
The State Controller Pattern:
An Alternative to Actions

William H. Duquette
Jet Propulsion Laboratory, California Institute of Technology

William.H.Duquette@jpl.nasa.gov

ABSTRACT
A GUI application must enable and disable widgets as the state of the application changes.
Bryan Oakley's notion of "actions" aids this by associating widgets with user actions; widgets
associated with an action can be enabled and disabled as a group. This paper suggests a different
pattern in which widgets are associated instead with the conditions for which they are enabled,
thus greatly simplifying the problem of triggering widget state changes as the application state
changes.

1. The Problem
As has often been noted at the Tcl Conference over the last few years, it is trivially easy to write
a quick-and-dirty GUI using Tcl/Tk; the difficulty lies in giving the GUI all of the little
professional touches. One of those professional touches is to make each GUI control be "grayed
out" when the action it invokes is currently invalid.

For example, MS Word has a table editing toolbar. Some buttons on it create new tables; these
will be enabled when the insertion point is in normal text, where a table can be inserted. Other
buttons modify part or all of an existing table; they will be enabled only when the insertion point
is within a table, or perhaps when some portion of the table is selected.

Anyone who has tried to create a polished GUI has had to address this issue; and has usually
found that it is more work than seems reasonable.

2. The "Actions" Pattern
In his 2004 conference paper, "Actions: A Simple Implementation", Bryan Oakley describes the
Actions pattern, his way of making the problem more tractable. [1] His insight is that there are
often multiple ways to invoke any given action the user might wish to take. In a word processor,
for example, the user might wish to copy the selection to the clipboard. He can:

• Enter a key command, Control-C

• Press the Copy button on the toolbar

The State Controller Pattern 17th Tcl/Tk Conference

• Select Edit/Copy from the Edit Menu

But although there are many input vectors, there is a single action underlying all of them: copy
the selection. If there is no selection (or if the selected object cannot be copied), all of these
vectors should be disabled. When something is subsequently selected, all of them should be
enabled. Moreover, it should be possible to toggle them all at once. This is called setting the
validity of the action.

The Actions pattern therefore has these characteristics:

• Each distinct action the user can do is represented as a proc-like pseudo-object in the
application. For example,

action define copy {} { event generate [focus] <<Copy>> }

• Each action's validity can be set:

action enable copy
action disable copy

• Each action can be invoked, which causes the action's body to be executed:

action invoke copy

If the action takes arguments, they are passed along with the action name.

• Each action can be associated with any number of buttons, menu items, key commands,
and so forth:

button .toolbar.copy -command {action invoke copy} ...
action associate copy .toolbar.copy

.menubar.editMenu add command \
-label "Copy" \
-command {action invoke copy}

action associate copy .menubar.editMenu "Copy"

bind all <Control-c> [list action invoke copy]

• Setting the action's validity automatically enables or disables all related GUI controls.

• In Oakley's simple implementation, actions are managed by an "action manager"
singleton; as he notes, they can also be implemented as explicit Tcl objects using an

The State Controller Pattern 17th Tcl/Tk Conference

object framework like Snit.

As a result, the application logic responsible for setting action validity is nicely decoupled from
the actual widgets that invoke those actions. This pattern has a number of advantages:

• The application logic is clearer, as it is written in terms of meaningful actions rather than
arbitrary widgets.

• The application logic is shorter, as there are typically many fewer actions than GUI
controls.

• The application logic is more stable with respect to GUI changes: the appearance of the
GUI and the number of GUI controls per action can be completely changed without
changing the application logic at all.

• The set of actions provides a vocabulary of commands that can be used to script the user
interface, for test purposes or even for user scripting.

I refer to this as a pattern rather than as a library, because it usually makes sense to tailor the
action manager implementation to the application.

3. Actions vs. Conditions
The reason why actions simplify the program logic is shown in the following diagram, which
partitions the set of GUI controls in the program by the actions that they invoke:

a1 a2 a3 a4 a5 a6 a7 a8

g1

g2

g3

g4

g5

g6

g7

g8

g9

g1
0

g1
1

g1
2

g1
3

g1
4

g1
5

g1
6

g1
7

g1
8

In the diagram we have eight actions, a1 through a8, and 18 GUI controls (menu items, buttons,
etc.), g1 through g18. By relating the controls with the actions, we now have less than half as
many entities to enable and disable.

