
Accelerating Tk Development with Wize 3.1
Peter MacDonald

PDQ Interfaces Inc.

September 14, 2010

1. Introduction

If Tk is to realize growing adoption, it must offer developers a compelling reason to use
it. It may seem ironic, but a key issue limiting Tk's growth is complexity. Simple demos
may be straightforward, but scaling up to a full-blown applications is a different matter.

Wize attempts to reduce complexity by offering a development environment that lets
programmers do more, with less, by providing:

• Code and data validation.
• Abstract GUI creation (layouts, scrollbars, tooltips, bindings, etc).
• Powerful widgets (TreeView, Tabset and shaped widgets).
• Hierarchical Tcl data (Tree).
• A common base of support components.

Wize is built on Tcl/Tk 8.5.9 and Blt 2.5, both of which have been modified extensively.
The Wize binary is complemented with a package of Tcl support code (Mod/Gui) that
backfills commonly required functionality. Mod deals with everything from tooltips and
image management, to debugging, packaging and deployment.

2. Validation
Wize validation involves checking Tcl code for syntax, call arguments and types when
run with:

 wize -Wall script.tcl

Wizes validation capabilities are based on extern and type definitions which provides
declarations for all built-ins, eg:

 extern incr {varName {amount 1}} {Int var Int} I "Increment the value of a
variable"
 extern source {file args} {. {vopts ?-encoding type?} .} I "Evaluate a file or resource
as a Tcl script"

http://pdqi.com/w/pw/pdqi/Wize/Extern
http://pdqi.com/w/pw/pdqi/Wize/Types

2.1 Checking Performed
Validation performs the following checks:

• All code in proc bodies is compiled, including nested switch/if/while blocks.
• Syntax errors are detected, eg. unbalanced braces and quotes.
• Commands called without a preceding proc definition or extern.
• Parameters to static calls are checked for count (and possibly types).

• Virtually all calls to builtin commands are validated
• Detection of missing upvar, variable or global statements.
• Data access to all static elements in _ array are checked for pre-initialization.

• A Declare statement to specify other arrays to check.
• Any extern argument of type code or 'expr is compiled.

2.2 How Tcl is Validated
Validation in Tcl is challenging because the language is highly dynamic. For example,
standard Tcl does not normally compile a proc until it is first invoked. Even then, the
sub-eval blocks such as while, if and switch are not compiled until they themselves are
actually executed.

While this lazy evaluation is a plus in production, it makes detecting problems during
development difficult.

Wize overcomes this by providing the option -Wall to forces Tcl code to compile as it is
being sourced. Then, in the resulting compilation phase, extensive checks are
performed to identify problems.

Errors or warnings from checking are output in a form similar to gcc warning messages.

2.3 How Tk is Validated
Validation of Tk code presents a additional challenges because Tk widgets are normally
created as object-commands. Sub-commands are then accessed via the
object/widget-path. Eg:

 text .t
 .t insert end "ABC"
 .t delete 1.1

Unfortunately, the use of object/path presents the compile phase with no effective way
to perform checking. Maintaining such code afterwards is also problematic. Lastly, text-
editors can not effectively provide command completion for Tk calls. This last is truly
annoying as Tk widgets are responsible for the vast majority of all command options in
Tcl.
To address this, Wize refactors the Tk widgets to create a Module command-
namespace per widget in ::Tk. Eg:

http://pdqi.com/w/pw/pdqi/Mod/TkScript
http://pdqi.com/w/pw/pdqi/Wize/ObjCommands
http://pdqi.com/w/pw/pdqi/Wize/Types
http://pdqi.com/w/pw/pdqi/Wize/Declare
file:///tcl/extern

 namespace eval ::Tk::Text {
 namespace ensemble create; # ...
 extern insert {win pos str args} I
 extern delete {win pos args} I
 # ...
 }
 # note: above ensembles get imported from ::Tk to ::
 Text new .t
 Text insert .t end "ABC"
 Text delete .t 1.1

Code written in this way can be checked be Wize, and it allows editors (like Ted) to
support argument completion.

2.4 Array Validation
Elements in arrays can be validated by using Declare. This will report use of any
element not initialized, eg.

 variable pc
 Declare pc Array

 array set pc { a 1 b 2}

 proc foo {args} {
 variable pc
 set pc(c) 1; # Warns that "c" is uninitialized.
 }

2.5 Tod Validation
Tod is a simple object extension used in Gui. Wize checks array references to $() for
elements not initialized in _, eg.

 namespace eval ::foo {
 variable _
 array set _ { a 1 b 2 }

 proc sub {_ args} {
 upvar $_ {}
 set (c) $(b); # Warning is issued for var 'c' undefined.
 $_ bar 1; # Warning issued for proc 'bar' undefined.
 $_ sub
 }

 # ...
 }

http://pdqi.com/w/pw/pdqi/Mod/Tod
http://pdqi.com/w/pw/pdqi/Ted/Ted

Note that the dispatch call (eg. bar) is also validated.

3. An Introduction to Gui
Gui simplifies the creation of resilient Tk user interfaces using a model similar to that of
HTML Markup/CSS/Javascript:

HTML GUI

Markup Layout a nested Tcl list with tags based on Tk class names

CSS Styles a definition language based on pattern matching rules.

Javascript Tcl contained in the script tag.

3.1 Layout
A GUI layout specifies a hierarchical set of tags containing attributes and content-
values. Tags are usually just the Tk class name. After the tag can be a +/-: the + flag is
used to indicate a child sub-tree. Lastly are the attributes to modify the layout, such as
pack positioning and scroll-bars.

Here is a simple GUI layout:

 {Toplevel + -title "Simple Editor"} {
 {Text - -pos * -scroll *} {}
 {Frame + -pos _ -subpos l} {
 Button Save
 Button Load
 Button Quit
 {Entry - -id status -pos *l} {}
 }
 }

3.2 Styles
Styles are used in a layout to abstract the use of Tk options such as colors, fonts and
images. This avoids hard-coding options which is convenient in small applications, but
in larger applications tends to lead to excess complexity. Styles also apply options fault
tolerantly such that errors become warnings that are seen only at development time
(ie. with -Wall).

{Toplevel + -title "Simple Editor"} {

 {style} {
 Button { -bg DarkKhaki }
 .save { -bg DarkGreen }

http://pdqi.com/w/pw/pdqi/Mod/Styles
http://pdqi.com/w/pw/pdqi/Mod/Gui

 .txtwin { -bg Khaki }
 Entry.status { -bg LightGray -state disabled }
 Toplevel {
 @defimages { bled greenball }
 }
 .bsave { -image ^bled -compound left }
 }

 {Text - -id txtwin -pos * -scroll *} {}
 {Frame + -pos _ -subpos l} {
 {Button - -id save -id bsave} Save
 Button Load
 Button Quit
 {Entry - -id status -pos *l} {}
 }
}

In a style definition, the dot-prefix patterns will match -id attribute names, while title-
case patterns will match tags/widget-class names.

Note that we can define images once in the Toplevel using @deficons and then apply
them with image lookups using^.

3.3 Script
Unless prototyping is the end goal, an application usually requires at least some code.
This is added with a script tag. Using an -id attribute will setup variables to dereference
widgets from within code

• (w,NAME) - The widget.

• (v,NAME) - The -variable or -textvariable.

eg.

{script} {
 array set _ { file "" }

 proc Quit {_} { ::Delete $_ }

 proc Load {_} {
 upvar $_ {}
 set fn [tk_getOpenFile]
 if {$fn == ""} return
 Text delete $(w,txtwin) 1.0 end
 Text insert $(w,txtwin) end [*fread $fn]
 set (file) $fn
 set (v,status) "[mc {Loaded file}]: $(file)"

 }

 proc Save {_} {
 upvar $_ {}
 if {$(file) == ""} { set (file) [tk_getOpenFile] }
 if {$(file) == ""} return
 *fwrite $(file) [Text get $(w,txtwin) 1.0 end]
 set (v,status) "[mc {Saved file}]: $(file)"
 }
}

{Toplevel + -title "Simple Editor"} {
 {Text - -id txtwin -pos * -scroll *} {}
 {Frame + -pos _ -subpos l} {
 Button Save
 Button Load
 Button Quit
 {Entry - -id status -pos *l} {}
 }
}

Note that in the above Tk code is written using the widget class command (.ie Text).
This is the mechanisim which allows code to be validated. Note also the use of Tod $_,
in providing simple object-like functionality..

3.4 Dialogs and Menus
An application can define dialogs using Toplevel and Menu.

 {Toplevel + -id tlinput -ns Input} {
 {Entry - -pos _} {}
 Button Ok
 }

 {Menu + -label Main} {
 {menu + -label File} { x Open x Save }
 {menu + -label Edit} { x Copy x Paste }
 }

 {Menu + -id mpop -label IO} {
 x Read
 x Write
 }
 {Toplevel +} {
 style {
 .txt {
 @bind { <Control-g> !tlinput <3> !mpop }
 }

http://pdqi.com/w/pw/pdqi/Mod/Tod
http://pdqi.com/w/pw/pdqi/Wize/Validation

 }
 {Text - -pos * -id txt } {}
 }

The following rules apply:

• The first defined Toplevel with no id or the id main will be the main window.

