
Tcl/Tk guidelines for improved automated regressions - a case-study

Saurabh Khaitan, Madhur Bhatia, Tushar Gupta
Mentor Graphics Corporation

Abstract:
Automating regression flow for any GUI
application always poses a lot of challenges. The
automation demands recording and replaying the
user interactions with the GUI often with timing
synchronization between operations. There are
some commercial and open-source solutions
available which provide interactive test capabilities
which can capture user sequences. Such testing
applications access the internal objects of the
application through the hooks provided via GUI
toolkit. For automating the GUI based tests for our
emulation product Veloce, an enterprise application
based on Tcl/TK, various testing solutions were
evaluated. Automation of GUI testing was
supplemented by other methods like tcl script
regressions, custom test applications and specific
logging wherever required. The paper presents a
case-study of various issues encountered in
developing good automated regression flow for
emulation GUI, and presents some coding and
development guidelines for Tcl/Tk applications in
general for suitability for development of automated
regressions.

GLOSSARY:
AUT- Application under Test
GUI – Graphical User Interface
VP – Verification Points are used by automated
regression tools to check the states of GUI.
Waveform Widget – Widget to view waveform
signals
Path browser – Widget to traces signal connections
in a design.

1. Introduction:

With the increase in the size and complexity of
applications over time the need to ensure functional
compliance over releases is increasingly felt. This
can be guaranteed by creating extensive and stable
automated test suites. The difficulty in creating such

regression suites multiplies manifolds when GUI
testing is involved.

Even a small size application
creates excessive permutations and combinations of
sequence of steps that are too large to test manually
in consistent manner. Specially when the
applications are continuously evolving, keeping in
pace to test each feature is a cumbersome task.
Even elaborated manual testing processes are error
prone and there are chances of test scenarios being
left out. Automated GUI testing tools have the
capability to automate this task for you and it helps
you to improve the quality of your application. It
also cuts down the “time to market” for the tool if
deployed in early stages.

Earlier GUI automation tools were analog, which
means they recorded the mouse movements using
co-ordinate movements. This was a very poor
automation technique and required tremendous
maintenance efforts every time there was a minor
change in the AUT. Modern GUI automation tools
are smarter and are “object-based”. These tools are
closely integrated with the AUT and recognize the
control in graphical applications like buttons, menus
and text input widgets. This technique is more
robust and requires no changes in the regression
suites with changes in GUI design or screen
resolution so we will use “object-based” tools.

While developing automated regression suites we
encountered many issues that were resolved in the
process. We discovered that if the planning and
strategies are done in the early stages most of these
challenges can be met easily. In this paper we
discuss the guidelines that are followed to develop
robust and reliable regression suites. These
guidelines are captured in the following sections:

• Guidelines for developers (Section 2)
• Testing strategies for QA engineers.(Section

3)
• Limitations and their workaround (Section 4)

The guidelines suggested for developers are to be
applied at the initial stages of development and are
discussed in detail in the following sections. The
testing strategies for QA engineers are to be used at
the time of automated regression suite development.
At the end the paper summarizes some limitations
that we encountered even after following these
guidelines. The paper also discusses the
workarounds used to plug these limitations.

2. Guidelines for Developers:

To facilitate the development of robust and reliable
regressions, the developers need to provide hooks to
various GUI objects. Apart from this, the developer
also may be required to create infrastructure to
dump extra information for regressions. We list
below some of the techniques we use to help
building regressions for our tool.

2.1. Use of global arrays: Global arrays can be
used to store widget names so as to provide access
to internal GUI components. There can be multiple
arrays and each of them may have handles to widget
instances related to specific feature or module.

Another way to provide hooks is by providing
access through functions for all the relevant widget
instances.

Providing access to various widgets will help the
test writer emulate the exact user behaviour. For
example, if there is a button that calls a function,
test writer can invoke the button rather than call the
function directly if he has the access to the button.

2.2. Direct use of internal functions: We also
found that direct invocation of functions in tcl script
to perform a GUI operation to be useful in
verification of the code. A sequence of such
functions use, can emulate a complex user operation
that is not easy to capture in a GUI regression tool.
Therefore, while developing an application,
developer should design his code in a way that code
is encapsulated into small functions that can be used
in the regressions to emulate complex user
sequences.

The script shown below illustrates use of sequence
of functions along with use of arrays, to perform a
complex user action of creating an annotation file,
adding signals to it, and saving the file.

project open -prj_file_path veloce.prj
createAnnotationFileWin

addNetToAnnotationWin top.AIn[1:0]
addNetToAnnotationWin top.BIn
addNetToAnnotationWin top.w1[9:6]
addNetToAnnotationWin top.YOut
addNetToAnnotationWin top.ZOut

$annotationWin(fileTypeCB) invoke
$annotationWin(fileTypeCB) selection set
1
$annotationWin(fileTypeCB) invoke

saveAnnotationFile

In the code above a complex user action is getting
mimicked by calls to functions
createAnnotationFileWin to create an annotation
window, addNetToAnnotationWin to add multiple
nets to the opened window, and finally saving the
file using the function saveAnnotationFile. All
these functions are internal functions and the GUI
users are not aware of them.