The State Controller Pattern 17th Tcl/Tk Conference

Now, it is likely that some of these actions are enabled and disabled under precisely the same
conditions. Group the actions by these conditions, c1 through c4:

c1 c2 c3 c4

a1 a2 a3 a4 a5 a6 a7 a8

g1

g2

g3

g4

g5

g6

g7

g8

g9

g1
0

g1
1

g1
2

g1
3

g1
4

g1
5

g1
6

g1
7

g1
8

Suppose that instead of associating the GUI controls with the actions, we associate them with the
conditions for which they are valid. We now have fewer sets of GUI controls to deal with, and
they are tied directly to the program logic (the condition) that sets their validity:

c1 c2 c3 c4

g1 g2

g3 g4

g5 g6

g7 g8

g9

g10

g11

g12

g13

g14

g15

g16

g17

g18

This is essentially what the State Controller pattern does.

4. Notional Application
This section describes a notional application, to be used in examples in the remainder of the
paper. The applications on which I am currently working have the following flavor:

• They are time-step simulations, in which the user prepares a scenario consisting of a

The State Controller Pattern 17th Tcl/Tk Conference

number of entities of different kinds, and then allows simulation time to elapse, possibly
intervening between time steps.

• They are document-centric. The scenario is a document that can be opened and saved.

• The application has distinct states; the user's actions are constrained by the current state.

o PREP: Scenario Preparation. In this state the user can edit anything.

o PAUSED: In this state, many aspects of the scenario are fixed. The simulation
can be asked to starting running forward.

o RUN: In this state, the user can watch the simulation execute, but cannot do much
else other than pause it or return to PREP.

• Each entity has a set of attributes (i.e., a record structure). Consequently, the application
has a browser for each kind of entity, allowing entities of that kind to be viewed, created,
edited, and deleted.

• The application manages one simulation model at a time.

• The application has multiple windows, allowing multiple views on the model. All
windows are identical in their capabilities (as with multiple editor windows on the same
document). In particular, all of the various browsers are available as tabs in each of the
windows.

• The application has a modular architecture based on Snit widgets. [3] Each window
contains a variety of components, each implemented as a Snit widget.

Our notional application is a simulation of cars, roads, and gas stations:

• Roads and gas stations must be created and edited during PREP.

• Individual cars can be created and edited during PREP and while PAUSED.

5. State Controllers
The Actions pattern partitions the set of GUI controls by the actions they invoke. The basic
notion of the State Controller pattern is to partition the set of GUI controls not by the actions
they invoke, but by the conditions for which they are valid.

A state controller is a Snit object that controls the -state of some set of objects according to a
-condition expression. If the condition is true, the -state of the objects is set to normal;
otherwise, it is set to disabled. The API is straightforward:

The State Controller Pattern 17th Tcl/Tk Conference

statecontroller name -condition {expression}
Create a new state controller with a given condition.

name control object ?key value ?key value...??
Ask state controller name to control the -state of the named object. The optional
arguments represent a dictionary of values to be used in the -condition expression.

If object is a list of length 2, then the first token is assumed to be the name of a Tk menu
widget and the second is the label of a menu item.

name update ?object...?
Ask state controller name to update the -state of all of the objects it controls.
Optionally, it can update only the named objects.

Once the state controller has been created and the GUI controls have been associated with it, all
that remains is to invoke the controller's update method on events that might cause the
controller's -condition value to change.

Note that there is no command to forget a controlled object. If a controlled object no longer
exists, the state controller silently forgets it.

5.1 Example: Adding an Entity
In our notional application, road and gas station entities can be created only while the simulation
is in the PREP state. Each kind of entity has a browser, and each browser has an "Add" button.

First we define the state controller; its condition, of course, is simply that the simulation state is
PREP:

statecontroller inprep -condition {[sim state] eq "PREP"}

Because this condition applies to GUI controls in different components, we define inprep at
application scope.