• The first defined Menu with no id or an id of mainmenu will be used as the toplevel
menu.

The main Toplevel can use a @bind style to trigger opening Dialogs or Menus. (or
use Tk::gui::toplevel from the program).

4. GUILD - the GUI Layout Designer
Guild is a GUI layout editor for .gui files.
While Gui files can easily be hand edited, it's not a convenient way to learn which
attributes are available for which tags. Guild custom tree editor uses introspection to
display which attributes are available for a tag.

Here is a screenshot of Guild in action:

http://pdqi.com/w/pw/pdqi/Mod/Gui

file:///w/Download/guild.gif

4.1 Starting Guild
Guild can be started using:

 wize / Gui/Guild ?file.gui?

When started with no file, it prompts for the name of a file. If no file is selected, it asks
to insert the application template.

A running application can be modified using <Control-Alt-Shift-2> and selecting Open in
Gui Builder from the menu. There you can examine or edit the Gui, save changes, etc.

4.2 Using Guild
Elements can then be inserted by clicking the button icons on the left hand side. This
will insert a tag element at the current level, or as a child if Child is enabled. Also, some
elements have dialogs.

There is a right-click menu for moving tags around, allowing entire tag trees to
be Cut and Pasted.

On the right, attributes can be selected and added with 'Add and then edited. Similarly
they be selected and removed with Delete.

4.3 Styles and Scripts
There is currently no style or script editing dialogs. Instead you just click on Value and
an editor pops up.

A better way is to just use your normal editor on the .tcl file and then add to the
bottom:

 Tk::gui::create { include myfile.gui }

For styles it is best to execute or run the program and use <Control-Alt-Shift-2> to test
out configuration options before adding to rules.

4.4 No Style
Applications can be run with style disabled via the Guild menu File/Run-NoStyle.

4.5 XML
Applications can be saved as XML via the Guild menu File/Save-As-XML.

5. Tabset
Tabset is a notetab widget that includes the following features:

file:///man/mann/tabset.html

• Tear-off any number of tab-panes.
• Tab slant: left, right, both, or none.

• Tab side: top, bottom, left, or right.
• Rotate tab text labels.
• Drop shadow text support.
• Background image tiling.
• Secondary (right-side) tab image eg. a close button.
• Widget side-images for both left and right sides.
• Tabs use symbolic names to simplify programming.

Here are some screenshots:

file:///w/Download/BLT/tabset1.gif
file:///w/Download/BLT/tabset3.gif

file:///w/Download/BLT/tabset2.gif
file:///w/Download/bltdemo.gif

6. TreeView
TreeView is a full featured hierarchical table/tree widget that can handle 10s of
thousands of rows.

Here is an example that displays a list of files:

 pack [treeview .t]
 foreach i [glob *] {
 .t insert end [list $i]
 }

Note we use [list] because by default TreeView insert treats a key as a list.

Here is a TreeView screen shot:

http://pdqi.com/w/pw/pdqi/Wize/Tree
file:///man/mann/treeview.html
file:///w/Download/tabseti.gif

6.1 Features
Here is a list of TreeView features:

• Auto-sizing column widths and row heights.
• Hide/move columns or nodes.
• Sortable by columns or sub-trees.
• External data storage (in a blt::tree).
• Multiple TreeViews can share all a tree.
• Easy to use dynamic loading (for sub-trees).
• Support for multiple style types, including:

• textbox: text cell with optional images.
• checkbox: a boolean value.
• combobox: a multi-choice value.
• barbox: numeric value with progress bar.
• windowbox: arbitrary embedded windows.

• Styles can be applied to cols, rows and/or cells
• The -altstyle option for alternating rows (bgcolor, etc).
• The -levelstyles option for per-level styles.
• Background image-tile: widget, columns, and cell-styles.
• Drop shadow text.
• Powerful builtin cell editing.

file:///man/mann/tree.html
file:///w/Download/BLT/treeview1.gif

• Dual mode display: flat and tree.

6.2 Data Addressing
TreeView provides methods for updating data elements. It also supports
accessing dict sub-elements using arraynotation:

 set t .t
 pack [treeview $t] -fill both -expand y
 $t column insert end X Y
 $t insert end A -data {X 1 Y 2}
 $t insert end B -data {X 3 Y "a 1 b 2"}

 $t entry incr 0->A X [$t entry get 0->B X]
 $t entry set 0->A Y 3
 $t entry incr 0->B Y(a) 9

6.3 Data Trees
TreeView data is stored externally within a tree. This also supports creating a data tree
command which is attached to TreeView, eg.

 *tree new t = {
 = Age Salary
 Managers {
 = Age Salary Title
 Tina 29 10000 President
 Tom 28 8000 VP
 }
 Staff {
 # Inherit the titles of parent ie. "Age Salary".
 Mary 10 6000
 Sam 10 6000
 }
 }
 pack [treeview .t -tree $t -width 600 -height 600] -fill both -expand y
 eval .t col insert end [lsort [$t keys nonroot]]
 .t open all
 puts [$t incr 0->Managers->Tina Age]

See Tree for more details.

6.4 Changing the Key Delimiter
TreeViews insert expects a list key unless overriden with an explicit delimiter character.
For example, the following displays files in a tree down to 2 directory levels:

 pack [treeview .t -autocreate 1 -separator /] -fill both -expand y

http://pdqi.com/w/pw/pdqi/Wize/Tree

 foreach i [glob */*] {
 .t insert end $i
 }
 .t open [.t find -name CVS -istree]; # Open all CVS dirs.

6.5 Demand Loading
Data can be demand loaded into a treeview tree as it becomes visible or scrolls into
view, eg.

pack [treeview .t] -fill both -expand y
set t [tree create]
foreach i {A B C} {
 .t col insert end $i -fillcmd [list FillMe $t $i]
}

proc FillMe {t col id} {
 return colid
}

$t populate 10000
.t conf -tree $t

One use for this is to load the rowids for an sqlite database table, and then loading
data rows on demand.

6.6 Automatics Styles
TreeView makes it easy to apply a style to given depth levels automatically. For
example, the following applies lev1 to all toplevel nodes, and lev2 to all nodes of depth
2.

 .t style create textbox lev1 -bg LightBlue
 .t style create textbox lev2 -bg LightGreen
 .t conf -levelstyles {lev1 lev2}

Alternating row colors is another common effect used in tables. However, for trees the
style has to be reapplied everytime a subtree of odd length is opened or closed. The
following code snipet shows how TreeView does automatically in TreeView:

 .t style create textbox alt -bg LightBlue
 .t conf -altstyle alt

6.7 TreeView vs TTK
For basic usage, Blt TreeView provides a programming model that is similar to Ttk
Treeview. However, TreeView provides more comprehensive autosizing support.

http://pdqi.com/w/pw/pdqi/Wize/TreeSql

Here is the code:

 proc TtkTree {t} {
 pack [Treeview new $t] -fill both -expand y
 Treeview conf $t -columns "X Y Z"
 foreach i {X Y Z} { Treeview heading $t $i -text $i }
 Treeview insert $t {} end -id A -text A -tags A -open 1
 Treeview insert $t A end -id a -text a -tags Aa -values {0 8 9}
 Treeview insert $t {} end -id B -text B -tags B -open 1
 Treeview insert $t B end -id b -text b -values [list "123456789\nabcdefhijklmnop"]
 Treeview insert $t {} end -id C -text C -values 99
 Treeview tag conf $t A -font "Verdana -30 bold" -background red
 Treeview tag conf $t B -background Blue -foreground White
 Treeview heading $t #0 -text TTK
 }

 proc BltTree {t} {
 pack [TreeView new $t] -fill both -expand y
 foreach i {X Y Z} { TreeView column insert $t end $i }
 TreeView insert $t end A -isopen 1 -font "Verdana -30 bold" -bg red

file:///w/Download/ttkvsblt.gif

 TreeView insert $t end "A a" -data "X 0 Y 8 Z 9"
 TreeView insert $t end B -style B -isopen 1
 TreeView insert $t end "B b" -styles "X xb" -data [list X
"123456789\nabcdefhijklmnop"]
 TreeView insert $t end C -data {X 99}
 TreeView style conf $t B -bg Blue -fg white
 TreeView style conf $t xb -bg pink
 TreeView column conf $t #0 -title BLT
 }

 wm geom . 300x400
 eval BltTree .s
 eval TtkTree .t

7. Shaped Buttons
blt::tile:: includes a collection of widgets (button checkbutton radiobutton label) that
extend Tk to add shape support. The main use for this is shaped buttons, however, any
widget can have a shaped frame by packing it into a label.

blt::tile widgets support the following options (in addition to the standard Tk ones):

Option Description

-innerbg The background color inside of the shape.

