
THE CTHULHU BUILD SYSTEM
Using Tcl to build C To Build Tcl Applications

Sean Woods
Test and Evaluation Solutions, LLC

for the
17th Annual Tcl/Tk Developer’s Conference

The CTHULHU Build System

THE CTHULHU BUILD SYSTEM
Using Tcl to build C To Build Tcl Applications

Sean Woods
Test and Evaluation Solutions, LLC

for the
17th Annual Tcl/Tk Developer’s Conference

Introduction" 3

CTHULHU Concepts" 3

Overa# Structure" 3

Containers" 3

Methods" 3

State Structures" 4

Data Interface" 5

Properties, Entity and SimTypes" 6

Delta" 7

Programming CTHULHU" 8

Modifications to TEA" 8

CTHULHU Structure Descriptions" 9

CTHULHU Field Descriptions" 10

Ca#s of the CTHULHU" 11

Structure Functions of CTHULHU" 12

Tcl Commands Provided by CTHULHU" 14

Getting CTHULHU" 16

Credits" 16

The CTHULHU Build System

Introduction
This paper describes the C and Tcl Hashtable Underpinnings for Language High-level Understanding, or CTHULHU.
CTHULHU is a series of tools to build C extensions for Tcl, from Tcl. It’s focus is on computing problems
that require Tcl to have access to complex data structures that are themselves manipulated by existing C code.
These tools were originally developed to support the Test and Evaluation Solution’s Integrated Recovery
Model, but would be applicable to any problem in which Tcl needs to interact with C data structures in real-
time.

CTHULHU	 Concepts

Overall Structure
Lets assume for a moment that we are developing a Tcl interface to a C application. This application has sev-
eral different species of objects, each with their own data structure. Each object type is stored in a separate
hashtable. We also provide an ensemble to manage both the hashtable and the data structures within.

CTHULHU builds on the venerable Tcl Extension Architecture (TEA). It uses a series of flat-file databases
and scripts to generate C source files and headers. The scripting language used, of course, is Tcl.

The process begins with the developer writing up what he or she would like the data structures to look like.
This description will serve double-duty as the meta-information that Tcl applications will later use to generate
graphical interfaces for.

Containers
Let’s call this master index and ensemble of methods a “con-
tainer” for lack of a better term. In our hypothetical example,
let’s have a container that handles doorways. Well, since I’m
out of creative ideas, let’s just call the doors portals, and lift
the example right from the kinds of problems that CTHULU
was designed to solve.

When our program is running, we can use the portal command to generate our list of portals, as well as
change their state throughout the simulation.

Methods
Containers all require a common set of core functions. Create a structure instance. Link it to another struc-
ture. Reset the table. Return a list of the id’s in the table. Read and write to individual fields within a single
structure.

The CTHULHU Build System

%	 portal	 setting	 p1	 open
1
%	 portal	 setting	 p1	 jammed	 2

Example: Using a container

In a perfect world, these core functions behave consistently
across all of your containers, and your Tcl/Tk app can play on the
similarities. Perhaps even glean meta information enough to build
screen elements.

Some of these functions are pretty copy and paste-able. For in-
stance, a function to spit out the IDs usually differs only in the
name of the variables used. There are other functions that re-
quire a custom parser for every structure. Reading and writing
individual fields of a record, for instance.

A great example of that later is the setting method. Setting
takes in the id of a record, a field, and optionally a value. If the
value is not given, the current value is returned. If the value is
given, the data structure is updated with the new value for that
field.

Wouldn’t you know that “simple” function setting is one of the
hairiest and most complex I have to implement? Every time I add
a field, I have to drop it into 5 or 6 places in C. (And that is just
for one method, mind you.)

There is also the headache of ensuring the user doesn’t try to put
a floating point value into a boolean field. Not to mention han-
dling when a user tries to stuff in a value for a field that doesn’t
exist. Over time I was seeing a pattern emerge, a template that
was being stamped out one module at a time. Being the lazy pro-
grammer I decided to stop implementing it piecemeal and write a
general case automated procedure.

State Structures
Portals are very simple creatures, of course. They have a finite
number of states: open, closed, opening or closing. Doors can
also be damaged in two different ways:

1. Jammed open, meaning they are open and cannot be
closed

2. Jammed closed: meaning they are closed and cannot be
opened

So if I want to inquire about the state of a door we can use the
setting method of the container.

