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Tcl Assembly Language: what it is
● A way for scripts to include instructions at the 

Tcl virtual machine level
● A bookkeeping system for code generation
● A way for compilers (for instance “little 

languages”) to target the Tcl bytecode engine
● A rapid prototyping system for Tcl code 

generation
● A new backend connection for L?



  

TAL: What it isn't
● Not a good way to chase performance in user 

scripts
– C is faster and likely easier to maintain

● Not “officially supported”
– tcl::unsupported namespace
– We don't want to freeze the virtual machine
– But migration paths are likely (tbcload)

● Not a way to extend the engine
– Current instructions only



  

Still with me?

Not scared off yet?



  

Really?
It gets dangerous ahead...



  

Anatomy of a bytecode object
● Bytecode instructions themselves
● Literal table
● Local variable table
● Command table
● Exception ranges
● Auxiliary data



  

Bytecode instructions
● Interpreter is a stack machine like Forth or 

PostScript
● Most instructions work with operands on top of 

stack
● Instructions also have parameters stored inline 

in the bytecode
● Many instructions refer to offsets in the other 

tables (literals, local variables, etc.)
● Stack mistakes get SEGV and Tcl_Panic



  

Assembly syntax is Tcl syntax
● The assembler uses the Tcl parser
● Commands are instructions (plus a handful of 

“assembly directives”)
● No $-, []-, or {*}- substitutions.
● Very little additional stuff beyond the 

instructions
– Because the assembler can figure it out.



  

Constants

push (8- or 32-bit offset into literal table)
Literal table is simply an array of Tcl_Obj 
pointers
Assembler manages literals for the programmer:
assemble {
    push puts
    push {hello, world!}
    invoke 2
    pop
}



  

Variables
● Instructions come in 4 basic flavors

– Local scalar (1 or 4-byte local variable table [LVT] 
index)

– Local array (LVT index plus key from the stack)
– General scalar (name on the stack)
– General array (name and key on the stack 

separately)
● Some instructions also have 'immediate' variants
● Load, store, append, lappend, incr, exist, unset
● Upvar, nsupvar, variable
● Assembler manages LVT



  

Variables

push 2
store x; # set x 2
pop
load x
load x
add
store y; # set y [expr {$x + $x}]
pop
push ::result
load y
storeStk; # set ::result $y
pop



  

Operations
● Consume operands off stack and stack the 

result
● Lots of these:
add, sub, mul, div, expon, mod, 
neg,
le, lt, ge, gt, eq, ne,
bitand, bitor, bitxor, bitnot,
land, lor, lnot,
strmatch, strcmp, streq, 
strneq, ...



  

Stack manipulation
● 'nop', 'pop', 'dup', 'over', 'reverse', …
● Rearrange objects on the stack
● Sometimes important that objects get accessed 

in the right order
– Traces



  

Jumps
● Jump, jumpTrue, 

jumpFalse
– 8 or 32-bit byte 

offset (all jumps 
are relative)

● Label
– Gives a name to a 

jump target
– Assembler 

manages 
relative jumps

# set y [expr \
       {$x ? 0 : 1}]

  load x
  jumpTrue here
  push 1
  jump there
label here
  push 0
label there
  store y
  pop



  

Our first problem: Ack! A stack 
attack!

● Bytecode objects 
must know their stack 
consumption in 
advance.

label loop
  push 1
  jump loop

● Tcl_Panic!



  

Rules of the road for stack usage
● Assembler tracks stack depth at each 

instruction
● No instruction may underflow the stack
● All code paths to a given instruction must enter 

at the same stack depth
● Stack depth must be 1 on exit
● High water mark is calculated
● Result: Assembly code  can't smash the  s tack.



  

Errors
● Exception ranges: “All code from bytes M to N 

should transfer to byte P on an exception”
● Exception ranges are nested.
● 'beginCatch' and 'endCatch' instructions mark 

and rollback the stack.
● 'startCatch' and 'doneCatch' directives (no code 

generated) make the exception range.
● Assembler again follows the control flow and 

checks consistency.



  

More stuff
● List and dictionary operations
● String match
● Regexp
● PushReturnCode, pushReturnOptions, 

pushResult
● ...



  

Invoking the interpreter
● 'invoke' – pops objv from the stack and pushes 

the command result.
● 'evalStk' and 'exprStk' – evaluate an object from 

the stack.
● 'eval' and 'expr' – invoke the compiler 

recursively, compiling a script or expression in 
line.

This wasn't very hard. I LOVE TCL!



  

Now that you're all 
TAL programmers...



  

The assembler and performance
● Simple benchmark:
proc ulam1 {n} {
    set max $n
    while {$n != 1} {
        if {$n > $max} {
            set max $n
        }
        if {$n % 2} {
            set n [expr {3 * $n + 1}]
        } else {
            set n [expr {$n / 2}]
        }
    }
    return $max
}



  

Squeezing the assembly code
● Move variables to the 

stack
– Loses traces
– How important is this?

● Store/pop/load 
optimization

● Branch-to-branch 
elimination

● Result: Assembly code 
ran in about 60% of the 
time.



  

So why bother?

● C is still 30× faster than bytecode
● And more readable
● But: The tradeoffs are different if you're a 

compiler writer.
● Or if most of your calculations are Tcl_Obj-

oriented
● Or if you're implementing Tcl in Tcl.
● Or if you're a Core maintainer...

… so this isn't really a dead end. It's a jumping-
off point. 



  

What's not done?
● A few families of instructions

– 'foreach'  and 'return' (Simple Matter Of 
Programming)

– 'break' and 'continue' – Bugs in the 
compiler/engine!

– 'dict update' and 'dict for'
– 'expand' (does {*})
– JumpTable
– 'startCommand' and 'syntax' – may not be worth 

messing with.
● The Great Big Manual (100+ instructions to 

document!)



  

Why unsupported?
● At first, because we thought that badly written 

assembler code would crash the VM.
– But we're tight about checking things. 

Assembler code can't do wild jumps, smash 
the operand or exception stacks, access off 
the end of tables, …

– Should be as safe as Tcl
● But – plans afoot every so often to change the 

VM.
– Would make assembly code instantly obsolete
– Would also make TDK-compiled modules 

obsolete
– So maybe ActiveState will help with solution



  

Thank You!

And thanks to
Google Summer of Code 2010

for sponsoring this project
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