-innertile The tile image for inside of the shape.

-activetile The tile image when state is active.

-disabledtile The tile image when state is disabled.

-shape The button shape, one of: rounded, tube or oval.

-radius For rounded buttons, the radius of the corner curves.

-splinesteps Steps to use in smoothing (same as the canvas polygon).

-outline Color of shape outline (same as the canvas polygon).

-linewidth Width of the outline (same as canvas polygon -width).

-shadow Drop shadow support for text

-winshadow Drop shadow support for shape

-rotate Support for rotating text in degrees, eg. 90, 180.

-checksize Specify the size of check/radio button indicator.

-icons Give a list of 0, 2 or 3 images to use for the indicators.

-bdimage A border image that resizes to fit the widget

-bdhalo The number of pixels to preserve in -bdimage

Here is the shapedbutton.tcl example that defines a large number of shaped buttons, all
packed in a single toplevel shaped label:

file:///w/Download/shapedbutton.gif

The above can be run using: wize / Gui/Shapedbutton.

7.1 Shape selection: -shape
The -shape option supports shaped buttons/labels. Three shapes are
available: rounded, tube, and oval. In addition, you can:

• set -splinesteps to 1 for geometric shapes
• set -splinesteps to 0 for a square.

• set the button outline color with -outline
• use -radius with rounded to sharpen corners.

• Use -winshadow to give shapes 3D relief.

7.2 Indicator Images: -icons
The -icons option lets you use a single statement to override the default indicators used
for check and radio buttons. It takes 3 image values: normal, selected, and tristate.
Indicators can be globally overriden with:

 option add *Checkbutton.icons [list $imgnormal $imgcheck $imgtristate]

This is easier than setting the 5 options -image, -selectimage, -tristateimage,
-indicatoron and -compound. It also leaves -image available for the user.

7.3 Window Shadow: -winshadow
The -winshadow option adds a drop shadow to a button/label. It takes 3 arguments that
describe a color gradient:color1 color2 width. The shapedbutton.tcl screenshot above
demonstrates the results.

7.4 Border Image: -bdimage
A border image is an image that is dynamically expanded/resized (with borders
preserved) to fit the current size of the widget. The image simply provides decoration
for the outside of the widget rectangle. Normally 16 pixels of the border are preserved,
but -bdhalo can change this. (Note -bdimage is incompatible with -shape.)

Following is an example with a bunch of buttons using -bdimage:

And here is the code:

#!/usr/bin/env wize

set bdimg [image create photo -data {
 R0lGODlhQABAAPcAAHx+fMTCxKSipOTi5JSSlNTS1LSytPTy9IyKjMzKzKyq
 rOzq7JyanNza3Ly6vPz6/ISChMTGxKSmpOTm5JSWlNTW1LS2tPT29IyOjMzO
 zKyurOzu7JyenNze3Ly+vPz+/OkAKOUA5IEAEnwAAACuQACUAAFBAAB+AFYd
 QAC0AABBAAB+AIjMAuEEABINAAAAAHMgAQAAAAAAAAAAAKjSxOIEJBIIpQAA
 sRgBMO4AAJAAAHwCAHAAAAUAAJEAAHwAAP+eEP8CZ/8Aif8AAG0BDAUAAJEA
 AHwAAIXYAOfxAIESAHwAAABAMQAbMBZGMAAAIEggJQMAIAAAAAAAfqgaXESI
 5BdBEgB+AGgALGEAABYAAAAAAACsNwAEAAAMLwAAAH61MQBIAABCM8B+AAAU
 AAAAAAAApQAAsf8Brv8AlP8AQf8Afv8AzP8A1P8AQf8AfgAArAAABAAADAAA
 AACQDADjAAASAAAAAACAAADVABZBAAB+ALjMwOIEhxINUAAAANIgAOYAAIEA
 AHwAAGjSAGEEABYIAAAAAEoBB+MAAIEAAHwCACABAJsAAFAAAAAAAGjJAGGL
 AAFBFgB+AGmIAAAQAABHAAB+APQoAOE/ABIAAAAAAADQAADjAAASAAAAAPiF
 APcrABKDAAB8ABgAGO4AAJAAqXwAAHAAAAUAAJEAAHwAAP8AAP8AAP8AAP8A
 AG0pIwW3AJGSAHx8AEocI/QAAICpAHwAAAA0SABk6xaDEgB8AAD//wD//wD/
 /wD//2gAAGEAABYAAAAAAAC0/AHj5AASEgAAAAA01gBkWACDTAB8AFf43PT3
 5IASEnwAAOAYd+PuMBKQTwB8AGgAEGG35RaSEgB8AOj/NOL/ZBL/gwD/fMkc
 q4sA5UGpEn4AAIg02xBk/0eD/358fx/4iADk5QASEgAAAALnHABkAACDqQB8
 AMyINARkZA2DgwB8fBABHL0AAEUAqQAAAIAxKOMAPxIwAAAAAIScAOPxABIS
 AAAAAIIAnQwA/0IAR3cAACwAAAAAQABAAAAI/wA/CBxIsKDBgwgTKlzIsKFD
 gxceNnxAsaLFixgzUrzAsWPFCw8kDgy5EeQDkBxPolypsmXKlx1hXnS48UEH
 CwooMCDAgIJOCjx99gz6k+jQnkWR9lRgYYDJkAk/DlAgIMICkVgHLoggQIPT
 ighVJqBQIKvZghkoZDgA8uDJAwk4bDhLd+ABBmvbjnzbgMKBuoA/bKDQgC1F
 gW8XKMgQOHABBQsMI76wIIOExo0FZIhM8sKGCQYCYA4cwcCEDSYPLOgg4Oro
 uhMEdOB84cCAChReB2ZQYcGGkxsGFGCgGzCFCh1QH5jQIW3xugwSzD4QvIIH
 4s/PUgiQYcCG4BkC5P/ObpaBhwreq18nb3Z79+8Dwo9nL9I8evjWsdOX6D59

file:///w/Download/bdimage.gif

 fPH71Xeef/kFyB93/sln4EP2Ebjegg31B5+CEDLUIH4PVqiQhOABqKFCF6qn
 34cHcfjffCQaFOJtGaZYkIkUuljQigXK+CKCE3po40A0trgjjDru+EGPI/6I
 Y4co7kikkAMBmaSNSzL5gZNSDjkghkXaaGIBHjwpY4gThJeljFt2WSWYMQpZ
 5pguUnClehS4tuMEDARQgH8FBMBBBExGwIGdAxywXAUBKHCZkAIoEEAFp33W
 QGl47ZgBAwZEwKigE1SQgAUCUDCXiwtQIIAFCTQwgaCrZeCABAzIleIGHDD/
 oIAHGUznmXABGMABT4xpmBYBHGgAKGq1ZbppThgAG8EEAW61KwYMSOBAApdy
 pNp/BkhAAQLcEqCTt+ACJW645I5rLrgEeOsTBtwiQIEElRZg61sTNBBethSw
 CwEA/Pbr778ABywwABBAgAAG7xpAq6mGUUTdAPZ6YIACsRKAAbvtZqzxxhxn
 jDG3ybbKFHf36ZVYpuE5oIGhHMTqcqswvyxzzDS/HDMHEiiggQMLDxCZXh8k
 BnEBCQTggAUGGKCB0ktr0PTTTEfttNRQT22ABR4EkEABDXgnGUEn31ZABglE
 EEAAWaeN9tpqt832221HEEECW6M3wc+Hga3SBgtMODBABw00UEEBgxdO+OGG
 J4744oZzXUEDHQxwN7F5G7QRdXxPoPkAnHfu+eeghw665n1vIKhJBQUEADs=
}]

namespace import -force ::blt::tile::*
option add *highlightThickness 0
option add *Label.borderWidth 4
option add *Label.bdImage $bdimg
font conf TkDefaultFont -family Verdana -size 15 -weight bold
set pad 5

pack [frame .f -bg white] -fill x
foreach m {File Edit Commands Settings Help } {
 pack [button .f.b$m -bdimage $bdimg -text $m] -side left
}

pack [label .l2] -fill x -side bottom
pack [label .l1] -fill both -expand y

text .l1.t -height 12 -bd 0
pack .l1.t -padx $pad -pady $pad -fill both -expand y

entry .l2.e -bd 0
pack .l2.e -padx $pad -pady $pad -fill x

.l1.t insert end "Here is a Text widget packed into a blt::tile::label "

.l1.t insert end "using -bdimage\nto provide shaped borders"

.l2.e insert end "ditto with an entry widget..."