The process begins with the user describing the structure.
CTHULHU use a simple dict, with all of the information that
both C and the resulting Tcl application will need captured in
one place. The description for portal is to the right.

The CTHULHU Build System

cstructDefine	 Portal	 {
	 	 key	 id	
	 	 delta	 1	
	 	 prefix	 p	
	 	 comment	 {Each	 portal	 is	 an	 ,,,
	 	 static	 {
	 	 	 	 Roid	 id;	 	 	 	 	 	 	 	 	 	 	 	 	 /*	 Num...
	 	 	 	 Entity	 *pType;
	 	 	 	 Portal	 *delta;
	 	 	 	 Compartment	 *pFrom;	 	 /*	 Com...
	 	 	 	 Compartment	 *pTo;	 	 	 	 /*	 Com...
	 	 	 	 Crew	 *holding;	 	 	 	 	 	 	 /*	 Cre...
	 	 	 	 Portal	 *airlock;	 	 	 	 	 /*	 Poi...
	 	 }
	 	 fields	 {
	 	 	 	 flooding	 {
	 	 	 	 	 	 storage	 real
	 	 	 	 	 	 desc	 {%	 of	 the	 door	 cover...
	 	 	 	 }
	 	 	 	 toid	 {
	 	 	 	 	 	 storage	 Roid
	 	 	 	 	 	 desc	 {Compartment	 To}
	 	 	 	 }
	 	 	 	 fromid	 {
	 	 	 	 	 	 storage	 Roid
	 	 	 	 	 	 desc	 {Compartment	 From}
	 	 	 	 }
	 	 	 	 jammed	 {
	 	 	 	 	 	 storage	 u4
	 	 	 	 	 	 values	 {
	 	 	 	 	 	 	 	 0	 normal	 {Door	 is	 normal}
	 	 	 	 	 	 	 	 1	 jam-‐close	 {Door	 is	 jamm...
	 	 	 	 	 	 	 	 2	 jam-‐open	 	 {Door	 is	 jamm...
	 	 	 	 	 	 }
	 	 	 	 }
	 	 	 	 reserved	 {
	 	 	 	 	 	 storage	 bool
	 	 	 	 	 	 desc	 {Door	 is	 being	 held	 clo...
	 	 	 	 }
	 	 	 	 open	 {
	 	 	 	 	 	 storage	 u4
	 	 	 	 	 	 values	 {
	 	 	 	 	 	 	 	 0	 normal	 {Door	 is	 closed}
	 	 	 	 	 	 	 	 1	 open	 	 	 {Door	 is	 open}
	 	 	 	 	 	 	 	 2	 opening	 {Crew	 is	 opening...	
	 	 	 	 	 	 	 	 3	 closing	 {Crew	 is	 closing...
	 	 	 	 	 	 }
	 	 	 	 	 	 desc	 {Current	 open	 status	 of...
	 	 	 	 }
	 	 }
}

Example: a dict describing the portal structure

The static field stores a block of C code. This is a great place
to stuff pointers, variables you’d like hidden from the user, etc.
The fields field is itself a dict, with an entry for each public
variable that the developer wishes Tcl to be able to directly
interact with. This dict also captures comments, enumerated
values, and provides hints about storage requirements to C.

The data structure our cstructDefine statement produces is
on the right. Major features:

1. #define statements for each enumerated field value
2. Sub-byte fields are stored in bitfields
3. The fields that are accessible to Tcl are marked pub-

lic_XXXX. This makes them easier to spot while cod-
ing.

4. The flags in the toplevel of the definition trigger other
fields to be automatically added. For instance set “loca-
tion 1” flag added the deckid, x, y, and zoff fields.

Data Interface
Of course, simply generating a data structure is not particu-
larly useful in of itself. So CTHULHU has another few tricks
up it’s sleeve. In particular, as suite of tools to handle the in-
terchange of data between Tcl and C.

Because it is machine generated, every field is given it’s own
handler to manage the unique constraints of each field. For
instance, CTHULHU knows that a boolean field should use
Tcl_GetBooleanFromObj, and fall back to Tcl_GetDouble-
FromObj if the user was uncouth enough to put a decimal
point in to represent 1.0 or 0.0. Because the machine is doing
all the brute force programming, we can afford to be fancy because we only have to debug the prototype. Our
work will be carried over and repeated N times for N different fields.

