
  

An assembler for Tcl bytecode:
????

Kevin Kenny
GE Research

Ozgur Dogan Ugurlu
University of San Francisco



  

An assembler for Tcl bytecode:
A technological dead end

Kevin Kenny
GE Research

Ozgur Dogan Ugurlu
University of San Francisco



  

An assembler for Tcl bytecode:
a technological dead end

Why the Tcl maintainers can have it
(and you can't!)

Kevin Kenny
GE Research

Ozgur Dogan Ugurlu
University of San Francisco



  

An assembler for Tcl bytecode:
A technological dead end

Why the Tcl maintainers can have it
(and you can't!)

Opening the bytecode engine to Tcl scripts

Kevin Kenny
GE Research

Ozgur Dogan Ugurlu
University of San Francisco



  

Tcl Assembly Language: what it is
● A way for scripts to include instructions at the 

Tcl virtual machine level
● A bookkeeping system for code generation
● A way for compilers (for instance “little 

languages”) to target the Tcl bytecode engine
● A rapid prototyping system for Tcl code 

generation
● A new backend connection for L?



  

TAL: What it isn't
● Not a good way to chase performance in user 

scripts
– C is faster and likely easier to maintain

● Not “officially supported”
– tcl::unsupported namespace
– We don't want to freeze the virtual machine
– But migration paths are likely (tbcload)

● Not a way to extend the engine
– Current instructions only



  

Still with me?

Not scared off yet?



  

Really?
It gets dangerous ahead...



  

Anatomy of a bytecode object
● Bytecode instructions themselves
● Literal table
● Local variable table
● Command table
● Exception ranges
● Auxiliary data



  

Bytecode instructions
● Interpreter is a stack machine like Forth or 

PostScript
● Most instructions work with operands on top of 

stack
● Instructions also have parameters stored inline 

in the bytecode
● Many instructions refer to offsets in the other 

tables (literals, local variables, etc.)
● Stack mistakes get SEGV and Tcl_Panic



  

Assembly syntax is Tcl syntax
● The assembler uses the Tcl parser
● Commands are instructions (plus a handful of 

“assembly directives”)
● No $-, []-, or {*}- substitutions.
● Very little additional stuff beyond the 

instructions
– Because the assembler can figure it out.



  

Constants

push (8- or 32-bit offset into literal table)
Literal table is simply an array of Tcl_Obj 
pointers
Assembler manages literals for the programmer:
assemble {
    push puts
    push {hello, world!}
    invoke 2
    pop
}



  

Variables
● Instructions come in 4 basic flavors

– Local scalar (1 or 4-byte local variable table [LVT] 
index)

– Local array (LVT index plus key from the stack)
– General scalar (name on the stack)
– General array (name and key on the stack 

separately)
● Some instructions also have 'immediate' variants
● Load, store, append, lappend, incr, exist, unset
● Upvar, nsupvar, variable
● Assembler manages LVT



  

Variables

push 2
store x; # set x 2
pop
load x
load x
add
store y; # set y [expr {$x + $x}]
pop
push ::result
load y
storeStk; # set ::result $y
pop



  

Operations
● Consume operands off stack and stack the 

result
● Lots of these:
add, sub, mul, div, expon, mod, 
neg,
le, lt, ge, gt, eq, ne,
bitand, bitor, bitxor, bitnot,
land, lor, lnot,
strmatch, strcmp, streq, 
strneq, ...



  

Stack manipulation
● 'nop', 'pop', 'dup', 'over', 'reverse', …
● Rearrange objects on the stack
● Sometimes important that objects get accessed 

in the right order
– Traces



  

Jumps
● Jump, jumpTrue, 

jumpFalse
– 8 or 32-bit byte 

offset (all jumps 
are relative)

● Label
– Gives a name to a 

jump target
– Assembler 

manages 
relative jumps

# set y [expr \
       {$x ? 0 : 1}]

  load x
  jumpTrue here
  push 1
  jump there
label here
  push 0
label there
  store y
  pop



  

Our first problem: Ack! A stack 
attack!

● Bytecode objects 
must know their stack 
consumption in 
advance.

label loop
  push 1
  jump loop

● Tcl_Panic!



  

Rules of the road for stack usage
● Assembler tracks stack depth at each 

instruction
● No instruction may underflow the stack
● All code paths to a given instruction must enter 

at the same stack depth
● Stack depth must be 1 on exit
● High water mark is calculated
● Result: Assembly code  can't smash the  s tack.



  

Errors
● Exception ranges: “All code from bytes M to N 

should transfer to byte P on an exception”
● Exception ranges are nested.
● 'beginCatch' and 'endCatch' instructions mark 

and rollback the stack.
● 'startCatch' and 'doneCatch' directives (no code 

generated) make the exception range.
● Assembler again follows the control flow and 

checks consistency.



  

More stuff
● List and dictionary operations
● String match
● Regexp
● PushReturnCode, pushReturnOptions, 

pushResult
● ...



  

Invoking the interpreter
● 'invoke' – pops objv from the stack and pushes 

the command result.
● 'evalStk' and 'exprStk' – evaluate an object from 

the stack.
● 'eval' and 'expr' – invoke the compiler 

recursively, compiling a script or expression in 
line.

This wasn't very hard. I LOVE TCL!



  

Now that you're all 
TAL programmers...



  

The assembler and performance
● Simple benchmark:
proc ulam1 {n} {
    set max $n
    while {$n != 1} {
        if {$n > $max} {
            set max $n
        }
        if {$n % 2} {
            set n [expr {3 * $n + 1}]
        } else {
            set n [expr {$n / 2}]
        }
    }
    return $max
}



  

Squeezing the assembly code
● Move variables to the 

stack
– Loses traces
– How important is this?

● Store/pop/load 
optimization

● Branch-to-branch 
elimination

● Result: Assembly code 
ran in about 60% of the 
time.



  

So why bother?

● C is still 30× faster than bytecode
● And more readable
● But: The tradeoffs are different if you're a 

compiler writer.
● Or if most of your calculations are Tcl_Obj-

oriented
● Or if you're implementing Tcl in Tcl.
● Or if you're a Core maintainer...

… so this isn't really a dead end. It's a jumping-
off point. 



  

What's not done?
● A few families of instructions

– 'foreach'  and 'return' (Simple Matter Of 
Programming)

– 'break' and 'continue' – Bugs in the 
compiler/engine!

– 'dict update' and 'dict for'
– 'expand' (does {*})
– JumpTable
– 'startCommand' and 'syntax' – may not be worth 

messing with.
● The Great Big Manual (100+ instructions to 

document!)



  

Why unsupported?
● At first, because we thought that badly written 

assembler code would crash the VM.
– But we're tight about checking things. 

Assembler code can't do wild jumps, smash 
the operand or exception stacks, access off 
the end of tables, …

– Should be as safe as Tcl
● But – plans afoot every so often to change the 

VM.
– Would make assembly code instantly obsolete
– Would also make TDK-compiled modules 

obsolete
– So maybe ActiveState will help with solution



  

Thank You!

And thanks to
Google Summer of Code 2010

for sponsoring this project


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