2.3. Use of environment variables: For
regressions, the use of environment variables can
help to eliminate user interactive controls and
provide behaviour suitable for regressions. This
behaviour can be actions like printing the message
to log files which can be used for automated
verification. The coder should be judicious in the
use of environment variables. If the checks are
placed in the part of the code which is excessively
used it can cause a performance penalty. Let’s look
at a sample code to understand the use of
environment variables.

proc medmessageBox {args}
{
 …
 if (![info exists
::env(MED_REGRESSIONS)]}
 {
 if {![batch_mode]}
 {
 tk_messageBox
 -parent $par
 -message $msg
 -type ok

 -title $ttl
 -icon $icon
 }
 else
 {
 med_message $msg
 }
 }
 else
 {
 med_message $msg
 }
 …
}

In the code above we can see that with the use of
environment variables like MED_REGRESSION
the part of the code which will be active in
regression mode is selected.

2.4. Use of algorithmic functions: The algorithmic
functions in the code can be written in the manner
that they can be used independently through the
script to perform the tasks and test them. This will
enable efficient test creation to test these functions
in specific. With the use of environment variables
they can be used to dump extra information for
regressions.

For instance in our application we have a function
findpath that is used internally to search a
hierarchical path in a tree and update the tree to
point to the path if it is found. Since this function
can work as a standalone function, it is used in
automated regressions. With help of environment
variables it is able to print the status for regressions.

proc findpath {fullpath separator tree}
{
 # sanity checks
 …
 #tree search algorithm
 …
 # tree update
 …

 # code for regressions
 if {[info exists
::env(MED_REGRESSIONS)]}
 {
 if {$found}
 {
 set msg “path found”
 }
 else
 {

 set msg “path not found”
 }
 echo $msg
 }
}

In the code above the standalone function findpath
is powerful enough to perform complex GUI
operations like tree search, tree update. In
regression mode this will dump extra debug
information for verification.

2.4. Text representation of graphical display:
Many times screen display, may have a text
representation. For example waveform display can
be efficiently represented as text file. Application
developer can make sure that a way is provided to
dump this type of display in a file which can be
used in script based automated regression for
verification. In our GUI we also have ways to dump
display in schematic and path browser to a file. We
also dump trees into text file for verification.

Figure 1: Waveform Widget

Figure 2 : Text representation of waveforms

The Figure 1 shows a graphical representation of
waveforms as it is visible to the user. For regression
purposes we are using a text dump of the waveform
display as shown in Figure 2.

3. Testing strategies for QA Engineer

While creation of automated tests we developed
some strategies which were very useful in making
the regression suites resilient. To make the
regression suites robust it is recommended that
“Object based” GUI automation tool be used. Some
guidelines that we followed are:

3.1. Use of Verification points: Just recording the
user inputs to the GUI and re-playing them will not
cover the testing requirements of GUI applications.
It is of utmost importance that the state and the
different properties of the numerous controls and
widgets in the AUT are also checked. For
incorporating these checks we used the concept of
verification points. Verification points are checks
introduced in the tcl script recorded through the
GUI testing tool. These checks verify the current
state and properties of the controls and widgets of
the AUT after desired sequence of events. These
checks are very important in ensuring the functional
compliance of the AUT.

To illustrate this further lets take a scenario where a
user is interested in checking the state of a widget.
This can be easily done by querying the value of
properties of the widget. In order to test the enabled
state of a widget ($widget) the code will look like:

test compare [property get $widget state]
“enabled”

When we use Verification points these compare
calls are inserted into the tcl script recorded by the
automated GUI testing tool. Sample Code for
checking state and image of a new_file button looks
like:

Verification Point 'newfile'

test compare [property get
[findObject
":vsim.dockbar.tbf0.standard.tb.button_0"
] state] "normal"

test compare [property get [findObject
":vsim.dockbar.tbf0.standard.tb.button_0"
] image] "__new_icon"

Here the automated testing tool inserted two
property get calls, which then compare the returned
value with the expected value. This technique is
very useful in checking the functionality and state
of the GUI.