The CTHULHU Build System

/*	 Define	 the	 Portal	 Structure	 */
#define	 PORTAL_JAMMED_NORMAL	 0	 /*	 Door...
#define	 PORTAL_JAMMED_JAM_OPEN	 2	 /*	 Do...
#define	 PORTAL_OPEN_NORMAL	 0	 /*	 Door	 i...
#define	 PORTAL_OPEN_OPEN	 1	 /*	 Door	 is	 ...
#define	 PORTAL_OPEN_OPENING	 2	 /*	 Crew	 ...
#define	 PORTAL_OPEN_CLOSING	 3	 /*	 Crew	 ...
struct	 Portal	 {
	 	 	 /*	 Place	 holder	 for	 ID	 */
	 	 	 Tcl_Obj	 *idString;
	 	 	 /*	 Begin	 hard-‐coded	 structure	 */
	
	 	 	 Roid	 id;	 	 	 	 	 	 	 	 	 	 	 	 	 /*	 Numeric	 ID	 ...
	 	 	 Entity	 *pType;
	 	 	 Portal	 *delta;
	
	 	 	 Compartment	 *pFrom;	 	 /*	 Compartment	 ...
	 	 	 Compartment	 *pTo;	 	 	 	 /*	 Compartment	 ...
	 	 	 Crew	 *holding;	 	 	 	 	 	 	 /*	 Crewmember	 	 ...
	 	 	 Portal	 *airlock;	 	 	 	 	 /*	 Pointer	 to	 i...

	 	 	 float	 public_flooding;	 /*	 flooding	 e...
	 	 	 Roid	 public_fromid;	 /*	 fromid	 eoc	 */
	 	 	 Roid	 public_toid;	 /*	 toid	 eoc	 */
	 	 	 /*Begin	 bitmap*/
	 	 	 unsigned	 int	 public_jammed	 	 	 	 :4;	 /*...
	 	 	 unsigned	 int	 public_open	 	 	 	 :4;	 /*	 o...
	 	 	 unsigned	 int	 public_reserved	 	 	 	 :1;	 ...
};

Example: The C implementation of the portal structure

Properties, Entity and SimTypes
You may have noticed the pointer to a
structure called Entity in the Portal
structure. Entity is a container
CTHULHU provides as a place to store
properties. If you have a ship full of doors,
many will be similar. Some can be opened
faster than others. Some are taller, some
are wider, but generally, there is usually
more than one of each type of door in a
model.

The SimType system allows you to store
those properties once for all of the nodes
that share it. Because we are making such
efficient use of space by eliminating cop-
ies, there’s very little need to break the
properties up into C structures. So, we
don’t bother. Both SimType and Entity
use a single Tcl_Obj that is formatted as a
dict.

It is also handy to store information about
a node that isn’t part of the state C needs
to access occasionally if at all. So it’s nice
to store that sort of information sepa-
rately, with C being able to access on de-
mand. In other cases, this is information
that is needed for a Tcl representation,
with no impact on the model running in
C. Rather than write 1,000,001 handlers
for all of the different data types, I de-
cided to write the Entity data structure
to handle this ephemeral data, and have all
the other structures link to it.

Ok... I think I need to break out a graphic to explain what is going on. On the right you can see a chart of
which data structure is pointing to which. Portal contains 5 links. One to an entry in Entity, two links to
Compartment, one to another Portal, and the fifth to a structure called Crew. We won’t explore crew or
compartment for now.

The only link CTHULHU is concerned with is the link to Entity. When portal looks for a property, it looks to
Entity. Every entry in the portal container has a corresponding entry in the Entity container.

The CTHULHU Build System

Simtype

Entity

Portal

Com-
partment

Simtype y1000
“Horizontal Door”
size: 1x2m
color: green
water tight: yes

Entity p1999
“Door 1999”
location: x,y,z
orientation: 1 0 0
displayed: yes

Portal 1999
State: Open
Jammed: Open
Connects...

If a property hasn’t been specified for a particular entity, our
search routing will route next to the Entity entry’s SimType.

In our C model, let’s assume the simulation itself doesn’t care
about things like object_size. We just need to know if the
door is open, and if it can be opened or closed.

When we draw the portal on the screen, though, we do have
to be concerned about size, location and direction. Our GUI
can also suppress the display of the portal.