7.5 Shaped in Gui
The use of shape widgets can be enabled in Gui by using -blt, either in options or
attributes.

{options - -blt 1} {}

{style} {
 Toplevel {

http://pdqi.com/w/pw/pdqi/Mod/Gui

 @defgradients {
 bspl { SkyBlue SteelBlue -width 60 -height 10 -type split -rotate 90 }
 spl! { SteelBlue SkyBlue -width 33 -height 10 -type split -rotate 90 }
 }
 }
 Button { -font "Courier -18 bold" }
 .txtfr { -shape rounded -innerbg White -outline SteelBlue -linewidth 4}
 .txtwin { -bd 0 -highlightth 0 }
 @bspl { -bdimage ^bspl -bdhalo -1 }
 @spl { -shape rounded -innertile ^spl! -outline Blue}
}
{Toplevel +} {
 {Frame + -subpos l -subattr {-gid spl}} {
 Button File Button Edit Button Options Button Quit
 }
 {Frame + -subpos l -subattr {-gid bspl}} {
 Button File Button Edit Button Options Button Quit
 }
 {Frame + -blt 1 -id txtfr} {
 {Text + -id txtwin} {}
 }
}

In the above, Button implicitly uses blt, while Frame requires -blt to override the
tk::frame with blt::label. Here is the screenshot:

8. Gradients
Gradient images are widely used within applications and web pages to enhance
appearance. Wize has built-in capabilities to generate on-the-fly, complex gradient
images. This feature (provided via the Blt sub-command winop image gradient) is
particularly useful when used with Gui @defgradients.

8.1 Options
The general form is:

winop image gradient image leftcolor rightcolor ?options...?

where options are:

-type halfsine|sine|linear|rectangular|radial|blank
Set the type of gradient. The default is sine.

http://pdqi.com/w/pw/pdqi/Mod/Gui
http://pdqi.com/w/pw/pdqi/Wize/Winop#gradient

-skew N
The skew determines the initial fraction of the image that the gradient occupies, after
which only rightcolor is used. The skew must be > 0 and <= 1.0 and has a default
value of 1.0 (ie. not skewed).
-slant N
Make the gradient slant where a value of 1.0 slants at 45 degrees. The value must be
between -100.0 and 100.0.
-curve N
Curve the gradient by passing the Y position to a function (see -func) scaled with the
given value. The value must be between -100.0 and 100.0 (typically 1.0).
-func X
Function to use with -curve. The default value is sin. The value must be one of: sin cos
tan sinh cosh tanh asin acos atan log log10 exp sqrt rand circle.
-rand N
Add small random purturbations to gradient to avoid striation lines. The value must be
between 0.0 and 0.1.

8.2 User Interface
There is a user interface for exploring the options of gradients:

 wize / Gui/Gradient

http://pdqi.com/w/pw/pdqi/Mod/Gradient
file:///w/Download/gradprog.gif

8.3 Gradients in Styles
The easiest way to use gradient is with the Gui Styles @defgradients macro.

Note that @defgradients support options like -rotate, -tile and -gamma.

Here is a simple gui application using gradient styles.

 # "gtest.gui"
 style {
 Toplevel {
 @defgradients {
 mybg {LightBlue White}
 butbg! {Green Yellow -rotate 90}
 }
 *tile ^mybg
 }
 Button { -tile ^butbg! }
 }
 {Toplevel +} {
 {Button} Quit
 {Button} Save
 {Text - -pos *} {}
 {Entry - -pos _} {}
 }

When run, this looks like:

http://pdqi.com/w/pw/pdqi/Mod/Styles
http://pdqi.com/w/pw/pdqi/Mod/Gui

Note tiled image names containing a "!" will use a tile origin from the current window,
rather than the toplevel.

Documentation is available in the gradient sub-command of the Winop manpage.

8.4 More Examples
Here are a few gradient examples:

file:///man/mann/winop.html
file:///w/Download/graddemo.gif

file:///w/Download/gradb1.gif
file:///w/Download/gradb2.gif

file:///w/Download/gradb3.gif

The following script can be used to generate the above images.

#!/usr/bin/env wize
grad2.tcl: demonstrates gradient tiled background generation, eg:
#
wize grad2.tcl -g sine -s DarkBlue -e LightBlue
wize grad2.tcl -g rectangular -s Orange -e LightSlateGray
wize grad2.tcl -h 20

array set p { -h 200 -w 200 -s DarkGreen -e White -g radial}
array set p $argv
set img [image create photo -width $p(-w) -height $p(-h)]
winop image gradient $img $p(-s) $p(-e) -type $p(-g)

switch -- $p(-g) {
 sine - radial {}
 default {
 set img4 [image create photo]
 winop image mirror $img $img4 tile
 set img $img4
 }

http://pdqi.com/w/pw/pdqi/Wize/Data
http://pdqi.com/man/mann/tree.html
http://pdqi.com/w/pw/pdqi/Wize/Blt

}

Create a couple of widgets with tiled background.
option add *font [eval font create [font actual {Helvetica -12 bold}]]
pack [treeview .t -tile $img -scrolltile 1] -fill both -expand y -side left
pack [treeview .t2 -tile $img] -fill both -expand y -side left
if {![file isdirectory [set dir /proc]]} { set dir "" }
foreach i [lsort -dictionary [glob -nocomplain $dir/*]] {
 set it [file tail $i]
 set isdir [file isdirectory $i]
 if {[string is integer $it]} {
 .t insert end $it -forcetree $isdir
 } else {
 .t2 insert end $it -forcetree $isdir
 }
}
foreach tt {.t .t2} {
 $tt conf -selectbackground GoldenRod
 $tt conf -nofocusselectbackground GoldenRod
 $tt conf -selectrelief raised
}

9. Tree

The Blt extension provides Tcl with a complex tree data structure, eg.

 set t [tree create]
 foreach i {Able Baker Charlie} { $t insert 0 -label $i }
 $t set 0->Able X 1 Y 2
 $t incr 0->Able X

9.1 Dict/Array Keys
Keys in a tree may store a dict that is accessed using an array-like notation, eg.

 $t insert 0 -label Harry -data {X 1 Y "a 1 b 2"}
 $t incr 0->Harry Y(a)

9.2 Static Tree.
Preloaded data trees are quite simple to define with the wize *tree command. Each line
represents one row of data with the first token being the key. Subtrees are defined if
the last element contains newlines. Titles fields are specified with a leading equals =.
Here is an example:

 *tree new t = {
 = Age Salary
 Managers {
 Tina 29 10000
 Tom 28 8000
 }
 Staff {
 Mary 10 6000
 Sam 10 6000
 }
 }
Trees are useful because of their ease of update and access:
 *tree new t = {
 Vendors {
 = Id Status Products
 NA {
 Oracle 888001 active
 MS 888002 active
 }
 SA {
 Pemex 888008 disabled
 Snapon {
 = Class Items
 pipes {single double twin}
 tools {spanners sockets wrenches}
 wire { 10 12 14 16 18 }
 }
 }
 Europe {
 Finetix 888009 active { pipes {single twin} wire { 10 12 14 16 18 } }
 }
 }
 }

 pack [treeview .t -tree $t -width 600 -height 600] -fill both -expand y
 eval .t col insert end [lsort [$t keys nonroot]]
 .t open all

 puts [$t get 0->Vendors->NA->Oracle]
 puts [$t incr 0->Vendors->NA->Oracle Id 0.5]
 puts [$t find -top 0->Vendors -name 888* -glob -key Id]

9.3 Flat Tree Example
The following loads a table of data into a tree, then updates it. (See also Tables)

variable Users {
 tom { Name "Tom Brown" Sex M Age 19 Class {4 5} Rate {A 1 B 2}}

http://pdqi.com/w/pw/pdqi/Mod/Tables

 mary { Name "Mary Brown" Sex F Age 16 Class {5} Rate {A 2}}
 sam { Name "Sam Spade" Sex M Age 19 Class {3 4} Rate {B 3}}
 }

 # Load it.
 set t [tree create]
 foreach {l d} $Users {
 $t insert end -label $l -data $d -tags $l
 }

 # Update it.
 $t update tom Sex F Name "Tomi Brown" Age 21
 $t append sam Name " Jr"
 $t lappend sam Class 5
 $t incr mary Age
 $t update tom Rate(A) 2
 $t set tom Sax F
 $t set sam Rate(C) 0
 $t incr 0->mary Age; # Address via label instead of tag.

 # Display it.
 pack [treeview .t -tree $t] -fill both -expand y
 eval .t column insert end [$t keys all]

Note: nodes can be addressed using the form 0->LABEL. Tags can also be used to
simplify indexing.

9.4 Nested Tree Example
The following example loads data into a nested tree. (See Trees)

variable Info {
 system {

http://pdqi.com/w/pw/pdqi/Mod/Trees
file:///w/Download/tree1.gif

 sol { OS Linux Version 3.4 }
 bing { OS Win Version 7 }
 gui { OS Mac Version 8 }
 }
 network {
 intra { Address 192.168.1 Netmask 255.255.255.0 }
 dmz { Address 192.168.10 Netmask 255.255.255.0 }
 wan { Address 0.0.0.0 Netmask 0.0.0.0 Class {A 1 B 4}}
 }
 admin {
 sully { Name "Sully Van Damme" Level 3 }
 maverick { Name "Maverick Gump" Level 1 }
 }
}

Load it.
set s [tree create]
foreach {n vals} $Info {
 set ind [$s insert end -label $n -tags .$n]
 foreach {l d} $vals {
 $s insert $ind -label $l -data $d -tags .$n.$l
 }
}

Do queries.
$s update .network.dmz Address 192.168.11
$s update .network.wan Class(A) 2

set old [$s get .system.bing]
$s update .system.bing OS Linux Version 3.4
eval $s set .system.bing $old; # ROLLBACK!