Next, in each browser we ask inprep to control the "Add" button:

Associate a widget with the statecontroller
button $win.add -text "Add" -command {...}
inprep control $win.add

When the simulation state changes the simulation notifies the inprep object:

The State Controller Pattern 17th Tcl/Tk Conference

inprep update

The controller then sets the -state of all controlled widgets in one fell swoop. That is all there
is to it. The advantages are plain:

• Instead of defining "addroad" and "addstation" actions we define a single state controller.

• Associating the GUI controls with the state controller is no more work than associating
them with an action.

• Instead of having code in every browser to subscribe and respond to simulation state
changes, we call inprep update once when simulation state changes..

5.2 Example: Editing or Deleting an Entity
Each entity browser also has Edit and Delete buttons, which are valid only if the simulation is in
the "PREP" state and an entity is selected in the browser. Pressing the button pops up a dialog
used to edit the entity's attributes.

This is a difficult case to implement with the Actions pattern, because we can have multiple
instances of a particular browser. For example, we might have two windows open, each
displaying the gas station browser. Different gas stations might be selected in the two browsers,
so that the Edit button is valid in one but not in the other. As a result, we would need to have
two actions (or, more generally, N actions), one for each gas station browser. This is doable,
certainly, but it smells funny: we have two "actions", but only one real action being performed.

The State Controller pattern takes this in stride. All we need do is to parameterize the state
controller's -condition with the name of the browser:

statecontroller inprepWithEntity -condition {
[sim state] eq "PREP" &&
[llength [$browser selection]] == 1

}

We might also need to add a method to the browser widget itself; but as we are using Snit this is
straightforward.

The value of browser is specified when a widget is controlled:

The State Controller Pattern 17th Tcl/Tk Conference

button $win.edit -text "Edit" -command {...}
button $win.delete -text "Delete" -command {...}

inprepWithEntity control $win.edit browser $win
inprepWithEntity control $win.delete browser $win

Now, inprepWithEntity must be updated on two events: when the simulation state
changes, and when the browser's selection changes:

When sim state changes (In the "sim" module):
inprepWithEntity update

When selection changes (In the browser component):
inprepWithEntity update $win.edit $win.delete

Changes to the browser's selection only affect the widgets that are part of that browser;
consequently we ask the controller to update them specifically. The controller then evaluates its
condition for those widgets alone. This is a minor performance hack, and can reasonably be
omitted.

The menu items for editing and deleting entities only depend on the simulation state, and so can
be controlled by the inprep controller.

5.3 Widgets with Unusual States
Most Tk widgets have two values for -state: normal and disabled. A few have
additional states, such as readonly. If normal and disabled are not the correct pair of
states for a given widget, the easiest solution is to wrap the widget in a
snit::widgetadaptor and let the wrapper translate normal and disabled into the
desired pair of values.

6. Triggering State Controller Updates
It is unpleasant to sprinkle calls to a state controller's update method around the code to catch
all of the events that make a state controller's -condition change. The code is clearer if the
module that defines the state controller can also subscribe to all of the relevant global events,
which implies the need for a non-GUI application-level event mechanism. Although Tk virtual
events can be used to do this job, they are unsatisfactory. Instead, we use a mechanism we call
the notifier. Any module can send notifier events at any time, without declaration:

notifier send ::sim <State>

Here, ::sim is the module sending the event and <State> is the event being sent. (Events

The State Controller Pattern 17th Tcl/Tk Conference

can also include arguments.) Any number of modules can subscribe to this event from this
sender:

notifier bind ::sim <State> inprep {
inprep update

}

notifier bind ::sim <State> inprepWithEntity {
inprepWithEntity update

}

This allows the definition of the state controller and the global calls to update to be co-located:

statecontroller inprep -condition {[sim state] eq "PREP"}
notifier bind ::sim <State> inprep {inprep update}

This combination appears often enough that our implementation of statecontroller
supports it directly:

statecontroller inprep \
-condition {[sim state] eq "PREP"} \
-events {::sim <State>}

7. Combining State Controllers with Actions
Suppose that instead of using a singleton action manager, as described in Section 2, each action
was implemented as a Snit object with a -state option. One could then implement a three-tier
architecture: GUI controls are associated with action objects, and action objects are controlled by
state controllers. This preserves the use of actions as a kind of scripting language for the
application. In our application domain, however, we have approached it differently.