On the right you can see a sample conversation between a
user at a console, the simtype, entity, and portal containers.

Delta
CTHULHU was designed with discrete time simulations in
mind. One handy thing to know is what changed during the
timestep. The pointer to a type of Portal called delta is a
copy of this data structure from the last time step.

The current timestep is copied into the delta during the call
to cstruct_advance_all. cstruct_advance_all is called
after data logging has taken place, but before the next
timestep kicks off. We can get away with copying the entire
state of every node in the system, of course, because we repre-
sent it in such a compact form.

The CTHULHU Build System

#	 See	 our	 portal	 with	 no	 type
%	 portal	 get	 p1
	 	 open	 1	 jammed	 2	 fromid	 100	 \
	 	 toid	 101	 flooding	 1.0
#	 Create	 a	 type	 and	 stuff	 it	 with	
#	 properties
%	 simtype	 create	 1000
%	 simtype	 put	 1000	 {
	 	 fullname	 {20”	 portal}
	 	 object_size	 {1000	 100	 2000	 mm}
}
#	 Set	 our	 portal	 to	 that	 new	 typeid
%	 portal	 typeid	 1000
%	 portal	 get	 p1
	 	 open	 1	 jammed	 2	 fromid	 100	 \
	 	 toid	 101	 flooding	 1.0	 \
	 	 fullname	 {20”	 portal}	 \
	 	 object_size	 {1000	 100	 2000	 mm}
#	 We	 also	 have	 a	 representation	 in
#	 entity.	 It	 stores	 properties,
#	 but	 has	 it’s	 own	 state
%	 entity	 get	 p1
	 	 visible	 1	 hidden	 0	 ...(etc)...
	 	 fullname	 {20”	 portal}	 \
	 	 object_size	 {1000	 100	 2000	 mm}
%	 portal	 create	 p2
%	 portal	 typeid	 p2	 1000
#	 If	 we	 add	 a	 property	 to	 portal,
#	 it’s	 actually	 stored	 in	 entity
%	 portal	 put	 p2	 \
	 	 	 {dclocator	 01-‐400-‐4}
%	 portal	 get	 p2
	 	 open	 0	 jammed	 0	 fromid	 0	 \
	 	 toid	 0	 flooding	 0.0	 \
	 	 fullname	 {20”	 portal}	 \
	 	 object_size	 {1000	 100	 2000	 mm}	 \
	 	 dc_locator	 01-‐400-‐4
%	 entity	 get	 p2
	 	 visible	 1	 hidden	 0	 ...(etc)...
	 	 fullname	 {20”	 portal}	 \
	 	 object_size	 {1000	 100	 2000	 mm}	 \
	 	 dc_locator	 01-‐400-‐4
#	 If	 we	 add	 a	 property	 to	 entity,
#	 portal	 immediately	 sees	 it
%	 entity	 put	 p2	 {open_time	 10}
%	 portal	 get	 p2	 open_time
	 	 10

Example: Entities and Types in action

Programming	 CTHULHU
CTHULHU is intended to provide utility to C code. It’s not a complete extension in of itself. It depends on
external C code to maintain the hash tables the nodes are in, for instance. It assumes something else is doing
the high-level integration of the ensemble. It’s a tool with one job, and I’d like to think it does the job well:
take care of the mundane exchange of data between Tcl and C.

The basic process is:

1. Document your structures in the cStructureDefine markup language, one file per structure, in the cstruct/
path in your source directory.

2. Call cstructBuild.tcl to generate your C source files: cstruct.c and cstruct.h

3. Include ctruct.c and cstruct.h in your build process

4. Include the cstruct definition files in your Tcl application

Modifications to TEA
The standard distribution of CTHULHU uses a modified version of the Tcl Extension Architecture. Certain
paths have a special meaning, and some scripts have been incorporated into the makefiles.

build/

To make it easier to spot C files that are auto-generated, all of the products of the build process are placed in
the build/ directory. It’s designed so you can safely throw away that one path and start the build process from
scratch.

conf/

The conf path is designed to store Tcl files that contain databases that will be incorporated into C and pub-
lished to the resulting Tcl program as well. These files are sourced at various times during the build process,
and Each instance of the cStructDefine command encountered during this pass is turned into a new data
structure.

scripts/

Contains the Tcl scripts used by the modified Tea to auto-generate sources and/or chunks of the build system.