$s insert .admin -label linus -data { Name "Linus Torvalds" Level 9 }
$s delete .admin.sully

pack [treeview .s -tree $s -width 600] -fill both -expand y
eval .s column insert end [$s keys all]
.s open all

9.5 Label & Tags
Nodes can be referenced using the label relative to the root, eg:

 $s update 0->system->bing OS Linux Version 3.4

However, label indexing has several limitations.

If a duplicate labels exists in the same parent the first match is quietly used. And care
must be used to avoid labels with spaces, leading integers, or the names of builtins
like nextnode, or firstchild (unless quoted).

Another way is to use the index command, which suppors label path lookups, eg:

 $s update [$s index {system bing}] OS Linux

Using tags however is simpler, and when used with a tag trace avoids duplicates.

9.6 Enums
A tree can be used as a simple enum by simply setting keys in node 0.

 set t [tree create]
 $t set 0 apple 1 orange 2 banana 3
 puts [$t get 0] ; # "apple 1 orange 2 banana 3"
 puts [$t names 0] ; # "apple orange banana"
 puts [$t values 0] ; # "1 2 3"
 puts [$t get 0 apple] ; # "1"

Multiple enums are also easily defined:

http://pdqi.com/w/pw/pdqi/Wize/TreeTrace#tagtrace
file:///w/Download/tree2.gif

 set t [tree create]
 $t set 0 fruit { apple 1 orange 2 banana 3 }
 $t set 0 veggy { pea 1 bean 2 cabbage 3 }

 puts [$t get 0 fruit(apple)] ; # "1"
 puts [$t get 0 veggy(bean)] ; # "2"

Alternatively, create each enum in its own node:

 set t [tree create]
 $t insert end -tags fruit -data { apple 1 orange 2 banana 3 }
 $t insert end -tags veggy -data { pea 1 bean 2 cabbage 3 }

 puts [$t get fruit apple] ; # "1"
 puts [$t get veggy bean] ; # "2"

If using > 21 keys per node, see 9.13 Key Hashing.

9.7 With
Tree supports the with statement for accessing key data via an array. On entry it copies
key values into an array variable, and on completion copies them back out. Eg:

$t with s .system.sol {
 $t with b .system.bing {
 set s(OS) $b(OS)
 set s(Version) $b(Version)
 }
}

See TreeWith for more details.

9.8 Traces
Tree supports setting traces on nodes or notifiers on the tree. See TreeTrace for
details.

9.9 Performance
Performance is generally quite good.

9.10 Tree Iterators
The following tree commands iterate over a tag:

Name Description

appendi Append strings to key value.

incri Increment a key value.

http://pdqi.com/w/pw/pdqi/Wize/Tree
http://pdqi.com/w/pw/pdqi/Wize/TreeTrace
http://pdqi.com/w/pw/pdqi/Wize/TreeWith

keys Return keys for one or more nodes.

lappendi Append list element to key value.

modify Change data value for existing key.

set Set/create data value for key.

sum Sum values for a key field

vecdump Dump values to a vector

vecload Load values from a vector

with Assign keys value to an array and eval

9.11 Code Validation
wize supports validation of tree commands thus enabling static checking of tree code.
To use this requires writing code using the tree object as data rather than as command.
Thus the first example would be rewritten as:

 tree op update $t tom Sex F Name "Tomi Brown" Age 19
 tree op append $t sam Name " Jr"
 tree op lappend $t sam Class 5
 tree op incr $t mary Age
 tree op update $t tom Rate(A) 2
 tree op set $t tom Sax F
 tree op set $t sam Rate(C) 0
 tree op incr $t 0->mary Age

The most important use is probably for with, eg.

 tree op with $t .system.bing b {
 set s(OS) LX
 set a b c
 }

to detect scripting errors.

9.12 Data Validation
See Struct for one approach to data validation.

9.13 Key Hashing
For nodes with 21 or fewer keys, tree remembers the order of key creation. Nodes with
more than 21 keys will automatically change over to hash-table based key storage. One
side-affect of this is that it alters the order of key iteration, which can change the
results from get/names/values. That's because list-based storage preserves the order in
which keys are added, whereas a hash-based storage has an undetermined order.
This can be overcome by creating the tree with a large -keyhash size (eg. 1000000).

http://pdqi.com/w/pw/pdqi/Mod/Struct
http://pdqi.com/w/pw/pdqi/Wize/Validation

For example, the following sets keys from a list and avoids being hashed:

 set t [tree create -keyhash [llength $lst]]
 set n -1
 foreach i $lst {
 $t set 0 $i [incr n]
 }
 puts [$t names 0 ; # outputs the original $lst.

Note that adding just one more key will cause the above to switch to hashing and thus
scramble the lst order.

10. Ted - The Editor
Ted is a tabbed editor written using Gui. It provides several key functions, the most
important of which is completionfor Tcl and Tk commands and Tk subcommands. For
example, we can type the following:

 TreeView e

and in the status line note there are two matching subcommands: entry and edit. By
adding an n the editor shows the matching entry which typing <Tab> will complete.
If we then type:

 TreeView entry conf $w $id -

and hit <Control-space>, we get list of all the known options.
This can greatly simplify the job of writing Tk code. It virtually eliminates the need to
memorize hundreds of subcommands or their thousands of options.

Despite this power, Ted is a fairly simple application. It derives much of it's functionality
by hooking into the Tcl implementation of Gui.

11. Tdb - A GDB Frontend
Tdb is a Gui frontend for GDB written in Wize and Gui. It provide a compact but
powerful interface that exposes most of GDBs features using MI. Unlike other such
frontends, Tdb does not use a C parser to decode MI because it maps MI output directly
to a Tcl list. This fact allows Tdb to be developed and distributed in pure script form.

http://pdqi.com/w/pw/pdqi/Mod/Gui
http://pdqi.com/w/pw/pdqi/Wize/Wize
http://pdqi.com/w/pw/pdqi/Ted/Completion
http://pdqi.com/w/pw/pdqi/Mod/Gui
http://pdqi.com/w/pw/pdqi/Ted/Overview

11.1 Screenshot

11.2 Features
Tdb provides the following features:

• A Stack browser.
• A Variable tree inspector.
• A Types tree inspector.

file:///w/Download/tdbdesk1.gif

• Files and Functions tree with searches.
• Memory, Registers, Threads and Disassembly.
• A GDB help tree browser with searches.
• A GDB options tree browse and modify.
• Direct access to the GDB interface.

Tdb is fast, and provides most navigation just by double-clicking.

• Double clicking in the Stack tab will return to that point of execution.
• Double clicking in the Variable tab will go to the declaration.
• Double clicking in the Types tab will go to the type definition, etc.

The implementation source is about 5K lines of which 4K lines are validated Tcl code,
and 600 lines are GUI specification. Of the latter, the layout and style code are about
50/50 or about 300 lines each.

The total size of tdb.zip is about 35K.

11.3 Running Tdb
Tdb can be executed thus:

 wize tdb.zip myprog arg
 # or
 wize / Apps/Tdb myprog arg ...

12. Ledger

Ledger is Gui based personal finance application featuring:

• Fast and easy use with auto-completions.
• Reconciliation and report dialogs.
• Import/export QIF transactions/accounts.
• Uses double-entry accounting.
• Handles 10's of thousands of transactions with ease.
• Stores data as plain UTF8 text.
• Supports RCS and CVS for backup-on-save.
• Near zero dependancies (implemented in a single .tcl file).

Here are some screenshots:

http://pdqi.com/w/pw/pdqi/Mod/Gui

file:///w/Download/ledger1.gif

file:///w/Download/ledger2.gif

12.1 Running It
Ledger requires Wize and is run like so:

 wize ledger.tcl

or the builtin version can be run with:

 wize / Gui/Ledger

12.2 Data Storage
Since Ledger uses Tree saving and restoring data simply uses the sub-
commands dump and restore.

12.3 Multiple Books
Multiple sets of accounts can be managed using:

 wize / Gui/Ledger -dir ~/work

http://pdqi.com/w/pw/pdqi/Wize/Tree
http://pdqi.com/w/pw/pdqi/Wize/Wize
file:///w/Download/ledger3.gif

If -dir is not given it defaults to ~/ledger.

12.4 Exploring/Debugging
As with all Wize applications, you can use <Control-Alt-Shift-2> to explore it.
Select aclist_1 from the "Vars" menu to examine the accounts data, or xaction_1 to
examine transaction data. Or use Introspect to examine the entire program state.

12.5 Un-implemented Features
• Scheduled transactions.
• Budgets and investments.
• Multiple currencies.
• Charts, graphs, etc.
• Bank download/sync.

