tk vfs cookfs

•  Building default cookit (without Tk)
tclsh build.tcl build-cookit

•  Build with Tk embedded statically (i.e. for MS
Windows)
tclsh build.tcl –tk latest build-cookit

29

Cookit – standalone Tcl/Tk binary

•  Using cookit
•  Run cookit, cookit.exe or cookit-ui.exe

•  cookit.exe runs in command prompt
•  cookit-ui.exe includes Tk and only provides UI mode

•  Platforms currently built
•  Windows x86
•  Linux x86
•  Mac OS X x86
•  More platforms can be built from sources …

30

•  Introduction
•  Overview and design
•  Comparison with existing technologies
•  Comparison – sample archive contents
•  Cookit – standalone Tcl/Tk binary
•  Current status and plans

31

Current status and plans – cookfs

•  Archive format stabilized – will not change

•  Implementation partially C and Tcl
•  Depends on tclvfs to provide VFS layer

•  Future plans
•  C-only implementation – remove dependencies
•  Create pure Tcl version for easier adoption
•  Improve grouping and duplication detection – currently

not detected well for small files

32

Current status and plans – cookit

•  Current status
•  Modularized build system, support for multiple

platforms (tested on 4 platforms, regularly built on 3)
•  Binaries work fine – no major issues
•  Support for threaded Tcl not yet complete

•  Future plans
•  Wider platforms builds to be performed periodically
•  Platform for building and managing packages

33

Current status and plans

•  Want to help?
•  Cookfs

•  Create documentation
•  Better test suite and/or add more test coverage
•  Help with implementing new features

•  Cookit
•  Platform support – build and submit binaries
•  Submit bugs/problems on less common platforms

Acknowledgements

34

35

Acknowledgements

•  Acknowledgements
•  BitRock, especially Daniel Lopez and Juan José

Medina Godoy – for providing feedback to cookfs and
paper for this conference

•  Piotr Beltowski – for reviews and comments on
cookfs, cookit and documents for this conference

Questions?

36

Thank you!

37