Other modifications

CTHULHU uses scripts to auto-generate the makefile lines needed to produce a .o file in the build directory
for every C file it encounters in the generic/ directory. It also wraps those resulting .o files into a library auto-
matically. This requires a custom Makefile, If you have additional makefile requirements, place them in
static.mk Other than that, to build your extension is simply “./configure” and “make install”

The CTHULHU Build System

CTHULHU Structure Descriptions
The markup language for CTHULHU is based on dicts. Each field is a signal for the meta-compiler. Here are
the major fields implemented:

keytype

Tells CTHULU what kind of key type the container uses. If the keytype is int CTHULU will auto-generate a
StructName_Identify and StructName_TypeId function. Otherwise those functions will need to be provided
by the developer.

hashtype

Tells CTHULU what type of hash table the container uses to indexing nodes. The only supported hashtype at
the moment is tcl.

dictstore

Used to differentiate between containers like Entity that store dict information, and others who link to entity
for that function.

prefix

A one letter prefix that is used to build the node’s ID in the Entity container. For instance, portal 199 is simply
199 in the portal container. But in entity it is p199, to differentiate it from, say e199 or v199.

key

Identifies the static field in the data structure that represents the node’s identity.

name

A human readable name for the container

location

True or false. When true, add fields and methods to track and manipulate the location of the node within the
model.

static

Block of code that is added, verbatim to the top of the data structure

static_bitfield

Block of code that is added after the bitfield fields in the data structure. Usually other sub-byte flags.

The CTHULHU Build System

delta

True or False. When true, this structure tracks a delta

alloc_free

When non-empty, a block of C code to replace the standard
StructName_Generic_Alloc and StructName_Generic_Free func-
tions.

comment

Human readable comment

fields

A dict containing the definitions for the public fields of the
structure.

Field names CTHULHU interacts with are all mapped to lower
case, and all prepended with public_. If you see public_foo, the
user in Tcl methods will address the field as foo.

CTHULHU Field Descriptions
The markup language for CTHULHU fields are also based on
dicts. CTHULHU builds the structure based on the content of
the following fields: (other fields are ignored, and assumed to be
important to your app.)

storage

Tells CTHULHU how to represent the field in C. CTHULHU
understands the values in the table on the right. Fields with a
storage other than those understood by CTHULHU are treated
as short integer.

values

Values are mapped as a series of triplets: literal, code, description. A define statement for every literal/code
mapping is created for the programmer’s convenience.

The CTHULHU Build System

Type C Type Tcl Type
Bitmask Tcl_WideInt wide integer

bool unsigned int :1 boolean

blob *stored as a property

char char integer

double double double

float float double

matrix *stored as a property

real float double

Roid unsigned int integer

script *stored as a property

string *stored as a property

text *stored as a property

u1 unsigned int :1 boolean

u2 unsigned int :2 integer

u3 unsigned int :3 integer

u4 unsigned int :4 integer

u8 unsigned char integer

u16 unsigned short integer

u32 unsigned int wide int

u64 Tcl_WideInt wide integer

CTHULHU Storage Types

Calls of the CTHULHU
The following are functions that interact with entities, simtypes, and properties. They can be used on any
CTHULHU generated structure.

SimType_GetReal

double	 SimType_GetReal(Entity	 *pType,	 const	 char	 *field);

Searches for a property named field and returns the value as a double precision floating point.

SimType_GetInt

int	 SimType_GetInt(Entity	 *pType,	 const	 char	 *field);

Searches for a property named field and returns the value as an integer.

SimType_GetWideInt

Tcl_WideInt	 SimType_GetWideInt(Entity	 *pType,	 const	 char	 *field);

Searches for a property named field and returns the value as a wide integer.

SimType_GetTclObj

Tcl_Obj	 *SimType_GetTclObj(Entity	 *pType,	 const	 char	 *field);

Searches for a property named field and returns the value as a Tcl_Obj structure.

SimType_SetInt

void	 SimType_SetInt(Entity	 *pType,	 const	 char	 *field,	 int	 value);

Inserts or modifies a property named field, using the int value.

SimType_SetReal

void	 SimType_SetInt(Entity	 *pType,	 const	 char	 *field,	 double	 value);

Inserts or modifies a property named field, using the double value.