We have the notion of an order, a user input that changes the simulation model. Looked at
another way, any change that needs to be saved as part of the scenario document is made by an
order. In our example, we would have orders to add, edit and delete roads, gas stations, and cars,
along with many other operations. Like actions, orders are a kind of managed pseudo-proc.
Unlike actions, orders are non-GUI.

Orders provide the application with the same scripting ability as actions, and at a level better
suited to the application domain. (They also provide a basis for multi-level undo/redo.)

The primary variable that determines whether an order can be validly sent or not (assuming its
parameters are valid) is the simulation state, and consequently the order manager handles this
explicitly. Each order "knows" the simulation states in which it is valid. The order manager
subscribes to the "::sim <State>" notifier event, and sends the "::order <State>"

The State Controller Pattern 17th Tcl/Tk Conference

event when order validity changes. Thus, we can write state controllers like this:

statecontroller orderValid \
-condition {[order valid $order]} \
-events {::order <State>}

statecontroller orderValidWithEntity \
-condition {

[order valid $order] &&
[llength [$browser selection]] > 0

} \
-events {::order <State>}

When we associate a GUI control with the latter of these state controllers, we need to specify the
name of the order along with the name of the browser. Thus, we can edit the list of states for
which the order is nominally valid as part of the order definition, and all of the GUI controls will
be enabled and disabled accordingly, with no other code changes.

In short, instead of using actions to mediate between state controllers and GUI controls, we are
using state controllers to relate orders to GUI controls.

8. Key Commands
Oakley's action manager implementation disables key bindings by making action invoke a
no-op when the action is disabled. Because a state controller can control many widgets invoking
many different operations, it has no notion of an invoke method. In order for a state controller
to control a key binding, then, it would be necessary to define the key binding as an object with a
-state option. It would be easy to implement a Snit type that wraps key bindings in this way,
but to date we have not felt the need to do so.

9. State Controllers in Practice
The example in Section 3 suggests that a complex application could require many fewer state
controllers than actions to do the same work, while greatly reducing the application logic in the
GUI components that have controlled widgets.

In the most recent release of the project on which I am currently engaged, the main application
has approximately 75 orders. These orders are invoked by approximately 150 GUI controls per
application window. The state of these 150*N GUI controls is managed by just 8 state
controllers defined at the application level. The code in the components that contain these GUI
controls is limited to the following:

• Associating the controls with the relevant state controller

The State Controller Pattern 17th Tcl/Tk Conference

• Invoking the state controller's update method when the component's state changes
(only if needed).

We add new state controllers very rarely, and the rest of the time we do not think much about
them; they just work.

In short, enabling and disabling GUI controls is no longer more work than seems reasonable.

10. References
[1] Oakley, Brian, "Actions: A Simple Implementation", 11th Tcl/Tk Conference,

http://www.tcl.tk/community/tcl2004/Papers/BryanOakley/oakley.pdf.

[2] Oakley, Brian, "Actions", http://wiki.tcl.tk/11505

[3] Duquette, William H., "Snit's Not Incr Tcl", http://www.wjduquette.com/snit.

11. Acknowledgements
This research was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration, during
the development of the Athena Stability & Recovery Operations Simulation (Athena) for the
TRADOC G2 Intelligence Support Activity (TRISA) at Fort Leavenworth, Kansas.

Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

	ABSTRACT
	1. The Problem
	2. The "Actions" Pattern
	3. Actions vs. Conditions
	4. Notional Application
	5. State Controllers
	5.1 Example: Adding an Entity
	5.2 Example: Editing or Deleting an Entity

	5.3 Widgets with Unusual States
	6. Triggering State Controller Updates
	7. Combining State Controllers with Actions
	8. Key Commands
	9. State Controllers in Practice

	10. References
	11. Acknowledgements