13. Top
Top is a GUI interface to the Unix text based system monitoring facility top. Its purpose
is to exercise some key features of Wize, including:

• demonstrate the ease of using Gui.
• repeatedly insert/delete data from a TreeView widget.
• make extensive use of Styles.

Top can be invoked with:

 wize / Gui/Top

Top has 3 main tabs, plus optional per-PID monitors.

Here are some screenshots:

http://pdqi.com/w/pw/pdqi/Mod/Styles
http://pdqi.com/w/pw/pdqi/Mod/Gui
http://pdqi.com/w/pw/pdqi/Wize/Explore

file:///w/Download/top1.gif

file:///w/Download/top2.gif

file:///w/Download/top3.gif

13.1 Process Table
Displays a list of all processes running on the system.

There are options for displaying only a subset of processes, as well as changing the
display mode to tree.

file:///w/Download/top4.gif

Using right-click gives a menu that allows monitoring specific PIDs, Renicing a process
or sending signals to a process. It can also show or hide columns.

file:///w/Download/top5.gif
file:///w/Download/top6.gif

13.2 System Load
Displays 4 graphs:

• CPU% - cumultive CPU used by running processes.
• Memory - cumultive Memory used by processes.

• Load Average - the average load factor.
• Network - network activity

13.3 File Systems
This displays usage by file system.

13.4 PID Monitor
PID Monitor collects and graphs information about a single process. To close the tab,
left click on the red cross.

14. Gsqlite
Gsqlite is a user interface for Sqlite. It is modeled somewhat after Sqlite Studio, but
it's main purpose is to demonstrate how Gui can enable single file applications.

You can run Gsqlite from Wize, eg:

 wize / Mod/Gsqlite mydata.db

There is currently no documentation other than a few screenshots:

http://pdqi.com/w/pw/pdqi/Wize/Wize
http://pdqi.com/w/pw/pdqi/Mod/Gui
http://pdqi.com/w/pw/pdqi/Wize/Sqlite

file:///w/Download/gsqlite.gif

file:///w/Download/gsqlite2.gif

file:///w/Download/gsqlite3.gif

file:///w/Download/gsqlite4.gif

14.1 Sqlite Server
Gsqlite can run SOS in sqlite server mode. This is launched from the File menu.

http://pdqi.com/w/pw/pdqi/Mod/SqliteSock
file:///w/Download/gsqlite5.gif

14.2 Sqlite Client
Gsqlite can run SOS in sqlite client mode. This is launched from the File menu.

http://pdqi.com/w/pw/pdqi/Mod/SqliteSock
file:///w/Download/gsqlitesrv.gif

15. ProgressBar
ProgressBar demonstrates simple extension tags in Gui. ProgressBar is implemented
using a canvas, either via an attribute to Canvas, or the ProgressBar tag, eg.

 {Canvas - -pos _ -progressbar 1} {}
 {ProgressBar} {}

Note that this is much easier than defining a mega-widget as it does not require a
defining programmer methods such as configure, cget, etc.

15.1 Example
In this example we use Gui to define some progress bars, where:

• The left hand bar races up and down.
• The left hand bar tile image pulses.
• Mouse over the blue dot turns it red.
• Clicking the dot pauses/resumes.

http://pdqi.com/w/pw/pdqi/Mod/Gui
file:///w/Download/gsqliteclnt.gif

15.2 Demo Source
Here is the source for the demo. See the gui/extattrs.tcl source for the implementation.

Canvas progressbars support rounded ends, tiling and labels overtop the bar.
Arbitrary canvas ops are available. Here is the source for 'progress.gui':

#!/usr/bin/env wize

script {
 # Demo using "Canvas -progressbar"
 set _(v,pbtop) 50
 set _(v,pbleft) 0
 set _(v,pbbot) 50
 set _(after) {}

 proc CountDown {_ {dir 1}} {
 # Code to animate the progressbars.
 upvar $_ {}
 if {![info exists $_]} { return }
 set v [incr (v,pbleft) $dir]
 if {$v>=100} {
 set dir -1
 if {[incr (v,pbbot)]>100} { set (v,pbbot) 0 }

file:///w/Download/progbar.gif

 } elseif {$v<=0} {
 set dir 1
 if {[incr (v,pbtop)]>100} { set (v,pbtop) 0 }
 }
 set (after) [after 30 [list [namespace current]::CountDown $_ $dir]]
 }

 proc StartStop {_} {
 # Start/stop countdown.
 upvar $_ {}
 if {$(after) != {}} {
 after cancel $(after)
 set (after) {}
 return
 }
 CountDown $_
 }

 proc Main {_} {
 # Program entry point.
 upvar $_ {}
 variable pd
 Text insert $(w,text_1) end "Canvas progressbars support rounded ends, tiling
and labels overtop the bar.\n"
 Text insert $(w,text_1) end "Arbitrary canvas ops are available. Here is the
source for 'progress.gui':\n\n"
 Text insert $(w,text_1) end $pd(gui) code
 set c $(w,pbleft)
 # Create a round button to reset start/stop.
 Canvas create oval $c {7 7 13 13} -fill Blue -width 1 -outline Black -tags o
 $c bind o <Enter> "$c itemconf 3 -fill red; $c conf -cursor hand2"
 $c bind o <Leave> "$c itemconf 3 -fill blue; $c conf -cursor {}"
 $c bind o <1> "$_ StartStop"
 CountDown $_
 }

 proc Cleanup {_} {
 # Program cleanup.
 upvar $_ {}
 *catch {after cancel $(after)}
 exit; # Exit cause this is just a demo.
 }

}

style {
 # "Style overrides for -progressbar attrs: creates image tiles, rounded, etc"

 Toplevel {
 @defgradients {
 slan {#daa520 #ffd700 -width 13 -height 13 -slant 1.0}
 slanp {#daa520 #ffd700 -width 13 -height 13 -slant 1.0 -rotate 90}
 chal1 {#bebebe #d3d3d3 -width 20 -height 15 -rotate 90}
 chal2 {#bebebe #d3d3d3 -width 20 -height 15}
 tbg { Khaki #ffffff -width 1000 -height 6 -gamma .5}
 }
 @deffonts {
 bfnt {Verdana -14 bold}
 }

 @imgpulse { slanp }
 *highlightThickness 0
 }
 Text { -tile ^tbg -padx 0 -pady 0 @tags {code {-foreground SteelBlue} } }
 .pbtop {
 -tile ^chal1
 @@ { -progressbar {-bartile ^slan -font ^bfnt -round 1 -suffix %}}
 }
 .pbleft {
 -tile ^chal2
 @@ { -progressbar {-bartile ^slanp -font ^bfnt -round 1 -suffix % -vertical
1 }}
 }
}

{Toplevel + -title "Canvas Progressbar Demo"} {
 {Canvas - -id pbleft -pos |l -progressbar {-vertical 1}} {}
 {Frame + -pos *l} {
 {Canvas - -id pbtop -pos _ -progressbar 1} {}
 {Text - -pos * -scroll *} {}
 {ProgressBar - -id pbbot -font ^bfnt -pos _} {}
 }
}

16. Running Wize
Wize offer a lot of flexibility for packaging and running application scripts, eg.

 wize ; # Run interactive shell (then type: console show)
 wize file.tcl ; # Run a script
 wize file.gui ; # Run gui script
 wize file.zip ; # Mount zip file and run main.tcl/.gui
 wize file.zip: ; # Mount zip file and browse for script.

 wize file.zip:x.tcl ; # Mount zip file and run x.tcl
 wize file.so ; # Load dll, then mount and run main.tcl
 wize file.so: ; # Load dll, mount, and browse,

Wize treats any .zip/.so file as a wizapp. ie. it looks for main.tcl in the top directory (or
single subdirectory). Alternatively, a .tcl or .gui file of the same prefix as the .zip file
will be used. If found, it is executed.

To browse instead, just append a colon.

16.1 Relayed Links to Wize
A wize executable can use a file link to run a .zip file indirectly. For example, suppose
you've developed a Tcl application in the subdirectory foo (and it contains
a foo/main.tcl). And assume that wize is located in ~/bin. You can create a
new foo command using:

 zip -r ~/bin/foo.zip foo/
 ln -s ~/bin/wize ~/bin/foo

See Admin if you don't have zip on your system, or can't use ln (eg. on Windows).

16.2 Command-line Eval
Tcl can be evaluated from the command-line via:
 wize /zvfs/wiz/eval.tcl 'pack [button .b -text Hello-World]'
Wize can also for run applications via http, eg:
 wize http://pdqi.com/w/Download/hangman.zip
Note, this will download hangman.zip to the curent directory and then runs it.