SimType_SetWideInt

void	 SimType_SetInt(Entity	 *pType,	 const	 char	 *field,	 Tcl_WideInt	 value);

Inserts or modifies a property named field, using the wide int value.

SimType_SetFromObj

int	 SimType_SetFromObj(Tcl_Interp	 *interp,Entity	 *pType,	 Tcl_Obj	 *field,	
	 	 	 	 Tcl_Obj	 *value);

The CTHULHU Build System

Inserts or modifies a property named field, using the Tcl_Obj value. Returns TCL_OK on success, or
TCL_ERROR otherwise.

SimType_GetFromObj

Tcl_Obj	 *SimType_SetFromObj(Tcl_Interp	 *interp,Entity	 *pType,	 Tcl_Obj	 *field);

Retrieves a property named field. Returns NULL if the field was not found.

SimType_GetAll

Tcl_Obj	 *SimType_GetAll(Tcl_Interp	 *interp,SimType	 *p,Tcl_Obj	 *local);

Combines all of the properties from the dict stored in SimType with the properties in local and returns them as
a single dict.

Structure Functions of CTHULHU
CTHULHU defines a series of functions that govern the interactions on the C level of containers.

StructNameById

StructName	 *StructName	 ById(Roid	 id,	 int	 createflag);

Returns a structure given an integer ID, or NULL of the ID does not exist. If the createflag is true, generate a
new structure if ID does not exist. Roid is typedef set aside for Record IDs. By default it’s defined as a 32 bit
unsigned int.

StructNameByID is provided by the developer.

StructName_Generic_Alloc

void	 StructName_Generic_Alloc(StructName	 *pNode);

A function external to CTHULHU that allocates the and initializes the structure. For structures with a key-
type of int, CTHULHU provides a generic version.

StructName_Generic_Free

void	 StructName_Generic_Free(StructName	 *pNode);

A function external to CTHULHU that frees any memory allocated within the structure.

For structures with a keytype of int, CTHULHU provides a generic version.

StructName_ApplySettings

void	 StructName_Apply_Settings(StructName	 *pNode);

Called after a setting has been changed by the Tcl interface to CTHULHU, allowing the C code a chance to be
notified and or alter other fields in response.

The CTHULHU Build System

StructName_Identify

Tcl_Obj	 *StructName_Identify(StructName	 *pNode);

Returns a Tcl object that represents the identity of this node, and is capable of being read back in by Struct-
Name_FromTclObj. If the container’s keytype is int, this function is generated by CTHULU.

StructName_TypeId

Tcl_Obj	 *StructName_TypeId(StructName	 *pNode);

Returns a Tcl object that represents the identity of this node’s type. Or zero if this structure has no type.

If the container’s keytype is int, this function is generated by CTHULU.

StructName_FromTclObj

int	 StructName_FromTclObj(Tcl_Interp*,	 Tcl_Obj*,	 StructName	 **pNode);

Converts the ID of a node given in a Tcl object to a pointer to a structure. Return TCL_OK on success, or
TCL_ERROR otherwise.

StructName_ToDict

int	 StructName_FromTclObj(Tcl_Interp*,	 Tcl_Obj*,StructName	 **pNode);

Converts the ID of a node given in a Tcl object to a pointer to a structure. Return TCL_OK on success, or
TCL_ERROR otherwise.

StructName_SetType

void	 StructName_SetType(StructName	 *p,SimType	 *pType);

Associates an CTHULHU node with a type given by the a pointer of SimType.

StructName_GetType

SimType	 *StructName_GetType(StructName	 *p);

Returns either a the pointer to the SimType structure that contains properties for this node, or NULL if no
type has been associated with it.

StructName_DictPut

void	 StructName_DictPut(StructName	 *p,Tcl_Obj	 *field,Tcl_Obj	 *value);

StructName_DictGet

The CTHULHU Build System

Tcl_Obj	 *StructName_DictGet(StructName	 *p,Tcl_Obj	 *field);

StructName_ValueOffset

int	 StructName_ValueOffset(Tcl_Interp	 *interp,	 Tcl_Obj	 *pObj,	 int	 *pIndex,	 int	
*pType);

StructName_FromTclObj

int	 StructName_FromTclObj(Tcl_Interp	 *interp,	 Tcl_Obj	 *nodeid,	 StructName	 **pNode);

Using the information about a node given in the Tcl_Obj nodeid, map the pointer pNode to the data struc-
ture that represents it. If the node does not exist, pNode will be null. If a problem was encountered convert-
ing nodeid to a useable form, the function will return TCL_ERROR. Otherwise, it will return TCL_OK.