3.2. Use of Global procedures: Creation of
procedures for standard sequences in GUI has
multi-fold advantage. Primarily it helps QA
engineers to cut down on the time required for
creation of tests as the same code can be leveraged
across test suites and reduce maintenance overhead.
It also helps in stabilizing the regression suites
across incremental software releases. If there are
any major changes in the application controls in the
GUI code all the tests that are accessing that control
of the AUT will start failing. With use of global
procedures this can be achieved by changing at one
place. The verification points which are part of the
global procedures can also be shared across tests
making testing of the states of the widgets in the
AUT more exhaustive. Sample script using global
proc:

proc main {}
{

snooze 10

#sourcing all global scripts
source [findFile scripts
"clean.tcl"]
source [findFile scripts
"analyze.tcl"]
source [findFile scripts
"close.tcl"]

global procedure – clean_all
clean_all

global procedure - analyze
analyze

#global procedure – close_proj
close_proj

}

In the sample script above it can be seen that we are
calling three global procedures – clean_all, analyze
and close_proj .We can see that usage of global
procedures makes the test look very concise and
manageable.

3.3. Synchronization points: Object based GUI
testing tool insert time synchronization (snooze
commands) to imitate user actions. This approach
can make the regression suites unreliable at times.
Consider a case when the test was recorded on a
fast machine and is re-played on a slower machine,
in such cases the test may fail. To avoid such
scenarios we used the concept of synchronization
points. While recording test the user can select to
insert waitForObject statements. These statements
wait for the given object to exist and be accessible
thus eliminating the race condition created on
slower machines. Sample Code:

waitForObjectItem ":vsim.#mBar" "File"
invoke activateItem ":vsim.#mBar" "File"

waitForObjectItem
":vsim.#mBar.#mBar#file" "New"

invoke activateItem
":vsim.#mBar.#mBar#file" "New"

waitForObjectItem
":vsim.#mBar.#mBar#file.#mBar#file#new"
"Project..."

invoke activateItem
":vsim.#mBar.#mBar#file.#mBar#file#new"
"Project..."

In the sample code above three synchronization
points (WaitForObjectItem calls) were inserted to
wait for the existence of the item before invoking
clicks on them. The synchronization points can be
used effectively in this manner to synchronize the
automated tests.

3.4. Offline debug: It is very important for a GUI
automation tool to provide its users with a way to
debug the failures in an offline mode. This helps the
QA engineers to debug the failures in the
regressions. Modern GUI automation tools provide
environment variables which when enabled will
capture the state of the GUI when a failures occurs.
So whenever a Verification point fails or GUI
behaves unexpectedly the current state of the GUI is
captured as screenshot by the automation tool. This
screenshot can be viewed later in offline mode after
the regression is over. This is a very useful for
debugging of regression failures.

4. Limitations & their Workarounds

While the guidelines mentioned above enables the
user to automate the testing of majority of the AUT,
but still there are some limitations that exist with
using the object based GUI testing tools. We have
captured the limitations encountered and suggest
some workaround to overcome them:

4.1. Custom widgets: Automated testing solutions
are equipped to recognize and support standard Tcl/
Tk widgets. If the application uses custom widgets
then the automated testing tool will fail to recognize
the new widgets. There are two ways to solve this
problem. The first and the robust solution is to work
with the testing solution development team and get
the support for the custom widget integrated in the
GUI automation tool. This will at times require the
user to share his custom widget code with the
automation tool development team. The second
solution is to use the conventional analog-style
testing. This will enable the user to even create tests
for custom widgets. Of the two solutions proposed
the former solution is more robust and reliable.

4.2. Drag and drop: The testing solution that we
employed for our test creation was not capable of
capturing Drag and drop operations of the user.
There are many black box GUI testing tools that are
VNC based and capable of capturing DnD
operations.

4.3. Canvas widget: Canvas widgets used in the
AUT are similar to drawing canvasses. These
widgets do not have properties like other standard
widgets such as buttons. Thus it is not possible to
create Property Verification points for canvas
widgets as was done successfully for other widgets.
To verify these widgets we used screenshot
verification points. In screenshot verification
screenshots of the canvas widget is captured at the
time of test creation which is used as a reference
image for consecutive runs. An example of the
screenshot captured can be seen in Figure 3.

Figure 3: Screenshot Verification point

There is also an option of adding mask to remove
unwanted portion of screenshot from these image
comparisons. Other way of verifying canvas
widgets is using textual dump of graphical display
with the help of developers as discussed in detail in
Section 2.4.

5. Conclusion:
Following the strategies elaborated above we were
able to create robust regression suites for our Tcl/Tk
based application. Initially some changes were

required in the GUI code to align it to guidelines
mentioned before but once the test suites were
created it helped in eliminating the arduous process
of manually testing the GUI. This not only enabled
us to reduce the testing time for our GUI
applications but it also caught issues which
sometimes creep into subsequent patches of the
software. The GUI automation testing tool that we
used was Squish from Froglogic. When the tool is
in the development phase if basic guidelines
mentioned in the paper are followed majority of the
GUI testing can be automated. Following the
strategies discussed in the paper while test creation
stable and robust automated regression can be
developed.

6. Bibliography:
1.http://en.wikipedia.org/wiki/GUI_software_testin
g
2.Squish,
http://www.froglogic.com/download/book4