17. Wize Admin
Wize comes with a builtin administrative interface invocable from the command-line
via:
 wize /
Here is a screenshot:

http://pdqi.com/w/pw/pdqi/Wize/Admin
http://pdqi.com/w/pw/pdqi/Wize/WizApps

The admin interface gives access to many of the features and applications within Wize,
further described below.
You can also run many Admin commands directly from the command-line, eg:

 wize / Zip/Unzip foo.zip dstdir/

17.1 Admin
The Admin entry gives access to commands for installing, listing and verifying wize
components.

17.2 Zip
The Zip entry gives access to commands for managing .zip files.

file:///w/Download/admin1.gif

17.3 Root
The Root entry displays the wize builtin filesystem.

17.4 Mounts
Mounts shows all mounted wizpaks, as well as any .zip files manually mounted via Zip/
Mount.

17.5 Apps
The Apps entry contains a number of builtin example applications for Wize that you can
run and examine. Source for these can be browsed from "wize /" or from CVS:
http://wize.cvs.sourceforge.net/viewvc/wize/wize2/Mod/wiz

Edit is a very simple editor. eg.

http://wize.cvs.sourceforge.net/viewvc/wize/wize2/Mod/wiz
file:///w/Download/edit.gif

Icons is an icon/image browser. eg.

file:///w/Download/icons.gif

Fileman is simple file manager. eg.

file:///w/Download/fileman.gif

Introspect is a widget manager and command browser. eg.

http://pdqi.com/w/pw/pdqi/Wize/Introspect
file:///w/Download/fileman2.gif

Console invokes the Tk console. Works even on Unix.

17.6 Gui (or Mod)
Mod is a package used when writing complex and sophisticated Tk applications.
The Admin entry Gui contains a number of example applications that use Gui from the
Mod package (included in wizmod.zip), these include:

Gsqlite is an Sqlite client written using Gui

http://pdqi.com/w/pw/pdqi/Mod/Gui
http://pdqi.com/w/pw/pdqi/Mod/Gsqlite
file:///w/Download/widman.gif

Geditor is an editor written using Gui

Ted is a programming editor designed to simplify Tcl development in Wize. In
particular, the command completion feature can greatly simplify writing Tcl (and Tk),
particularly for those who might not know the language that well.
(Note: ted is in wizapp.zip and is not part of wizmod.zip)

18. Exploring Wize Applications
Examining or exploring a Wize application is easy. Just use the key/mouse sequence:

 <Control-Alt-Shift-2>

This opens the window config-editor, allowing you to explore various aspects of the
running program.

18.1 A Sample Session
What follows is a sample session that explores the bigtable.gui demo.

 % wize -Wall bigtable.gui

or use:

 % wize -Wall / Gui/Bigtable

18.2 Widget Configuration
When you bring up the window editor using mouse/key sequence <Control-Alt-Shift-
2>, [Tk::editwin] is invoked:

http://pdqi.com/w/pw/pdqi/Mod/Bigtable
http://pdqi.com/w/pw/pdqi/Ted/Ted
http://pdqi.com/w/pw/pdqi/Mod/Gui
http://pdqi.com/w/pw/pdqi/Mod/Geditor

You can then double-click on the Value column to edit widget values.
You may also try the following:

• open the console from the Menu.
• in the console, type set t, space, then paste with <Control-v>.

Now try some commands in the console, eg: $t conf -bd 4. (Note, this works because
the widget is selected upon open)

18.3 The Menu
Hit <F10> or click on Menu in [Tk::editwin] to bring up the menu:

file:///w/Download/ispecwin.gif

This menu has numerous facilities which are discussed in detail below.

18.4 Edit Source
Select the menu entry Edit Source: bigtable.gui.

This will bring up the source in Geditor.

18.5 Procs
The Procs menu entry will invoke [Tk::editproc] to allow you to edit code dynamically,
right in the running program.

From the menu, select 'Procs in ::app::bigtable:

http://pdqi.com/w/pw/pdqi/Mod/Geditor
file:///w/Download/ispecmenu.gif

Then select EditStart and hit Enter (or double click):

file:///w/Download/ispecprocs.gif

Insert a line of code in the proc, eg. puts "Editing: $row" and click Eval.
Now go back to bigtable and edit a cell by double clicking. Note how your output
appears in the xterm.
Alternatively, you can open the console window and use putc.

18.6 Variables
The Vars menu entry invokes [Tk::editvar] letting you examine and change variables in
the running program.

When you select 'Vars in ::app::bigtable you will see:

file:///w/Download/ispecproced.gif

Then select _tod_1 and hit Enter:

file:///w/Download/ispecvars.gif

Double click or hit enter to change any variable.

18.7 Window Tree
Selecting Window Tree from the Menu will invoke:
 Tk::editwin .*

file:///w/Download/ispecvared.gif

The current window will be selected. You can then select a different window and hit
enter to edit it.

18.8 Namespace Tree
Selecting Namespace Tree from the Menu will invoke [Tk::editns ::*] letting you browse
the namespace tree, eg:

file:///w/Download/ispecwintree.gif

By default the current namespace is selected. You can then double-click on
the Procs column to edit procs, or the Varscolumn to edit variables (in that namespace).

18.9 Introspect
Introspect is a graphical application for examining and modifying the program state of
Tk applications.

The default is ot start introspect inside the application process you are debugging.
The exec option however starts introspect as an external process.

18.10 Edit
Edit invokes the editor on the runtime file. See Start Ted.

18.11 Start Ted
Ted is a programming editor with builtin command completion for Tcl/Tk.
If ted is running when you invoke Edit, then the file will be edited in Ted. Otherwise, the
builtin editor will be used.

http://pdqi.com/w/pw/pdqi/Ted/Ted
http://pdqi.com/w/pw/pdqi/Wize/Introspect
file:///w/Download/ispecns.gif

18.12 Admin
Admin is the administrative interface into Wize.

18.13 The Status Line
Arguments can be appended to the path in the editwin status line to be evaluated, eg:

• add space, style names and hit enter.
• change above to style conf alt and hit enter.

Note, if the last or second last argument matches pattern *conf then 'Tk::editwin'' is
invoked to edit widget items.
Otherwise, the results are displayed in a popup.

18.14 Console
A console can be opened from the editwin menu or by typing the key
sequence <Control-Alt-Shift-space>, eg:

Any Tcl command can be typed into the console. However, the following are most
useful:

• Tk::find - search for window by name or class.

• Tk::editproc - edit running procs
• Tk::editvar - visual variable editor

• Tk::editwin - visual widget editor/browser

http://pdqi.com/w/pw/pdqi/Wize/TkFind
http://pdqi.com/w/pw/pdqi/Wize/Admin
file:///w/Download/console.gif

• Tk::editns - visual namespace browser.

19. Introspect
Introspect is a graphical application for examining and modifying the application state
of other programs viasend/dde. It can be invoked in an application via <Control-Alt-
Shift-2> or run directly using:

 wize /zvfs/wiz/introspect.tcl

Introspect uses a TreeView to display resources such as Procs, Vars, Widgets, Fonts,
etc. It contains a Sandbox environment to let you experiment with widgets/elements,
the command/option hierarcy of all builtin commands, and access to all online
documention.
Here are screenshots of the Introspect tabs:

file:///w/Download/introspect1.gif

file:///w/Download/introspect2.gif

file:///w/Download/introspect3.gif

file:///w/Download/introspect4.gif

19.1 Interps
Interps uses a TreeView to display all non-windows resources. This includes
namespaces (both commands and variables), fonts, images and events. These are all
indexed by interp name, one for each Tk program running under the window managers
display.

Variables can have their value changed by double clicking on the Value column.

file:///w/Download/introspect5.gif

Command procs can be dynamically edited in the running program by double clicking
on the proc value column. The file containing a proc can be edited by double clicking on
the file value column.

Usually, a sub-tree can be refreshed just by closing and reopening it.
There are several checkboxes that control viewing:

Remotes

Check to show all remote interps.

Hide Commands

Hide all non-proc commands.

Hide Builtins

Hide all commands, procs or vars that are considered builtin. These mostly affect only
the :: namespace.

19.2 Windows
Windows uses a TreeView to display all widget window resources. These are all indexed
by interp name, one for each Tk program running under the window managers display.
Option values can be changed by double clicking on the Value column.
The following checkbox option is available.

Hide Properties

Check to display only the window tree hierarchy, without the properties (bindings, winfo
and options).

19.3 Sandbox
The Sandbox environment contains one of every Tk widgets available in Wize as well as
one of each type of item (for widgets supporting items).

The widgets/items may be examined and changed dynamically. This provides
instantaneous access to real working widgets and items and their options.

19.4 Cmds
The command/option hierarcy for all builtin commands in Wize. Many commands in Tcl
take sub-commands and even sub-sub-commands each of which may take various
arguments and options. This allows you to view the signatures for each command.

Double clicking on any command gives a detailed breakdown of that commands
arguments in the right hand pane. Some commands have detailed type information
included For and example, checkout Tcl/fconfigure.

These are broken down into 5 groups:

• Widgets - The widget commands.

• Tcl - The Tcl commands.
• Tk - The Tk commands

• Blt - The BLT specific extension commands.
• Misc - Reserved for future use.