StructName_ToDict

Tcl_Obj	 *StructName_ToDict(Tcl_Interp	 *interp,	 StructName	 *p);

Converts StructName to a dict that is capable of being exported to Tcl.

StructName_nodeeval

int	 StructName_nodeeval(Tcl_Interp*,	 StructName*,	 Tcl_Obj	 *body);

Loads the fields and values from StructName to the local interpreter, evaluates the block of code given in
body and returns the standard Tcl reply codes: TCL_OK, TCL_CONTINUE, TCL_BREAK, or
TCL_ERROR. On replies other the TCL_ERROR, changes made to the variables derived from Struct-‐
Name	 are saved back to the structure.

Tcl Commands Provided by CTHULHU
In addition to routines intended to be used by C, CTHULHU also adds ready-made Tcl commands. To include
them into the interpreter, one simply needs to add them with your desired name using Tcl_CreateOb-
jCommand.

StructName_method_count

Arguments:	 (none)

Returns a headcount of all of the nodes in the container

StructName_method_exists

Arguments:	 nodeid

Returns true if nodeid was found in the container, false otherwise.

StructName_method_for

The CTHULHU Build System

Arguments:	 keyvar	 ?valvar?	 body

Operates like a foreach loop, with the ID of the node stored in the keyvar, and optionally, a dict representation
of the node stored in valvar.

Example:

%structname%	 for	 nodeid	 nodeinfo	 {	 puts	 [list	 $nodeid	 $nodeinfo]	 }

StructName_method_foreach

Arguments:	 body

The ID number of the node is loaded into the interpreter as the local variable "id." All fields are loaded into
the local interpreter as variables of the same name. Any modifications to those variables will write the changes
back to the data structure.

Example:

%structname%	 foreach	 {	 set	 hidden	 1	 }

StructName_method_list

Arguments:	 (none)

Returns a list of all of the nodes in the container

StructName_method_nodedelta

Arguments:	 nodeid	 ?field?

Returns a list of parameters that have changed since the last instance of "changes." Optionally, return a true or
falseif a specific field has changed.

StructName_method_nodeget

Arguments:	 nodeid	 ?field?

If field is given, return the value for field. If field is not in the data structure, the system searches for a value in
the following order:

1. In the local dict of the node
2. In the dict of the nodeʼs type
3. Null
If field is not given, return a key/value list containing all of the values:

1. Published from the data structure
2. Written into the local dict of the node
3. Written into the dict of the nodeʼs type

StructName_method_nodeput

The CTHULHU Build System

Arguments:	 nodeid	 {field	 value	 ?field	 value?	 ...}

Writes values to node. If a field matches a field in the data structure, the data structure is updated. Fields that
do not match a field in the data structure are written to a local dict.

StructName_method_nodewith

Arguments:	 nodeid	 body

Operates in a similar manner to dict with. The state and properties of the node are fed into the interpreter as
local variables. If the script modifies one or more of the variable representing state, the change is written back
into the structure.

StructName_method_setting

Arguments:	 nodeid	 field	 ?value?

When value is given, update the field in the data structure. field must be on of the fields of the data structure,
or an exception is returned.

When value is not given, return the value for field. In this case field is permitted to be a field in the structure, or
any property that is expected to be passed from the node’s type.

StructName_method_typeid

Arguments:	 nodeid	 ?typeid?

If typeid is given, set the type for nodeid to the simtype identified by typeid.

If typeid is omitted, return the id of the current type for nodeid, or 0 if none has been set.

Getting	 CTHULHU
A public release for CTHULHU is available on T&E Solution’s open source site:

http://oss.tnesolutions.net/home

CTHULHU is released under a BSD-style license, modeled after the Tcl core.

You can contact Sean Woods for more details at yoda@etoyoc.com

Credits
Cover Art: Möbius strip, http://en.wikipedia.org/wiki/File:Möbius_strip.jpg

The Tcl Extension Architecture (TEA) is published at: http://www.tcl.tk/doc/tea/

The CTHULHU Build System

http://oss.tnesolutions.net/home
http://oss.tnesolutions.net/home
http://www.tcl.tk/doc/tea/
http://www.tcl.tk/doc/tea/