19.5 Manuals
Finally, it provides access to all online documention, both for the Tcl/Tk commands and
for Tcl's C-programming API.

Double clicking on any man page will display the manual in a new tab. Right click on
any tab to close it. Or use <Control-s> to search the page.

Click on the INDEX link at top to go to the table of contents, where you can click on
more links. Use <Alt-left> to return from a link.

20. Development
The devel macro commands are used to simplify debugging when warnings are
enabled. If warnings are disabled, these all return the empty string and do nothing.
Moreover, the commands can become Tcl noops by calling Mod ndebug: A noop has
zero runtime overhead.

Here's an example:
 proc Foo {n m} {
 .Trace
 .Assert {$n>0 && $n<1000} 1
 if {[.Debug] != {}} {
 CheckRange $m $n
 }
 .Debug {
 if {$n < $m} { .Break BadN1 }
 }
 .Warn "Begin processing"
 return $n.0
 }

Note that all commands start with period + capital letter.

Below are the supported commands.

http://pdqi.com/w/pw/pdqi/Mod/Ndebug
http://pdqi.com/w/pw/pdqi/Mod/Warnings

20.1 .Assert expr ?warnonly?
Evaluate the expression expr. The expression should use curley braces to avoid a
double eval. If warnonly==1 then calls .Warn instead of causing an error. If warnonly>1
the output contains detailed stack info (ie. to help debugging).

 .Assert {$n>0}
 .Assert {$n>1} 1
 .Assert {$n<-1} 2

20.2 .Break ?str?
Invoke Tcl inspect, eg.

 .Break stop1

20.3 .Debug ?script?
If called with no argument it returns the current debug level. Otherwise evaluate
the script and issue a warning only if an error occurs.

Usage:

 if {[.Debug]!=""} {
 if {$m==$n} { error "equal error" }
 }
 .Debug {
 if {$n<$m} { error "range error" }
 }

WARNING: Do not do the following as it can result in a runtime error:

if {[.Debug]} { #... }

20.4 .Error str ?subst?
Kick an error. If subst is true, evaluate str first.

The following are roughly equivalent:

 .Error {bad call: $n} 1
 if {[.Debug] != {}} { error "bad call: $n" }

20.5 .Trace ?-num cnt? ?-fmt bool? ?-prefix str?
Dump the call-stack info from the current proc. The default is to dump only the current
proc, with no formatting or prefix. Using a cnt of -1 will dump the whole call-stack.

If -fmt is true, show a in name=value form

http://pdqi.com/w/pw/pdqi/Mod/TclInspect

 proc Foo {n} {
 .Trace -num -1 -fmt 1
 }

20.6 .Warn str ?subst?
Log a warning message using tclLog. If subst is true, evaluate str first.

 .Warn "Something bad happened"
 .Warn {Range error: $m>$n} 1

21. Debugging Programs
In Tcl, debugging has traditionally been limited to using puts or tclLog statements in the
code. Herein we discuss some other alternatives.

21.1 Validating Programs
Wize provides static code checking with:

 wize -Wall prog.tcl

This statically checks Tcl procs for validation
Even if a program passes validation, there can still be errors. Here are a few debugging
utilities.

21.2 .Break
You can inspect variables within a running proc vy inserting a .Break XXX statement.
When this gets executed, theTclInspect console is invoked allowing the user to
view/modify variables, procs or edit the file. The XXX label is optional and is only used
in locating code with multiple .Breaks.

For example:

 # File "foo.tcl"
 package require Mod

 proc Foo {n} {
 incr n
 .Break 1
 set n [expr {$n*2.3}]
 .Break 2
 return $n
 }

http://pdqi.com/w/pw/pdqi/Mod/TclInspect
http://pdqi.com/w/pw/pdqi/Mod/Backtrace#inspect
http://pdqi.com/w/pw/pdqi/Wize/Validation

 puts [Foo 1]
 exit 0

Run this with:

 wize -Wall foo.tcl

This will invoke TclInspect where you can examine and change variables.

21.3 Error Trap
Sometimes it's desirable to debug a proc that is causing a traceback. Tracebacks are
useful for showing that an error occurred, but unfortunately the current state
information is lost by the time the stack unwinds.

With Mod an application can trap errors using ::env(TCL_TRAP). This
invokes TclInspect right at the error, much like .Break, eg.

 wize -Wlevel=all,trap=1 bad.tcl

21.4 Tracing Proc Calls
You can trace all commands by calling bltdebug.

Wize supports tracing of all proc calls using:

 wize -Wproccalls=3 prog.tcl

22. Backtrace
Decoding a Tcl error traceback can be very tedious. This is particularly true in larger
applications involving hundreds of lines of backtrace and dozens of stack levels.
Therefore Mod provides a facility that automatically decodes stack tracebacks,
presenting them in one-level-per-line format. Th can also optionally stop the program
right at an error, before the stack unwinds in a traceback. (note: this facility is for
handling runtime errors, and presumes program files have already sourced without
error.)

Mod handles background errors by unwinding the stack backtrace into a one per line
listing which can then be used to navigate through source code involved in an error.
Here a couple of screenshots. The first is a real-error screenshotand the other
the install demo-error screenshot. Clicking on any given level, a Mini-
EDitor (Med) will popup displaying the file/line of error. Med provides only rudimentary

file:///w/Download/tcltrap.png
file:///w/Download/backtrace.png
http://pdqi.com/w/pw/pdqi/Mod/Mod
http://pdqi.com/man/mann/bltdebug.html
http://pdqi.com/w/pw/pdqi/Mod/TclInspect
http://pdqi.com/w/pw/pdqi/Mod/TclInspect

capabilities, however, it does support save and so allows immediate editing and fixing of
problems.

One issue with debugging Tcl is that it normally does not collect file or line information
associated with procs. Mod allows forcing this collection by adding the following to the
top of your program (or setting it from command-line).

 set ::env(TCL_WARN) all

When not using TCL_WARN or Wize -Wall, Mod instead falls back to show just the proc
definition.

The backtrace window should look like:

Clicking on any line should open a Mini-Editor window (see below).

22.1 Pausing A Program
It is sometimes desirable to pause a running program right inside a proc, to allow
inspection of the runtime variables. This can be achieved using the .Break directive
while running a program while running with -Wall.

Here is an example:.

 proc Invoke-Stop {_} {
 # Demo of pausing a program for inspection.
 set j 1
 .Break first
 incr j
 .Break second
 }

If run with checking on, this should open a window something like:

As shown, Tcl commands can be executed in the command input at bottom. Closing the
window will resume execution, pausing again at the next .Break.

22.2 Trap
Trap deals with uncaught errors by stopping the program right at the error to enable
the user to inspect variables.

To enable it run the program like so:

 wize -Wlevel=all,trap=1 script.tcl

or put the following at the top of the main script

 set ::env(TCL_WARN) "level=all,trap=1"
 package require Mod

Trap stops a program-event right at the point of error, to allow introspection of the
running program. Commands can then be run within a procs error context, prior to the
unwinding of the stack.

Another way to use trap is selecting the trap option from Teds Run-Tcl.

WARNING: Do not always use the trap option as it exercises obscure areas of Tcl and
can intermittently crash.

23. Util Macros
The Util macros are a collection of frequently used code. These all start with a star
character *. Following are some of the more commonly used ones.

23.1 *catch
Eval with catch, displaying any errors as a warning. The warning message also contains
the namespace (and proc if possible) of the offending call. When not running with wize -
Wall, errors are silently ignored.

 *catch { CallFunc 1 "X" }

 # Equivalent to ...

 if {[catch { CallFunc 1 "X" } erc]} {
 .Warn "Catch: $erc"
 }

23.2 *value
Returns the value of a variable if it exists, otherwise returns the default, or if no default
is given, an empty string, eg.

 set n [*value ::MyNs::Arr(Really_Long_Value) 0]

 # Equivalent to ...

 if {[info exists ::MyNs::Arr(Really_Long_Value)]} {
 set n $::MyNs::Arr(Really_Long_Value)
 } else {
 set n 0
 }

23.3 *bvalue
Return the value for an element from a binary (name/value pair) list. If available, the
dict command is used, otherwise falls back to a list search.

http://pdqi.com/w/pw/pdqi/Mod/Util

 set LookupTable {able 1 baker 2 charlie 3}

 set val [*bvalue $LookupTable baker 0]

 # Equivalent to ...

 if {[dict exists $LookupTable baker]} {
 set val [dict get $LookupTable baker]
 } else {
 set val 0
 }

23.4 *fread/*fwrite
Read or write a file. Additional options are passed to fconfigure:

 set dat [*fread file1.dat]
 *fwrite file2.dat $dat -translation binary

 # Equivalent to ...

 set fp [open file1.dat]
 set dat [read $fp]
 close $fp

 set fp [open file2.dat w+]
 fconfigure $fp -translation binary
 if {[catch { puts -nonewline $fp $dat } erc]} {
 close $fp
 error $erc
 }
 close $fp

